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Abstract— 

Parametric imaging of Ki (the net influx rate) in FDG PET has been shown to provide better quantification and improved specificity 

for cancer detection compared with SUV imaging. Current methods for generating parametric images usually requires a long dynamic 

scan time. With the recently developed uEXPLORER scanner, a dramatic increase of sensitivity has reduced the noise in dynamic 

imaging, making it more robust to employ a non-linear estimation method and flexible protocols. In this work, we explored 2 new 

possible protocols besides the standard 60-minute one for the possibility of reducing scan time for Ki imaging. 

Method: 

In the proposed protocols, the first one is the conventional dynamic scans of a 60-minute scan time as the gold standard. The second 

scanning protocol includes two scan periods, 0-4 minutes, and 54-60 minutes post-injection. The third one consisted of a single scanning 

period from 50 minutes to 60 minutes post-injection. In the third protocol, a second injection was applied at t=56 minutes. The two new 

protocols were simulated from the 60-minute scans. A hybrid input function that combining the population-based input function and the 

image-derived input function (IDIF) was used. The results were also compared with the IDIF acquired from Protocol 1. A previously 

developed maximum likelihood approach was used for estimating the Ki images. A total of 7 cancer patients scanned using the 

uEXPLORER scanner were enrolled in this study. Lesions were identified from the patient data and the lesion Ki values were compared 

among different protocols. 

Results: 

The acquired hybrid input function was comparable in shape with the IDIF for each patient. The average area-under-curve 

difference was ~3%, suggesting good quantitative accuracy. The visual difference between the Ki images generated using IDIF and the 

hybrid input function was also minimal. The acquired Ki images using different protocols were visually comparable. The average Ki 

difference in the lesions was found to be 2.8%±2.1% for protocol 2 and 1%±2.2% for protocol 3.  

Conclusion: 

 The results suggest that it is possible to acquire the Ki image using the nonlinear estimation approach with much-reduced scan time. 

Among the two new protocols, the protocol with dual injections shows the greatest promise in terms of practicality. 

 

  



I. INTRODUCTION 

Positron Emission Tomography (PET) with the standard uptake values (SUV) (1,2) is widely used in clinical 

oncology for tumor imaging. However, the use of SUV suffers from several drawbacks (3). For instance, the uptake 

time of FDG in different tumors may vary significantly in kinetics for different tissue (4). It is also challenging for the 

SUV measurement to differentiate malignant tumors from processes such as inflammation (5–7).  

Parametric imaging provides an alternative to SUV imaging and it has the potential for added information. For FDG 

studies, a few parameters are commonly derived, such as the net influx rate Ki, the delivery rate constant K1, and blood 

fractions in tissue. Ki is more commonly used and often acquired using Graphical methods due to its simplicity (8). The 

acquired Ki has been found to yield improved specificity at a similar sensitivity for cancer detections (9). It has also 

been found that the Ki image yielded better results for tumor volume delineation than the SUV image (10). FDG K1 

alone or with the combination of Ki was found to be an indicator for identifying tumor subgroups (11), evaluation of 

chemotherapy response (12). The combined FDG parameters were found to be helpful for accessing metabolic tumors 

(13) as well. 

 Compared with SUV imaging, parametric imaging also has its challenges. One is the need for an accurate input 

function. The conventional approach utilizes the invasive use of arterial samples. In recent years, more and more 

studies are suggesting that the image-derived input function (14,15), population-based input function (16), or hybrid 

input function with both image data and population samples (17) can be used as the non-invasive replacement. 

Another practical issue is the much-increased scan time. To estimate the net influx rate Ki using the conventional 

Patlak method, a much longer scan is unavoidable. This is because the Ki image is the slope image in the Patlak 

model, with slow-changing dynamics, it requires a long scan time to accurately estimate the change of activity. As a 

result, a minimal scan time of 30 minutes is often used for estimating Ki with the Patlak model. Compared with the 

state-of-art whole-body SUV scans that last less than 10 minutes, the much-increased scan time has limited the daily 

application of parametric imaging. The much-increased scan time also increases the likelihood of patient motion 

during scans, which may further degrade image quality. 

While conventionally, single bed acquisition is usually used for parametric imaging, whole-body Patlak analysis 

using regular scanners (18) or the total-body uEXPLORER scanner (19) have recently been proposed and validated, 



Whole body parametric imaging provides a unique opportunity for the inspection of disseminated disease, which is also 

a major application of PET imaging. 

Compared with the Graphical method, Ki could also be estimated using a non-linear approach with the use of a 

2-tissue irreversible compartment model. An entire time-activity curve (TAC) consisted of 60 minutes scan or even 

longer scan time is usually used for this purpose. With the uEXPLORER (20), the much-increased sensitivity for the 

whole-body scan has dramatically reduced the noise in the reconstructed dynamic images. The reduction of noise in 

the dynamic images has made non-linear estimation more robust. An advantage of non-linear estimation is that it can 

better utilize dynamic data other than that after equilibrium, unlike conventional linear Patlak models (21), therefore 

providing more freedom in protocol designs. In previous studies, we have demonstrated the possibility of reduced 

scan time for estimating parameters such as K1 and the blood fraction (22). In this work, we further explored the 

possibility of accurately estimating Ki using a much shorter dynamic scan sequence with a total scan time of 10 

minutes for whole-body imaging. Two alternatives were investigated. One utilizes the combination of early time 

point and late time point scan (dual points scan), the other uses the dual-injection protocol to combine both early 

dynamic information and late dynamic information within one scan duration.  

II. METHODS 

A. Scanning protocols  

Three protocols were proposed and studied in this paper. The first protocol was the regular 0-60 minutes dynamic 

scan. It was used as the gold standard to evaluate the performance of the other protocols. 

The second protocol consisted of the combination of 2-time points, i.e. the early time point (0-4 minutes 

post-injection, p.i.) and the late time points (54-60 minutes p.i.). In this protocol, for the minimal use of scanner time, 

the patients are required to scan two times, and registration is required in between the scans. In this study, as a proof 

of concept, this protocol was simulated by excluding the 4-54 minutes p.i. of an entire 0-60 minutes p.i. dynamic 

scan range without the need for registration. The main goal of this protocol was to examine the accuracy of the 

estimation by using only the early and the late phase information. 



In the third scan protocol, a single scan period was used (50-60 minutes p.i.) with the help of dual injections 

scheme. The first injections occur in t=0, and the second injections occur in t=56 minutes p.i. In this case, the last 4 

minutes provides the early dynamic data, and the first 6 minutes provides similar information contained in the second 

scanning period in Protocol 2. This scanning protocol was simulated by combining the dynamics images of the 0-4 

minutes p.i. and 56-60 minutes p.i. Figure 1 shows an illustration of the three protocols. Table 1 shows the dynamic 

time frame of all the protocols.  

 

B. Input functions 

For the protocol using the entire 60 minutes, the image-derived input function (IDIF) is used. Ascending aorta was 

used to extract IDIF as it is less affected by respiratory motion. For the other scans, with the limited scan time, IDIF 

was not available for the entire dynamic range. In this paper, we acquired the input function using a hybrid approach 

by combining the population-based, the model-based, and the IDIF. The input function for the second scanning 

protocol is proposed as: 

𝐶𝑝(𝑡) ≜ {

𝐶𝑖𝑚𝑎𝑔𝑒1(𝑡)                                           𝑡 ≤ 𝑡1

𝜇𝑒−𝛾(𝑡−𝑡1)𝐶𝑝0(𝑡)          𝑡 ≥ 𝑡1 𝑎𝑛𝑑 𝑡 ≤ 𝑡2

𝐶𝑖𝑚𝑎𝑔𝑒2(𝑡)                                          𝑡 ≥ 𝑡2

 

(1) 

where 𝐶𝑖𝑚𝑎𝑔𝑒1(𝑡) is the IDIF of the first 4 minutes, 𝐶𝑖𝑚𝑎𝑔𝑒2(𝑡) is the IDIF on the last 6 minutes. 𝐶𝑝0(𝑡) is the 

population-based input function, 𝛾  and 𝜇  is the scaling constant that satisfy 𝜇𝐶𝑝0(𝑡1) = 𝐶𝑖𝑚𝑎𝑔𝑒1(𝑡1) , and 

𝜇𝑒−𝛾(𝑡2−𝑡1)𝐶𝑝0(𝑡2) = 𝐶𝑖𝑚𝑎𝑔𝑒2(𝑡2). 

For the third scanning protocol. The input function was acquired based on two assumptions: 1, the later phase of the 

input function can be approximated as a single exponential function. 2, the shape of the input function from the second 

injection has the same shape as the input function from the first injection. In literature studies with multiple injections 

on one patient, the similarity of the produced input function (23) supports the second assumption.  



The IDIF was first separated into two regions: before the second injection (CB(t)) and after the second injection 

(CA(t)), where t0 represents the second injection time. An exponential curve (𝐶𝐵0𝑒−𝑏𝑡) was used to fit CB(t) and the 

contribution of the second injection was estimated by subtracting the exponential curve from the IDIF CA(t), i.e. 

CA(t)- 𝐶𝐵0𝑒−𝑏𝑡. The contribution from the second injection was treated as the early phase input function (𝐶𝑖𝑚𝑎𝑔𝑒1(𝑡)) 

as that in Protocol 2, and CB(t) was treated as the late phase input function (𝐶𝑖𝑚𝑎𝑔𝑒2(𝑡)) as that in Protocol 2. The 

missing part was approximated using the same approach as shown in Equation (1). 

For both the second and the third scanning protocol, the original IDIF acquired using the whole dynamic process was 

used as the gold standard. 

C. Maximum-likelihood estimation 

The dynamic changes of FDG within the human body can be approximated using the 2-tissue compartment model, 

where the first compartment (C1) describes the perfusion of FDG to the tissue, and the second compartment (C2) 

models the phosphorylation process within the cells. The two compartments can be modeled mathematically using the 

rate constants: 

{

𝑑𝐶1

𝑑𝑡
= 𝐾1𝐶𝑝 + 𝑘4𝐶2 − 𝑘2𝐶1 − 𝑘3𝐶1

𝑑𝐶2

𝑑𝑡
= 𝑘3𝐶1 − 𝑘4𝐶2

 

(2) 

where K1 and k2 describe the forward and backward perfusion process of FDG in the tissue. k3 and k4 describe the 

phosphorylation and dephosphorylation process. In many cancer cells, the FDG-6-phosphate is only minimally 

dephosphorylated and is trapped within the cell (24). This process allows us to simplify the model by assigning k4=0. 

The acquired dynamic PET image, 𝑋(𝑡), can be represented using the equation below when k4=0. 

𝑋 = 𝑣𝑏𝐶𝑝 + 𝐶1 + 𝐶2  = 𝑣𝑏𝐶𝑝 +
𝑘2𝐾1

𝑘2 + 𝑘3
exp(−(𝑘2 + 𝑘3)𝑡)⨂𝐶𝑝(𝑡) +

𝑘3𝐾1

𝑘2 + 𝑘3
∫ 𝐶𝑝𝑑𝑡 

(3) 



In the above equation, define 𝐾1
′ = 𝐾1

𝑘2𝐾1

𝑘2+𝑘3
, 𝑘2′ = 𝑘2 + 𝑘3, 𝐾𝑖 =

𝑘3𝐾1

𝑘2+𝑘3
, 𝐶𝑖(𝑡) = ∫ 𝐶𝑝𝑑𝑡, the above equation can be 

written as: 

𝑋 = 𝑣𝑏𝐶𝑝 + 𝐶1 + 𝐶2  = 𝑣𝑏𝐶𝑝(𝑡) + 𝐾1′exp(−𝑘2′𝑡)⨂𝐶𝑝(𝑡) + 𝐾𝑖𝐶𝑖(𝑡) 

(4) 

The above equation is similar to the Patlak model, where the Ki has the same definition as that in the Patlak model, 

and the combined effect of 𝑣𝑏 + 𝐾1′exp(−𝑘2′𝑡)⨂/𝐶𝑏(𝑡) was treated as a constant after equilibrium in the Patlak 

model. 

With the assumption that the voxel values in the dynamics image approximately follow a scaled Poisson 

distribution (25), the maximum-likelihood estimation approach was used for estimating 𝐾𝑖. The update equation for 

𝐾𝑖 can be derived as: 

𝐾𝑖
𝑝+1

=
𝐾𝑖

𝑝

∑ 𝐶𝑖(𝑡)𝑡
∑

𝐶𝑖(𝑡)𝑿(𝑡)

𝑪̂𝑝(𝑡)
𝑡

 

(5) 

where 𝑪̂𝑝(𝑡) = 𝑣𝑏
𝑝

𝐶𝑏 + 𝐾′1
𝑝

𝑒−𝑘′2
𝑝

𝑡⨂𝐶𝑝(𝑡) + 𝐾′𝑖
𝑝

𝐶𝑖(𝑡) is the estimated dynamic image at time t given the estimated 

parametric images, p is the iteration number. The effects of different frame lengths were included in Cp and Ci in the 

above equations. The derivation is similar to our previous proposed update equation for 𝑣𝑏  and 𝐾1  (22). For 

whole-body imaging, the input function 𝐶𝑝 may also be subject to the delay and dispersion effects. The delay effect is 

modeled and estimated using the same approach proposed in (22). A total of 5 parameters, including K1’, k2’, vb, Ki, and 

the time delay, were estimated jointly. The estimated Ki was analyzed subsequently as it is the target of interest in this 

study. 

D. Patient data and image reconstruction  



 In our study, seven potential cancer patients (Table 2) referred to the Henan Hospital were acquired using the 

uEXPLORER scanner (Shanghai United Imaging Healthcare, China) with the dynamic scanning protocol. The patient 

group was preselected to exclude those with significant motion artifacts, and those with non-bolus input functions. 

Visual examinations were used to determine the motion artifacts, and the exclusion criteria were those with visible 

motion larger than 5 voxels or 15 mm. The dynamic study has been approved by the Institutional Review Board of the 

hospital, and a written informed consent form has been obtained from each patient. The patient data is consisted of 4 

males and 3 females, with weight being 66±13 kg, and injected dose as 273±60 MBq. The leg was chosen as the 

injection site as it is closer to the end of the gantry. 

Dynamic image reconstruction was performed using the vendor recommended settings with random, scatter, 

attenuation, normalization, and deadtime corrections, the reconstructed image has 2.89-mm slice thickness and 

3.125-mm voxel size in the transaxial plane. The number of voxels in the reconstructed image is 192 by 192 by 672. 

Time-of-flight (TOF) reconstructions have been applied using manufacturer-supplied reconstruction software (OSEM 

with 3 iterations and 24 subsets) with the point-spread-function (PSF) model.  

An alternate update approach was applied for the joint estimation process. A total of 27 main iterations were used, 

where in each iteration, 6 sub-iterations were used for Ki, K1’, the blood fraction (with total iteration number of 162), 2 

sub-iterations were used for the time delay, and 1 sub-iterations were used for k2’. The Ki estimated using the first 

protocol with the IDIF was selected as the gold standard. Ki was also estimated using the conventional Patlak model for 

comparison. In the Patlak method, data from 20 minutes p.i. to 60 minutes p.i. with IDIF was used. The framing 

sequence is the same as Protocol 1. No post-smoothing filter was applied. The noise of the estimated images was 

calculated using VOIs in the thigh muscle region. The coefficient of variation was used as the surrogate for noise. A 

region growing approach with a threshold being 90% of the maximum value in the Ki image (Protocol 1) was used for 

the acquisition of the lesions. The average Ki value of the lesions from images acquired using different methods was 

also measured to study the quantitative accuracy. 

III. RESULTS 

 



Figure 2 shows the input functions acquired from a patient using the IDIF approach and the proposed hybrid 

approach. The original population-based input function (17) was also displayed with normalized peak value. A 

significant difference existed between the population-based and the IDIF when normalized to the same peak value, 

but a good agreement can be achieved with the hybrid method. For all patient data, the average area-under-curve 

ratio between the hybrid input function and the IDIF was 1.03±0.04, suggesting it is possible to use the hybrid input 

function for Ki estimation in cases where the whole dynamic data is unavailable.  

Figure 3 shows the reconstructed Ki images of Patient 1 using the three protocols (K1’ and k2’ images were included 

in Supplemental Figure 1 and Figure 2). The same color scale was used for all the images. The IDIF were used in the 

first protocol and both IDIF and hybrid input function was used for the other protocols. The Ki images acquired using 

the second and the third protocol were visually comparable to that using Protocol 1 but noisier. Figure 4 shows the 

difference images of Ki generated using different protocols (supplemental Figure 3 shows the corresponding 

percentage images). Minimal difference was observed between IDIF-based and hybrid input function generated Ki 

images. Figure 5 shows the maximum intensity projections of the reconstructed Ki images as well as the SUV image for 

Patient 5. The same scale was used for all Ki images and the SUV image was scaled for comparable muscle uptakes.  

The image noise using the three estimations were also calculated. The average coefficient of variation was 0.12±0.04 

for the Ki images estimated using Protocol 1 in the thigh muscle region, 0.22±0.05 for the Ki images estimated using 

Protocol 2, and 0.20±0.04 with Protocol 3. The much-reduced noise level in Protocol 1 is likely caused by the long scan 

time. Protocol 3 also shows reduced noise level when compared with Protocol 2, which is likely caused by the use of 

summed data, as it is effectively 2 times the dose compared with Protocol 2. 

Using the first protocol, Ki was calculated with the proposed non-linear approach and the conventional Patlak 

approach (Figure 6). The images in general agree with each other with some minor differences. The noise level in the 

nonlinear estimation is visually lower than that of the linear estimation, which is in agreement with literature findings 

(26). A higher muscle background Ki value was detected in the non-linear approach.  

A total of 26 lesions were identified and segmented from the patients. The same ROI was used for different Ki images 

generated in different protocols for consistency. The average diameter of the segmented lesions is 13.8 mm. The Ki 



values inside the ROI measured by the gold standard and the protocols with the reduced scan time is plotted in Figure 7. 

An example of the fitted TAC is included in supplemental Figure 4. The mean difference between the second protocol 

and the first protocol is 2.8%+-2.1%. The mean difference between the third protocol and the first protocol is 

1%+-2.2%. This result suggests that with a total scan time of 10 minutes, the new protocols were able to maintain 

quantitative accuracy for the lesions despite the much-reduced scan time. 

IV. DISCUSSION  

The Ki difference between images (Figure 4C) estimated using IDIF and the hybrid input function was negligible in 

most cases, suggesting the hybrid input function can be a reliable approach for estimating the Ki images. However, with 

the use of the hybrid input function, quantitative errors could still be present due to patient variations. The hybrid input 

function was also non-invasive and does not relies on data outside the acquisition period, making it easier to be 

incorporated in clinical studies.  

Due to the residual activity around the injection site, some differences were present in the veins on the left leg among 

different protocols. A large difference of Ki was observed in the kidney region among the different protocols. The 

difference could be explained by the fact that the 2-tissue irreversible model cannot accurately model the renal 

excretion process, and therefore a large difference could be expected with different protocols. In general, the Ki images 

show much-improved lesion contrast when compared with the SUV image, suggesting improved clinical value with Ki 

imaging.  

While a good quantitative accuracy was observed in the lesions, a slight overestimation was observed in the muscle 

and liver region with the non-linear approach and Protocol 3. One reason could be the reduction of estimation accuracy 

due to combined early-phase and later-phase information in the dynamic data. As shown in the supplemental figures, 

the accuracy of estimated K1’ and k2’ in Protocol 3 was also not as good as that in Protocol 2. Another reason could be 

the model mismatch effect. As it was shown that the 2-tissue-irreversible may not be true in some tissue as non-zero k4 

can be expected in some normal cells (24) and therefore different estimated results could be expected with different 

estimation methods or protocols. 



A limitation of our approaches is that it requires 2 scanning sessions (Protocol 2) or 2 FDG administrations (Protocol 

3). This makes the methods less practical, but it reduces the overall time spend on the PET/CT system. The second 

protocol requires additional image registration, which was not modeled in this study. The additional image registration 

may also introduce image artifacts that were not studied in this study. A second CT or low-dose CT scan may also be 

required in the second scan for accurate image registrations and attenuation correction. These challenges make Protocol 

2 less practical. On the other hand, the estimation method in Protocol 2 provides a foundation for Protocol 3 to work, as 

it shows that Ki can be estimated by combining the early phase and the late phase dynamic data. Protocol 3 provides a 

much better alternative for the practical application of fast Ki imaging with dual injections, as the data were acquired in 

a single scan frame without the need for registration or another CT. The absence of a second scan also makes patient 

management much easier and reduces the likelihood of voluntary patient motion due to a much shorter scan time. 

However, patient motion could still impact the method and therefore motion compensation is still required for an 

improved quantitative result. There are challenges in the third protocol as well. One potential issue for Protocol 3 in this 

study is the assumption that the early phase input function is the same as the second bolus injection. Future studies are 

required to study the impact of this effect. The direct addition of the images for simulating Protocol 3 also doubles the 

effective injected dose, making the estimated noise in Protocol 3 smaller than that in Protocol 2. When keeping the 

injection dose the same, the image noise is expected to be higher when using Protocol 3.  

Sluis et al, also showed the possibilities of reducing the scan duration using the conventional Patlak model with the 

help of the population-based input function (27). The advantage of using the Patlak model is that it only requires a 

single injection. With the dual injection protocols proposed in this study, we can achieve an even shorter scan time and 

the potential of multi-parametric imaging. Both approaches could be useful in clinical situations to promote the 

practical use of parametric imaging protocols.  

V. CONCLUSION 

In this study, we have shown that with the modified protocols, it is possible to dramatically reduce the required 

scan time for whole-body Ki imaging to 10 minutes. The estimation of Ki is possible due to the presence of both 

early-phase and late-phase information in the new protocols. The reduction of scan time makes it easier for 

incorporating Ki imaging into routine clinics. 
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KEY POINTS 

QUESTION: Can whole-body Ki imaging be achieved using in a much-reduced scan time (10 minutes)?  

PERTINENT FINDINGS: We have demonstrated with the new protocols (dual scan points or dual injections), it is 

possible to generate whole-body Ki images with a total scan time for 10 minutes. 

IMPLICATIONS FOR PATIENT CARE: A much reduced scan time for Ki imaging improves the practicality for 

parametric imaging. A wider application of parametric imaging could be helpful for better diagnosis and treatment. 
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TABLE 1. Dynamic frames for different protocols 

 Protocol 1 Protocol 2 Protocol 3 

Start time (min) 0 0 50 

Dynamic frames 

5(s)*30 5(s)*30 120(s)*3 

30(s)*15 30(s)*3 5(s)*30 

120(s)*25 50 (min) *1 (no scan) 30(s)*3 

 120(s)*3  

 

  



TABLE 2, Patient data used in this study 

Patient ID Sex Weight (kg) Injection dose (MBq) Preliminary Diagnosis 

1 M 75 224.7 Prostate cancer 

2 F 60 223.5 None 

3 F 50 246.4 Pulmonary nodule 

4 M 60 317.1 Space occupying lesion (brain) 

5 M 83 306.0 Gastric cancer 

6 F 55 219.6 Leiomyoma 

7 M 81 375.7 Pulmonary nodule 

 

  



 

 

Figure 1. The illustration for the three protocols proposed in this study  



 

Figure 2 Comparison of the image-derived input function (IDIF) and the hybrid input function for Protocol 2 and 

Protocol 3. The original population-based input function was also displayed for comparison. 

  



 

Figure 3 The estimated Ki image of a patient with prostate cancer using Protocol 1, Protocol 2 with the hybrid input 

function, Protocol 2 with the image-derived input function, and Protocol 3 with the hybrid input function. Red arrows 

show regions with large Ki differences using different protocols. 

  



 

 

Figure 4 (A) The difference image of Ki between Protocol 2 and Protocol 1. (B) The difference image of Ki between 

Protocol 3 and Protocol 1. (C) The difference image of Ki estimated using image-derived input function and the hybrid 

input function with Protocol 2 

  



 

Figure 5. The maximum intensity projection image of Ki from the three protocols and the SUV image acquired at 

T=60 minutes. Red arrows show regions with large Ki differences using different protocols. 



 

 

Figure 6. The estimated Ki image using the nonlinear model (Protocol 1) and linear Patlak model.  

  



 

Figure. 7. The Bland-Altman plot for the estimated Ki in different lesions using different protocols. X-axis shows the 

mean Ki value and y-axis shows the Ki difference. Lesions from different patients were encoded using different colors. 
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Supplemental data: 

 

Supplemental Figure 1. K1’ images estimated using the three protocols. The three protocols in general 
shows similar K1’ image. However, K1’ generated using Protocol 3 is significantly noisier. Some 

discrepancies around the bladder/urinary tract/leg vein regions. 



 

Supplemental Figure 2. k2’ images estimated using the three protocols.  
The k2’ images estimate from Protocol 2 is visually comparable to that from Protocol 1, suggesting the 

combination of the early and the late information was sufficient for k2’ estimation. However, much higher 
pepper noise was present in the image generated using Protocol 3. suggesting that by adding the early and 
the late phase information in the same time periods, the estimation accuracy degrades. On the other hand, 
since most of the incorrect k2’ estimation is present in boundary locations or regions with small K1’, the 

impact of k2’ on Ki images is small and was found to cause minimal image artifacts. 



 

Supplemental Figure 3. Estimated TAC using the three Protocols for a lesion. For Protocol 2, only the 
early phase and the late phase of the measured TAC from Protocol 1 was used for fitting. For Protocol 3, 

only the data after 3000 seconds (orange stars) were used for fitting. 



 

Supplemental Figure 4 The absolute percentage difference image of Ki between Protocol 2 and Protocol 1 
(left). The absolute percentage difference image of Ki between Protocol 3 and Protocol 1 (middle). The 
absolute percentage difference image of Ki estimated using image-derived input function and the hybrid 

input function with Protocol 2 (right) 

. 


