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ABSTRACT  

Introduction: Radiomics features may predict outcome in diffuse large B-cell lymphoma 

(DLBCL). Currently, multiple segmentation methods are used to calculate metabolic tumor volume 

(MTV). We assessed the influence of segmentation method on the discriminative power of 

radiomics features in DLBCL at patient level and for the largest lesion. Methods: 50 baseline 18F-

fluorodeoxyglucose positron emission tomography computed tomography (PET/CT) scans of 

DLBCL patients who progressed or relapsed within 2 years after diagnosis were matched on 

uptake time and reconstruction method with 50 baseline PET/CT scans of DLBCL patients without 

progression. Scans were analysed using 6 semi-automatic segmentation methods (standardized 

uptake value (SUV)4.0, SUV2.5, 41% of the maximum SUV, 50% of the SUVpeak, majority vote 

(MV)2 and MV3, respectively). Based on these segmentations, 490 radiomics features were 

extracted at patient level and 486 features for the largest lesion. To quantify the agreement 

between features extracted from different segmentation methods, the intra-class correlation (ICC) 

agreement was calculated for each method compared to SUV4.0. The feature space was reduced 

by deleting features that had high Pearson correlations (≥0.7) with the previously established 

predictors MTV and/or SUVpeak. Model performance was assessed using stratified repeated cross-

validation with 5 folds and 2000 repeats yielding the mean receiver-operating characteristics 

curve integral (CV-AUC) for all segmentation methods using logistic regression with backward 

feature selection. Results: The percentage of features yielding an ICC ≥0.75 compared to the 

SUV4.0 segmentation was lowest for A50P both at patient level and for the largest lesion, with 

77.3% and 66.7% of the features yielding an ICC ≥0.75, respectively. Features were not highly 

correlated with MTV, with at least 435 features at patient level and 409 features for the largest 

lesion for all segmentation methods with a correlation coefficient <0.7. Features were highly 

correlated with SUVpeak (at least 190 and 134 were uncorrelated, respectively). CV-AUCs ranged 

between 0.69±0.11 and 0.84±0.09 at patient level, and between 0.69±0.11 and 0.73±0.10 for 
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lesion level. Conclusion: Even though there are differences in the actual radiomics feature values 

derived and selected features between segmentation methods, there is no substantial difference 

in the discriminative power of radiomics features between segmentation methods.  

 

Keywords  
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INTRODUCTION 

Diffuse large B cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin 

lymphoma. To improve outcome of patients with DLBCL, early identification of patients at risk of 

treatment failure is of utmost importance, as 25-40% of patients relapse or progress in the first 

years after diagnosis (1). Recent data suggest that baseline radiomic features are promising 

biomarkers to predict treatment outcome in DLBCL (2-4), as they can predict outcome beyond 

metabolic tumor volume (MTV), and the international prognostic index (IPI) (5).  

Radiomic features can be calculated from the baseline 18F-fluorodeoxyglucose positron 

emission tomography computed tomography (18F-FDG-PET/CT) scans and capture detailed and 

quantitative information on e.g. texture, intensity and shape of lesions. Currently, radiomics 

analyses in lymphoma are based on predefined tumor segmentations. Segmentations are usually 

performed using an absolute Standardized Uptake Value (SUV) thresholds (6) or percentages of 

SUVmax or SUVpeak (2,7). For the calculation of radiomics features, some studies use the hottest 

lesion (4), whereas others use the largest lesion (3,8) or tumor segmentations at patient level 

(2,9). The largest lesion and MTV at patient level had the highest predictive value (9). Therefore, 

in this study we concentrated on the largest lesion and radiomic features extracted from tumor 

segmentations at patient level. 

 

One of the main problems with generating a multitude of features is the high false detection 

rate caused by multiple testing. Moreover, several features may represent similar characteristics, 

that are often highly correlated and therefore redundant (10). Redundant features may induce a 

correlation bias (11) and models become difficult to interpret (12). 
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Therefore, reducing the feature space to a degree feasible for clinical use without losing important 

information is essential. One method to reduce feature space is hierarchical clustering, based on 

correlation analysis or distance metrics (13).  

  

Previous DLBCL studies showed that MTV measured with different segmentation 

methods, albeit at different cut-offs, showed comparable discriminative power to predict survival 

(6,7). However, it is unclear to which extent the discriminative power of other radiomic features is 

affected by the method used to segment the lesions. Therefore, our main objective was to assess 

the effects of using six frequently used segmentation methods on the discriminative power for 2-

year time to progression (TTP) of baseline PET/CT radiomics features in DLBCL both at patient 

level and for the largest lesion. 

  

MATERIALS AND METHODS 

Study Population 

For this case-control study 100 newly diagnosed DLBCL patients from the HOVON-84 

study (EudraCT: 2006-005174-42) with a baseline PET/CT-scans available were included. 50 

patients with progressive disease or relapse within 2 years after diagnosis were matched on scan 

interval and reconstruction method (EARL/non-EARL)(14) with 50 patients without progression. 

For this analysis we combined R-CHOP14 and RR-CHOP14, as outcomes were similar between 

treatment arms (15). The HOVON-84 study was approved by the institutional review board and 

all participants gave informed consent.  

Quantitative Analysis  

Quantitative PET/CT analysis was performed using the quantitative oncology molecular 

analysis suite (ACCURATE) (16). To match quality criteria, PET and low dose CT scans should 
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be complete, and liver SUVmean and plasma glucose within ranges suggested by the European 

association of Nuclear Medicine guidelines (14). If liver SUVmean was outside suggested ranges, 

but total image activity was between 50-80% of the injected activity scans were still included. All 

scans were reviewed by nuclear medicine physicians and delineations were performed under 

their supervision. The following frequently used semi-automatic segmentation methods were 

applied to delineate lesions: 

1. SUV threshold of 2.5 (SUV2.5) 

2. SUV threshold of 4.0 (SUV4.0) 

3. 50% of SUVpeak (A50P) (17)  

4. 41% of SUVmax (41%max) 

5. Majority vote segmenting voxels detected by ≥2 methods (MV2) 

6. Majority vote segmenting voxels detected by ≥3 methods (MV3) (Supplemental data) 

Lesions were delineated with a fully automated preselection of lesions with a volume 

threshold of ≥3mL. Lymphoma lesions <3mL were added by observer selection and non-tumor 

regions were deleted with single mouse-clicks for all 6 segmentation methods (18). Automatically 

successfully segmented lesions were added to the patient level volume of interest (VOI). If lesion 

selection resulted in flooding (i.e. selection of large parts of non-tumor regions: e.g. liver, spleen 

and/or skeleton), the lesion was not added. Adjacent non-tumor 18F-FDG avid regions (e.g. 

bladder, kidney) were manually removed. For the fixed SUV4.0 method, we also generated 

segmentations with a volume threshold of ≥ 3mL (SUV4.0(≥3mL)). Two observers selected the 

method with the highest visual agreement (best method) for each patient, resolving initial 

discrepancies in consensus meetings.  
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Feature Extraction 

480 radiomics features (texture (n=408), morphology (n=22), intensity-based statistics 

(n=18), intensity histogram (n=24), intensity-volume histogram (n=6) and local intensity (n=2)) 

and 6 conventional PET uptake metrics before rebinning were extracted for both patient level, 

and the largest lesion for each segmentation method. The patient level VOI included all 

segmented lesions and was generated by assigning all voxels within the individual lesions to one 

and all voxels outside any of the segmented individual lesions to zero.  At patient level, 4 additional 

dissemination features were calculated. All image-processing and feature calculations were 

performed using RaCat software (19), which complies with the imaging biomarker standardisation 

initiative criteria (20). Details regarding feature calculation are presented in the supplemental data.  

Statistical Analysis 

All statistical analyses were performed for radiomics features at patient level and for the 

largest lesion using R (version 4.0.3).  The paired student t-test was used to compare the MTV 

and SUVpeak of all segmentation methods compared to the best segmentation. Based on recent 

studies, the SUV4.0 segmentation was chosen as reference (7,18). Firstly, if the distribution of 

the radiomics feature values had skewness >0.5 for the SUV4.0 segmentation method, they were 

log-transformed for all segmentations using the natural logarithm.  The agreement between 

radiomics features extracted from different segmentations was quantified by calculating the intra-

class correlation (ICC) agreement compared to the SUV4.0 segmentation. ICCs were categorized 

as poor (ICC<0.5), moderate (ICC:0.5-0.74), good (ICC:0.75-0.89) or excellent reliability 

(ICC≥0.90) (21). Two texture features at patient level, and three texture features at lesion level 

did not show any variation and were therefore excluded.  
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MTV and SUVpeak have shown to be predictive in DLBCL (9). To avoid overfitting and to 

remove redundancy, the feature space was reduced by deleting features that highly correlated 

with either MTV and/or SUVpeak. The Pearson correlation coefficient between MTV and other 

radiomics features, and between SUVpeak and other radiomics features was calculated for each 

segmentation method. A correlation was considered high if the Pearson correlation coefficient 

was ≥0.7 (22). 

For each segmentation method the mutual correlations between features that were not 

correlated with MTV and SUVpeak were calculated using Pearson correlation. For clusters of 

features with high mutual correlations, as identified with hierarchical clustering using Euclidian 

distance as distance measure, the feature with the lowest correlation to MTV and/or SUVpeak was 

preserved.  

Discriminative power (progression versus non-progression) was assessed using logistic 

regression with backward feature selection based on the Akaike Information Criteria (23). We 

included all independent features, MTV and SUVpeak for all segmentations. Stratified repeated 

cross-validation with 5 folds and 2000 repeats was applied, yielding the mean receiver-operating-

characteristics curve integral (CV-AUC), and the standard deviation of AUCs between repeats. 

Comparing CV-AUCs is a known difficulty due to the inherent dependency of train-test iterations 

and complex relations between the trained models (24). Currently, there is no valid statistical 

approach to compare CV-AUCs.  

As a sensitivity analysis, the entire analyses were repeated for features that were reliable, 

repeatable and reproducible in a multi-center setting (25).  
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RESULTS 

Patient characteristics are summarized in Table 1. 64 Scans were semi-automatically 

analysed and adapted with a single mouse-clicks only. 36 scans required manual editing because 

tumor and non-tumor regions were adjacent. SUV4.0 was selected most frequently as best 

method for both patient level and lesional level (49% and 64%, respectively). 

MTV Analysis  

The SUV2.5 method resulted in MTV flooding for 44 patients, leading to exclusion of this 

method for further analysis. At patient and lesion levels, MTV was highest for the MV2, and lowest 

for the A50P segmentation method (Table 2). Using the best visual segmentation as reference, 

MTV was significantly higher using the MV2 segmentation, and significantly lower using all other 

segmentation methods (all: p<0.05, Table 2; Figure 1). SUVpeak was comparable between 

segmentation methods (all: p>0.05).  

Patient Level 

Radiomics features based on a SUV4.0 preselection with a 3mL volume threshold 

(SUV4.0(≥3mL)) resembled the features of the SUV4.0 segmentation most, with excellent 

reliability for 414 features (84.8%), followed by the best segmentation. For the A50P segmentation 

similarity was lowest, with only 218 features (44.7%) with excellent reliability (Figure 2, 

Supplemental Table 1).  

For all segmentation methods, at least 435 features (89.3%) were not highly correlated 

with MTV (Table 3), of which 433 (88.9%) were not highly correlated with MTV for all segmentation 

methods. At least 190 features (38.9%) were not highly correlated with SUVpeak, of which 175 

(35.9%) were not highly correlated with SUVpeak for all segmentations. 197  features (40.5%) were 
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not correlated with MTV and SUVpeak for at least one method, of which 125 (25.7%) were neither 

correlated with MTV nor with SUVpeak for all segmentation methods. For each segmentation 

method, at least 25 features (5.1%) did not show high mutual correlations, and were not correlated 

with MTV and SUVpeak. After backward feature selection, the SUV4.0 segmentation method 

yielded a CV-AUC 0.74±0.10; 41%max had the highest CV-AUC (0.84±0.09), the visually best 

segmentation method had the lowest CV-AUC (0.69±0.11). Selected features after backward 

selection differed between segmentation methods and varied between 4-20 features (Table 3, 

Supplemental Table 2). For all segmentation methods, the morphological feature ‘center of mass 

shift’ and the texture feature ‘first measure of information correlation’ were retained in the linear 

regression model.  

Largest Lesion  

Radiomics features of the MV2 segmentation resembled those of the SUV4.0 method 

most, with excellent reliability for 389 features (80.5%). For the A50P segmentation similarity was 

lowest, at only 83 features (17.2%) with excellent reliability (Figure 3, Supplemental Table 3).  

For all segmentations, at least 409 features (84.9%) were not highly correlated with MTV 

(Table 4), of which 404 (83.8%) were not highly correlated with MTV for all segmentation methods. 

At least 134 features (27.8%) were not highly correlated with SUVpeak, of which 130 features 

(27.0%) were not highly correlated with SUVpeak for all segmentations. 149 (31.0%) features were 

not correlated with MTV and SUVpeak for at least one method, of which 61 features (12.7%) were 

neither correlated with MTV nor with SUVpeak for all segmentation methods. For each 

segmentation method, at least 19 features (4.0%)  did not show high mutual correlations and were 

not correlated with MTV and SUVpeak. After backward feature selection, SUV4.0 had the highest 

CV-AUC (0.73±0.10), MV3 and the best segmentation method had the lowest CV-AUC 

(0.69±0.11). Selected features after backward selection differed between segmentation methods 
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and varied between 5-11 features (Table 4, Supplemental Table 4). For all segmentation 

methods, the texture feature ‘first measure of information correlation’ was retained in the linear 

regression model, and the intensity histogram feature ‘minimum histogram gradient’ was retained 

in all models except for the SUV4.0 segmentation method.  

When starting from a selection with reliable, repeatable and reproducible features, similar 

results were found both at patient level and for the largest lesion (Table 3, Table 4).  

DISCUSSION 

This study showed that the discriminative power is largely independent of segmentation 

method. However, there are large differences in radiomics feature values derived using different 

segmentation methods, as shown by ICCagreement values.  

Both MTV and SUVpeak have shown to be predictive in DLBCL (9). Our study showed that 

most radiomics features are independent of MTV for both patient level and the largest lesion. Hatt 

et al (26) showed that textural features, which comprise >80% of our radiomics features, already 

provide clinical complementary information in addition to MTV in lesions larger than 10mL, with 

increasing complementary prognostic value for larger MTVs, disputing the threshold for texture 

features of 45mL (27). With only four patients with MTVs <10mL for the largest lesion, and one 

patient with a MTV <10mL at patient level it is to be expected that most features are independent 

of MTV. However, many features were correlated with SUVpeak, c.q. redundant.  

Currently, there is no consensus on the best segmentation method for delineating lesions 

in DLBCL 18F-FDG PET/CT studies. Therefore, it is essential to study the sensitivity of radiomics 

features in relation to segmentation method. In several solid cancers radiomics features, 

especially morphological and texture features, are influenced by the delineation method (28-31). 

The number of extracted features in these studies varied widely, between 9 and 480 features. We 



 

 

 

 

12 

extend these findings by showing that for the largest lesion in DLBCL, up to 31% of the texture 

features, and 68% of the morphological features were highly sensitive to the segmentation 

method, as shown by the reliability of features compared to SUV4.0 segmentation. DLBCL lesions 

usually are large, heterogeneous and bulky. Larger lesions are known to exhibit higher hypoxia, 

necrosis, or anatomical and physiological complexity which logically translates to higher 

complexity in the spatial 18F-FDG distribution and hence sensitivity to segmentation method 

leading to lower reliability of features between applied methods. Furthermore, as variations in 

segmentation methods have a strong effect on the outercontour of the segmentation, thus 

influencing the shape of the segmentation, a high sensitivity to segmentation methods for 

morphological features could be expected. Due to the higher MTV, the radiomics features at 

patient level were less influenced by segmentation method, with up to 20% of the texture features, 

and 32% of the morphology features being sensitive to segmentation method. Because of low 

similarity of part of the features between segmentations, it is not advised to use regression 

coefficients from other studies that applied other segmentation methods.  

However, even though values are not interchangeable, in our study the discriminative 

power at lesional and patient levels was comparable between segmentations. Contrary to what 

we expected, selecting the segmentation method that visually selected the tumors best, did not 

result in a higher CV-AUC. These results are in line with previous studies exploring the predictive 

value of radiomics features using different segmentations for other cancer types. These studies 

all found no significant differences in predicting outcome (28,32), metastasis or lymph node 

invasion (30) using different segmentation methods. However, ICCagreement values, correlations 

with MTV, SUVpeak and mutual correlations differed between segmentation methods, resulting in 

different preselections of features for the logistic regression model. Even though discriminative 

power is comparable, different features are predictive of outcome when applying different 

segmentation methods.  



 

 

 

 

13 

When only using previously defined reliable, repeatable and reproducible features, 

discriminative power was slightly lower for all segmentation methods. However, confidence 

intervals of CV-AUCs overlapped with the CV-AUCs using all features. Therefore, using only 

reproducible features does not affect discriminative power. In clinical practice and multicenter 

studies variable image qualities are encountered. Therefore some features that have high 

predictive values may in reality be difficult to measure reliably. Therefore, it is advised to only use 

reproducible features, especially in multicenter settings.  

To our knowledge, this is the first study that assessed the influence of segmentation 

methods on PET radiomic features and their predictive power, other than MTV, in DLBCL. By 

applying multiple frequently used methods on the same patients, we could directly compare the 

effect of segmentation methods on quantitative PET radiomic features. We chose to calculate 

linear relations between radiomics features using Pearson because we used logistic regression 

as classifier, and logistic regression model calculates linear relations with included features. By 

using Pearson for data reduction, probably more features were included in the logistic regression 

analyses compared to the number of features we would have included when using Spearman. 

One of the limitations of this study was that not all scans were scanned according to EARL 

protocol, which might affect the discriminative power and repeatability of features (25). However, 

by matching events in this study there were no differences in EARL compliance between groups, 

but this matching still precludes an effect of reconstruction method on the discriminative power. 

Harmonization methods such as ComBat have shown to be definitely worthwhile to retrospectively 

increase uniformity in large datasets (33,34). Therefore, ComBat based data-alignment would be 

a very successful approach to harmonize these differences. Unfortunately, in our study the 

number of patients per center was too small to apply ComBat. Moreover, based on the equivalent 

discriminative power seen in our data between various segmentation methods ComBat based 

data-alignment would be a very successful approach to harmonize databases of radiomics 
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features analysed using different segmentation methods. Moreover, it should be noted that in our 

cohort patients presented with high MTVs. Therefore these results need to be validated for other 

cohorts with smaller lesion sizes.   

 

CONCLUSION 

This study showed that there is no substantial difference in the discriminative performance of 

radiomics features extracted using different segmentation methods. However, there are 

differences in the actual radiomics feature values derived and selected features between 

segmentation methods. Until consensus on a segmentation method for DLBCL is reached, it is 

advised to only use prediction models that are built using data with the same segmentation 

methods.   
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KEY POINTS  

Question: What is the influence of segmentation methods on the discriminative power value of 

baseline radiomics features in DLBCL? 

Pertinent findings: There is no difference in the discriminative power of radiomics features 

between segmentation methods. However, different features are selected when applying 

different segmentation methods.  

Implications for patient care: It is advised to only use prediction models that are build using 

data with the same segmentation methods.   
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Figure 1. Maximum intensity projections of a patient with lesion segmentations indicated in red for al applied methods using a SUV0-10 scale.  
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Figure 2. Percentage of radiomics features yielding excellent, good, moderate or poor intraclass correlation agreement between the SUV4.0 

segmentation and other methods at patient level  
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Figure 3. Percentage of radiomics features yielding excellent, good, moderate or poor intraclass correlation agreement between the SUV4.0 

segmentation and other methods for the largest lesion.  
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Table 1. Characteristics of included patients  

 Events Non-events  

Age                                Median (IQR)                

≤60 years  

   >60 years 

64 (61-71) 

11 

39 

68 (63-74) 

11 

39 

Sex                                               Male  

Female  

28 

22 

26 

24 

Ann Arbor Stage                              2 

                       3 

                       4 

3 

9 

38  

6 

13 

31 

Lactate dehydrogenase          normal  

>normal  

8 

42 

19 

31 

Extranodal localisations               ≤1 

                                                        >1 

21 

29 

28 

22 

Performance status                         0 

1 

2 

16 

25 

9 

29 

13 

8 

International prognostic index   Low 

Low-intermediate 

High-intermediate 

High 

3 

2 

25 

20  

5 

14 

18 

13 

Abbreviations: IQR: interquartile range  
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 Table 2. SUVpeak and MTV per segmentation method  

 Abbreviations: SUV: standardized uptake value, IQR: interquartile range  

 
SUVpeak (median, 

IQR) 

MTV patient level 

(median,IQR) 

MTV largest lesion 

(median,IQR) 

SUV4.0 17.1(12.8-22.0) 552.7(310.3-1117.2) 353.5(145.3-854.4) 

SUV4.0(≥3mL) 17.2(12.8-22.3) 534.8(295.4-1116.4) 353.5(145.3-854.4) 

A50P 16.8(12.5-22.0) 463.5(210.2-1164.0) 264.6(75.9-658.1) 

41%max 16.8(12.5-22.0) 492.0(230.3-1203.5) 295.3(112.6-741.8) 

MV2 16.8(12.8-22.0) 726.2(374.5-1299.9) 445.1(188.0-1041.6) 

MV3 16.8(12.5-22.3) 502.5(235.5-1155.0) 280.2(98.9-693.9) 

Best 16.6(12.4-21.9) 653.2(350.5-1283.8) 445.1(172.6-935.5) 
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Table 3. Number of independent features per segmentation method, number of included features and predictive value at patient level for all 

extracted features (n=488) and all reliable, repeatable and reproducible features (n=103) 

  Independent 

of MTV 

Independent 

of SUVpeak 

Independent 

of MTV and 

SUVpeak  

Independent of 

MTV and 

SUVpeak and 

uncorrelated 

Number of 

features in 

linear 

regression 

CV-AUC 

(±SD) 

n=488 

features  

SUV4.0 445 211 172 25 12 0.74±0.10 

SUV4.0(≥3mL) 443 212 170 25 4 0.74±0.10 

41%max 435 198 145 27 11 0.84±0.09 

A50P 441 204 157 32 20 0.78±0.10 

MV2 444 199 155 26 5 0.79±0.09 

MV3 441 203 156 29 18 0.80±0.09 

Best 445 190 147 25 12 0.69±0.11 

n=103 

features  

SUV4.0 64 63 35 13 3 0.70±0.11 

SUV4.0(≥3mL) 61 63 32 12 6 0.70±0.11 

41%max 54 63 24 10 4 0.75±0.10 

A50P 58 65 30 10 3 0.63±0.11 

MV2 61 66 34 11 8 0.74±0.10 

MV3 58 65 30 9 4 0.73±0.10 

Best 62 67 36 11 7 0.69±0.11 

Abbreviations: MTV: metabolic tumor volume, SUV: standardized uptake value, CV-AUC: cross-validated area under the curve, SD: standard 

deviation 
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Table 4. Number of independent features per segmentation method, number of included features and predictive value for the largest lesion for 

all extracted features (n=483) and all reliable, repeatable and reproducible features (n=99) 

 

 

 

 

 

 

 

 

 

 

Abbreviations: MTV: metabolic tumor volume, SUV: standardized uptake value, CV-AUC: cross-validated area under the curve, SD: standard 

deviation 

 

 

 

 

  Independent 

of MTV 

Independent 

of SUVpeak 

Independent of 

MTV and 

SUVpeak  

Independent of 

MTV and 

SUVpeak and 

uncorrelated 

Number of 

features in 

linear 

regression 

CV-AUC  

(±SD) 

n=483 

features 

SUV4.0 427 134 85 24 11 0.73±0.10 

41%max 409 158 84 19 10 0.71±0.11 

A50P 424 176 117 21 8 0.71±0.11 

MV2 435 141 93 21 3 0.71±0.10 

MV3 424 173 114 21 5 0.69±0.11 

Best 437 168 122 25 10 0.69±0.11 

n=99 

features  

SUV4.0 57 46 13 10 5 0.73±0.10 

41%max 50 57 14 6 1 0.65±0.11 

A50P 54 59 20 9 4 0.63±0.11 

MV2 59 52 18 8 3 0.70±0.11 

MV3 54 52 18 7 3 0.67±0.11 

Best 59 55 21 10  3 0.69±0.11 



 

 

 

 

26 

 

 

Graphical Abstract 



Supplemental data  

Segmentation methods.  

The following frequently used semi-automatic segmentation methods were applied to delineate lesions:  

1. Fixed threshold of SUV2.5 (SUV2.5) 
2. Fixed threshold of SUV4.0 (SUV4.0) 
3. Adaptive threshold based on 50% of the SUVpeak adapted for local background (A50P) (1) 
4. Adaptive threshold based on 41% of the SUVmax (41%max) 
5. Majority vote segmenting voxels detected by ≥2 methods (MV2) 
6. Majority vote segmenting voxels detected by ≥3 methods (MV3)  

For the first 4 methods, all voxels above the fixed or adaptive threshold were added to the volume of interest 
(VOI). For the A50P method, background was defined by measuring the uptake around the lesion (1.5cm 
distance from 70% contour) (1). For the MV2 method all voxels that were selected by ≥2 methods (out of 
SUV4.0, SUV2.5, 41%max and A50P) were added to the VOI and for the MV3 method voxels detected by ≥
3 methods were added to the VOI. All segmentations of individual lesions were included in one VOI to generate 
a patient level VOI by assigning all voxels within the individual lesions to one and all voxels outside any of 
the segmented individual lesions to zero. 

 

Calculation of radiomics features 

Radiomics features were extracted for the patient level VOI and largest lesion following descriptions of the 
Image Biomarker Standardization Initiative using RaCaT software (2,3). Definitions for calculation of individual 
radiomics features can be found in the Image Biomarker Standardization Initiative website 
(https://ibsi.readthedocs.io/).  Radiomics features are sensitive to resolution, voxel size and image noise (4) 
therefore standardization of feature values is needed to reduce the variability of radiomics features across 
centers. By default, all images in RaCaT are resampled to 2x2x2 voxel size using tri-linear interpolation, as 
spatial resampling to cubic voxels led to better reproducibility of radiomics features in a multicenter setting (4). 
Intensity is discretized with a fixed bin size of 0.25 SUV before feature calculation to increase the percentage 
of consistent features, as image intensity discretization with a fixed bin width of 0.25 has shown to result in 
higher reliability of radiomics features in a multicenter setting compared to fixed bin number discretization. The 
exact same spatial rebinning was applied to the volumes of interest followed with a voxelwise 50% 
thresholding to generate a binary tumor map after rebinning and the latter was subsequently used to extract 
or calculate the radiomics features from the spatially rebinned PET images. 

For both patient level and lesion level VOIs, 6 additional conventional PET uptake metrics were extracted 
before rebinning: MTV, SUVmax, local SUVpeak, global SUVpeak, SUVmean and total lesion glycolysis 
(SUVmean*MTV). Texture features were based on the grey level co-occurrence matrix (GLCM) , grey level run 
length matrix (GLRLM), grey level size zone matrix (GLSZM), grey level distance zone matrix (GDLZM), 
neighbourhood grey tone difference matrix (NGTDM) and neighbouring grey level dependence matrix 
(NGLDM) with up to 8 matrix calculation methods. For the patient level VOI, all voxels belonging to the different 
lesions were processed if they were part of one VOI and one matrix was used per patient to register all voxel 
pairs into the matrix. At patient level, 4 additional dissemination features were calculated: the distance between 



the 2 lesions that were furthest apart (Dmaxpatient), the distance between the largest lesion and the lesion 
furthest from that bulk (Dmaxbulk), the sum of the distances from the largest lesion to all other lesions 
(spreadbulk) and the sum of the distances from all lesions to all the other lesions (spreadpatient) (5). Distances 
were calculated in millimeters based on the location of the SUVmax of individual lesions. 

Intra-class correlation  

The agreement between radiomics features extracted from different segmentation methods was quantified by 
calculating the intra-class correlation agreement (ICCagreement) compared to the SUV4.0 segmentation method. 
The ICCagreement is a reliability index that reflects both degree of correlation and agreement between 
measurements. ICCs were categorized as poor (ICC: <0.5), moderate (ICC: 0.5-0.74), good (ICC: 0.75-0.89) 
or excellent reliability (ICC: ≥0.90) (21). Two features at patient level, and three features at lesion level did not 
show any variation and were therefore excluded before calculating the ICC.  

  



Supplemental Table 1. Number of features with excellent, good, moderate or poor ICC values for different radiomics feature groups at 
patient level compared to the SUV4.0 segmentation method 

    PET uptake 
metrics 

Disseminatio
n 

Morpholog
y 

Local 
intensity 

Statistic
s 

Intensity 
volume 

Intensity 
histogram 

Texture  

SUV4.0 
(>3mL) 

Excellen
t 

6 2 12 2 14 2 17 359 

  Good 0 1 10 0 4 2 6 36 
  Moderat

e 
0 1 0 0 0 2 1 9 

  Poor 0 0 0 0 0 0 0 2 
41%max Excellen

t 
3 2 3 2 8 1 9 190 

  Good 3 0 16 0 4 1 5 136 
  Moderat

e 
0 1 3 0 2 1 2 55 

  Poor 0 1 0 0 4 3 8 25 
A50P Excellen

t 
3 2 3 2 8 1 9 203 

  Good 3 1 12 0 4 1 5 120 
  Moderat

e 
0 0 7 0 3 1 4 57 

  Poor 0 1 0 0 3 3 6 26 
MV2 Excellen

t 
4 2 8 2 12 3 13 267 

  Good 2 0 12 0 4 0 6 92 
  Moderat

e 
0 2 2 0 0 2 0 35 

  Poor 0 0 0 0 2 1 5 12 
MV3 Excellen

t 
4 2 4 2 10 2 11 264 

  Good 2 1 14 0 2 0 3 66 
  Moderat

e 
0 1 4 0 3 1 4 67 



  Poor 0 0 0 0 3 3 6 9 
Best Excellen

t 
5 2 11 2 12 3 14 306 

  Good 1 1 11 0 4 0 5 72 
  Moderat

e 
0 1 0 0 0 3 0 21 

  Poor 0 0 0 0 2 0 5 7 
Excellent: ICC≥0.90, good: ICC between 0.75-0.90, moderate: ICC between 0.5-0.75, poor: ICC <0.5

  



Supplemental Table 2. Radiomics features that were included in final logistic regression 
models of each segmentation method at patient level for all extracted features and all 
reliable, repeatable and reproducible features.  

 All extracted features (n=488) Selection of reliable, repeatable 
and reproducible features (n=103)  

SUV4.0 PET uptake metrics: MTV 
Dissemination: DmaxBulk 
Morphology: center of mass shift, Gearys C, 
flatness 
Intensity histogram: skewness 
Intensity volume: volume at intensity fraction 
10 
Texture: First measure of information 
correlation (GLCM 2D), cluster shade (GLCM 
2D), large distance low grey level emphasis 
(GLDZM 2D), large zone high grey level 
emphasis (GLDZM 2D), dependence count 
non uniformity normalized (NGLDM 2D)  

PET uptake metrics: SUVpeak 
Morphology: elongation, maximum 
3D diameter  
 

SUV4.0(≥3mL) Morphology: center of mass shift 
Intensity histogram: minimum 
Texture: First measure of information 
correlation (GLCM 2D) low dependence low 
grey level emphasis (NGLDM 2D) 

PET uptake metrics: MTV, SUVpeak 
Morphology: elongation  
Texture: large distance emphasis 
(GLDZM 2D), Grey level non 
uniformity (GLDZM 2D), High 
dependence high grey level 
emphasis (NGLDM 3D) 

41%max PET uptake metrics: MTV 
Morphology: center of mass shift, elongation, 
volume density AEE 
Statistics: kurtosis 
Intensity histogram: minimum histogram 
gradient  
Texture:  joint maximum (GLCM 2D), second 
measure of information correlation (GLCM 
3D), small distance emphasis (GLDZM 3D), 
coarseness (NGTDM 2D), low dependence 
low grey level emphasis (NGLDM 3D) 

PET uptake metrics: MTV  
Morphology: elongation  
Intensity histogram: skewness  
Texture: small distance emphasis 
(GLDZM 2D)  
 

A50P PET uptake metrics: MTV 
Dissemination: DmaxBulk, spreadPatient  
Morphology: center of mass shift, elongation 
Statistics: kurtosis  
Intensity histogram: skewness, quartile 
coefficient  
Intensity volume: difference volume at 
intensity fraction  
Texture: cluster shade (GLCM 2D), angular 
second moment (GLCM 2D), first measure of 
information correlation (GLCM 2D), zone 
percentage (GLSZM 2D), large distance low 
grey level emphasis (GLDZM 2D), small 

PET uptake metrics: MTV 
Statistics: skewness  
Texture: small distance emphasis 
(GLDZM 2D)   
 



distance emphasis (GLDZM 2D), large zone 
high grey level emphasis (GLDZM 2D), grey 
level variance (GLDZM 2D), strength 
(NGTDM 2D), dependence count variance 
(NGLDM 3D), low dependence low grey level 
emphasis (NGLDM 3D) 

MV2 Morphology: center of mass shift, spherical 
disproportion 
Statistics: skewness 
Texture: first measure of information 
correlation (GLCM 2D), low dependence low 
grey level emphasis (NGLDM 3D) 

Morphology: maximum 3D diameter, 
morans I, elongation  
Statistics: skewness  
Texture: small zone emphasis 
(GLSZM 2D), large distance low grey 
level emphasis (GLDZM 2D), small 
distance emphasis (GLDZM 2D), 
small distance emphasis (GLDZM 
3D) 

MV3 PET uptake metrics: MTV 
Dissemination: DmaxBulk 
Morphology: center of mass shift, elongation 
Statistics: kurtosis  
Intensity histogram: skewness, quartile 
coefficient  
Texture: sum average (GLCM 2D), first 
measure of information correlation (GLCM 
2D), Cluster shade (GLCM 2D), first measure 
of information correlation (GLCM 3D), 
second measure of information correlation 
(GLCM 3D), large zone emphasis (GLSZM 
2D), large zone high grey level emphasis 
(GLDZM 2D), zone distance non uniformity 
normalized (GLDZM 2D), grey level variance 
(GLDZM 2D), high dependence high grey 
level emphasis (NGLDM 3D), contrast 
(NGTDM 3D) 

PET uptake metrics: MTV 
Morphology: elongation 
Intensity histogram: skewness  
Texture: zone distance non 
uniformity normalized (GLDZM 2D)  
 
 

Best PET uptake metrics: MTV, SUVpeak  
Dissemination: DmaxBulk  
Morphology: center of mass shift, elongation 
Texture: first measure of information 
correlation (GLCM 2D), angular second 
movement (GLCM 2D), zone size non 
uniformity normalized (GLSZM 2D), grey 
level variance (GLDZM 2D), small distance 
emphasis (GLDZM 2D), small distance 
emphasis (GLDZM 3D), low dependence low 
grey level emphasis (NGLDM 2D) 

PET uptake metrics: SUVpeak 
Morphology: elongation, maximum 
3D diameter 
Intensity histogram: minimum 
histogram gradient 
Texture:  large distance low grey 
level emphasis (GLDZM 2D), small 
distance emphasis (GLDZM 2D), 
small zone emphasis  (GLSZM 2D) 

 

  



Supplemental Table 3. Number of features with excellent, good, moderate or poor ICC values for different radiomics feature groups at 
patient level compared to the SUV4.0 segmentation method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Excellent: ICC≥0.90, good: ICC between 0.75-0.90, moderate: ICC between 0.5-0.75, poor: ICC <0.5

  

    PET uptake 
metrics 

Morphology Local 
intensity 

Statistics Intensity 
volume 

Intensity 
histogram 

Texture  

41%max Excellent 3 0 2 4 1 4 89 
  Good 3 10 0 8 1 10 215 
  Moderate 0 6 0 1 1 1 57 
  Poor 0 6 0 5 3 9 44 
A50P Excellent 3 1 2 4 1 4 68 
  Good 3 6 0 8 1 10 211 
  Moderate 0 9 0 1 0 1 66 
  Poor 0 6 0 5 4 9 60 
MV2 Excellent 5 9 2 16 3 18 336 
  Good 1 7 0 0 2 1 53 
  Moderate 0 1 0 1 1 1 15 
  Poor 0 5 0 1 0 4 1 
MV3 Excellent 4 2 2 8 1 9 202 
  Good 2 8 0 5 1 7 101 
  Moderate 0 6 0 1 1 0 68 
  Poor 0 6 0 4 3 8 34 
Best Excellent 6 11 2 16 2 18 290 
  Good 0 10 0 0 3 1 76 
  Moderate 0 1 0 0 1 0 28 
  Poor 0 0 0 2 0 5 11 



Supplemental Table 4. Radiomics features that were included in final logistic regression 
models of each segmentation method for the largest lesion for all extracted features and 
all reliable, repeatable and reproducible features. 

 All extracted features (n=483) Selection of reliable, repeatable and 
reproducible features (n=99)  

SUV4.0 PET uptake metrics: MTV, SUVpeak  
Morphology: volume density AEE, flatness, 
major axis length  
Statistics:  skewness 
Intensity histogram: minimum, minimum 
histogram gradient grey level  
Texture: first measure of information correlation 
(GLCM 2D), large zone high grey level 
emphasis (GLSZM 2D), dependence count 
variance (NGLDM 2D) 

PET uptake metrics: MTV, SUVpeak 
Morphology: surface to volume ratio  
Intensity histogram: minimum 
hisogram gradient grey level  
Texture: high dependence high grey 
level emphasis (NGLDM 2D) 

41%max PET uptake metrics: MTV 
Morphology: gearys C, volume density AABB, 
area density AABB  
Intensity volume: difference volume at intensity 
fraction 
intensity histogram: minimum histogram 
gradient  
Texture: first measure of information correlation 
(GLCM 2D), cluster shade (GLCM 2D), Second 
measure of information correlation (GLCM 3D), 
small distance emphasis (GLDZM 2D) 

Intensity histogram: minimum 
histogram gradient  
 

A50P PET uptake metrics: SUVpeak  
Intensity histogram: skewness, minimum 
histogram gradient  
Texture: cluster shade (GLCM 2D), small 
distance emphasis (GLDZM 2D),  contrast 
(NGTDM 2D), high dependence high grey level 
emphasis (NGLDM 2D), dependence count non 
uniformity normalized (NGLDM 2D) 

PET uptake metrics: SUVpeak  
Intensity histogram: minimum 
histogram gradient 
Texture: small distance emphasis 
(GLDZM 2D), high dependence high 
grey level emphasis (NGLDM 2D) 

MV2 Intensity histogram: minimum histogram 
gradient  
Texture: first measure of information correlation 
(GLCM 2D), low dependence low grey level 
emphasis (NGLDM 2D) 

Morphology: minor axis length  
Intensity histogram: minimum 
histogram gradient grey level, 
minimum histogram gradient  
 

MV3 Intensity histogram: minimum histogram 
gradient  
Texture: first measure of information correlation 
(GLCM 2D), cluster shade (GLCM 2D), short 
run emphasis (GLRM 2D), large zone high grey 
level emphasis (GLSZM 2D) 

PET uptake metrics: SUVpeak 
Intensity histogram: minimum 
histogram gradient  
Texture: high dependence high grey 
level emphasis (NGLDM 2D) 
 

Best PET uptake metrics: MTV 
Morphology: elongation, flatness, volume 
density AEE, major axis length  

Morphology: elongation 
Intensity histogram: minimum 
histogram gradient grey level, 
minimum histogram gradient  
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Intensity histogram: minimum histogram 
gradient, minimum histogram gradient grey level  
Texture: First measure of information correlation 
(GLCM 2D),  run percentage (GLRLM 2D), 
large zone emphasis (GLSZM 2D) 

 


