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ABSTRACT 

Purpose: Dedicated cardiac SPECT scanners with cadmium-zinc-telluride (CZT) cameras have 

shown capabilities of shortened scan times or reduced radiation doses as well as improved 

image quality. Since most of the dedicated scanners do not have an integrated CT, image 

quantification with attenuation correction (AC) is challenging and artifacts are routinely 

encountered in daily clinical practice. In this work, we demonstrate a direct AC technique using 

deep learning (DL) for myocardial perfusion imaging (MPI). 

Methods: In an IRB-approved retrospective study, 100 cardiac SPECT/CT datasets with 99mTc-

tetrofosmin using a GE Discovery NM/CT 570c scanner were collected at the Yale New Haven 

Hospital. A U-Net-based network was used for generating attenuation-corrected SPECT 

(SPECTDL) directly from non-corrected SPECT (SPECTNC) without undergoing an additional 

image reconstruction step. The accuracy of SPECTDL was evaluated by voxel-wise and 

segment-wise analyses against the reference CT-based AC (SPECTCTAC) using American Heart 

Association 17 segments in the myocardium. Polar maps of representative (best/median/worst) 

cases were visually compared for illustrating potential benefits and pitfalls of the DL approach.  

Results: The voxel-wise correlations with SPECTCTAC were 92.2% ± 3.7 (slope = 0.87; R2 = 

0.81) and 97.7% ± 1.8 (slope = 0.94; R2 = 0.91) for SPECTNC and SPECTDL, respectively. The 

segmental errors of SPECTNC scattered from -35% up to 21% (p < 0.001); while, the errors of 

SPECTDL stayed mostly within ±10% (p < 0.001). The average segmental errors (mean±SD) 

were -6.11 ± 8.06% and 0.49 ± 4.35% for SPECTNC and SPECTDL, respectively. The average 

absolute segmental errors were 7.96 ± 6.23% and 3.31 ± 2.87% for SPECTNC and SPECTDL, 

respectively. Review of polar maps revealed successful demonstration of reduced attenuation 

artifacts; however, the performance of SPECTDL was not consistent for all subjects likely due to 

different amount of attenuation and uptake patterns. 

Conclusion: We demonstrated the feasibility of direct AC using DL for SPECT MPI. Overall, our 

DL approach reduced attenuation artifacts substantially compared to SPECTNC, justifying further 

studies to establish safety and consistency for clinical applications in stand-alone SPECT 

systems suffered from attenuation artifacts. 
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INTRODUCTION  

SPECT myocardial perfusion imaging (MPI) is the most widely applied noninvasive method for 

the detection and risk stratification of coronary artery disease (1). It is less costly and more widely 

available than PET MPI. However, since conventional SPECT systems are not optimized for 

cardiac imaging, dedicated cardiac SPECT scanners with cadmium-zinc-telluride (CZT) 

cameras have been developed constraining the entire detector area to imaging just the heart 

(2). The CZT cameras can achieve 5-10 times higher count sensitivity and 3-6 times faster 

scanning times than conventional sodium iodide SPECT cameras (3), which can result in higher 

image quality with reduced radiation dose as well as promote easier scheduling and higher 

patient satisfaction (2).  

 However, artifacts of dedicated cardiac SPECT cameras are commonly observed in daily 

clinical practice as for conventional SPECT cameras (4). Soft tissue attenuation is the most 

common cause for the artifacts usually due to attenuation caused by the diaphragm, breast 

tissue or obesity (5). Therefore, it is encouraged to incorporate of attenuation correction (AC) 

into routine clinical practice in order to reduce the artifacts and thus improve diagnostic accuracy 

(6). Nevertheless, AC is not performed as a routine clinical practice for most of the dedicated 

cardiac SPECT systems not integrated with a CT (7). 

 AC techniques for SPECT are categorized into three classes according to how to 

generate attenuation maps. The first approach is to perform transmission CT scans for 

generating AC maps (called CTAC), which is not available in stand-alone SPECT systems 

occupying approximately 80% of the market share (8) but only in integrated SPECT/CT systems. 

The second approach is to use line sources (most commonly Gd-153), which may cause low-

count AC maps and truncation artifacts (due to obesity) or cross-talk with emission data (9). The 

third approach is to estimate AC maps from emission data, which is also classified into 

segmentation-based (10) and model-based methods (11) but not practical due to time-

consuming process or computation.  

Recently, it was demonstrated that attenuation maps could be directly estimated from the 

emission data using a deep learning (DL) model (12). In general, DL applications for AC have 

been actively investigated in PET/MRI to convert MR images directly to pseudo CT (13,14). 

Furthermore, a direct DL approach was proposed to convert non-corrected PET to corrected 

PET in image space without any additional reconstruction steps (15,16), which has not been 

applied to SPECT yet. Also, an indirect approach was demonstrated for stand-alone 

conventional SPECT scanners (12), requiring the reconstruction of full field-of-view (FOV) 
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emission images for generating full FOV attenuation maps. For this reason, such indirect 

approach of generating attenuation maps as an intermediate step cannot be directly applied to 

dedicated cardiac SPECT scanners such as GE Discovery NM 530c whose geometry is unique 

with a small FOV of about 19 cm in diameter (17). Therefore, a direct conversion approach such 

as our work is needed specifically for the scanner with a small FOV. It is worth noting that our 

DL approach cannot be directly compared with any indirect DL approach such as (12).  

 Therefore, we demonstrate a direct DL technique for CT-less AC in dedicated cardiac 

SPECT systems. Considering AC as a computer vision task, we hypothesize that DL can 

recognize clinically relevant uptake patterns in both non-corrected and corrected images for 

removing attenuation-involved artifacts in SPECT MPI.  

 

MATERIALS AND METHODS 

SPECT Datasets  

The institutional review board (IRB) approved this retrospective study and the requirement to 

obtain informed consent was waived. 100 datasets (58 male and 42 female) were collected from 

cardiac stress-only 99mTc-tetrofosmin SPECT using a GE Discovery NM/CT 570c (GE D570c) 

scanner at Yale New Haven Hospital. The characteristics of subjects are not available due to 

the deidentification performed for the data transfer to UCSF. CT (120 kVp, 50 mA and rotation 

time of 0.4 s) images were aligned with non-corrected SPECT (SPECTNC) images in the 

myocardium region through the Attenuation Correction Quality Control package routinely used 

in clinical practice. Using a one-step-late algorithm with Green prior, image reconstructions  

(70x70x50 matrix size with 4 mm voxel size) were performed with 30 iterations and post-filtering 

(10th order Butterworth filter, 0.4 cm-1 cutoff) for SPECTNC and 60 iterations and post-filtering (7th 

order Butterworth filter, 0.37 cm-1 cutoff) for SPECT with CTAC (SPECTCTAC). All the 

reconstruction and filter parameters are clinically used but no established scatter correction is 

being routinely applied for GE D570c scanners with CZT detectors at Yale New Haven Hospital.  

 

Deep Convolutional Neural Network (DCNN)  

The proposed DL model aims to transform SPECTNC to SPECTCTAC directly in image space 

(SPECTDL), without generating μ-maps for conventional image reconstruction combined with AC 

(Figure 1). The proposed DCNN is an extended three dimensional version of our previous work 

(15). Different from conventional scanners, dedicated cardiac SPECT scanners allow a limited 

FOV to include at least the whole heart, which enables ideal three dimensional model training 
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without separating the left ventricle to smaller patches. The original patch size of 70×70×50 was 

reduced to 64×64×32 by removing the edges of each patch for enabling down-sampling (64  

32  ⋯   4) in each dimension. Our DCNN consists of five encoder-decoder stages 

symmetrically concatenated with skip connections. In each stage, convolution with 3×3×3 

kernels, batch normalization, and rectified linear unit is sequentially performed twice. Between 

stages, the downsampling and upsampling are done by 2×2×2 max pooling and bilinear 

interpolation, respectively. The original design adapted from our previous work (15) was modified 

to a 3D network architecture for this study.  

 

DCNN Training and Testing 

The DCNN was trained and tested with paired input (SPECTNC) and output (SPECTCTAC) 

patches using 10-folded cross validation without using external validation: i.e., the model was 

trained with 9 groups (10 in each group) and tested with the other one, which was repeated 10 

times. The raw values (absolute counts) of each patch were normalized by its maximum to 

reduce the dynamic range of input/output values. In the patches, low counts out of the 

myocardium were considered background noise and removed by binary masking (15). Before 

being fed into the model, 90 input patches were randomly shuffled, rotated (≤15 degree in 

transaxial view), and translated horizontally (≤10 pixels), vertically (≤10 pixels) and axially (≤3 

pixels) for data augmentation. A learning rate initialized by 0.001 was reduced to 3/4th of its 

current value in the course of training if the loss did not decrease in 25 epochs. Weights for 

convolution were initialized with the He-initializer (18) and all biases were initialized with zero. 

Mean squared error (or L2 loss) and RMSprop optimizer (19) were used for optimizing weights 

and biases. The loss was converged in 1500 epochs and the training was stopped at the point, 

which was empirically determined through loss curves and consistent across all the folds. The 

hyper parameters empirically chosen in our previous work (15) were adapted for this study 

through hyperparameter tuning. 

 The proposed model was implemented using Tensorflow (version 1.12.0) and Keras 

libraries (version 2.2.4). Model training and testing were performed on a Ubuntu server with a 

single Tesla V100 (NVIDIA) graphics processing unit. The training took approximately 100 

minutes to reach stability. After training the model, it takes only 0.5 s on average to generate 

SPECTDL volumetric images (64×64×32). 
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Quantitative Analysis 

Overall quantitative accuracy of SPECTDL was evaluated, compared to reference SPECTCTAC. 

For voxel-wise analysis, the normalized root mean square error, peak signal to noise ratio and 

structural similarity index were quantified. For segment-wise analysis, polar maps were 

generated and compared using a 17-segment model for the left ventricle, which was adopted 

from (20). A measured count of each segment was normalized by the maximum count of 17 

segments. The relative percentage count of each segment was computed and an error (i.e., 

SPECTDL – SPECTCTAC) was assessed. Additionally, the effects of sex (58 males versus 42 

females) and hepatic uptake (44 subjects with high liver uptake versus 56 subjects with low liver 

uptake) were investigated through the segment-wise analysis separately for each cohort. 

Although the information of patient weight and height was not available for computing body mass 

index, the volume of each patient was estimated from CT-derived attenuation maps for 

investigating any correlation between chest volumes and average segmental errors across 

subjects.  

 

Illustration of Representative Cases 

Three categories of subjects were selected to illustrate the overall qualitative assessment of 

SPECTDL. First, three subjects with the smallest mean segmental error were selected to show 

examples of SPECTDL that achieved quantitatively the most accurate correction. Second, three 

subjects with the 25th, 50th and 75th percentiles of absolute mean segmental errors were chosen 

to depict examples that achieved quantitatively median accuracy. Finally, two subjects with the 

highest and lowest mean segmental errors were selected to display examples that our DL model 

was not able to correct accurately.  

 

Statistics 

A joint histogram was employed to show the distribution of voxel-wise correlation of SPECTDL 

with reference SPECTCTAC. Also, the error distributions of all segments of all 100 subjects (17 × 

100 = 1700 segments in total) for SPECTDL were displayed in Bland-Altman and box plots.  A 

paired t test was performed for comparing the segmental uptake values of SPECTDL with those 

of the reference. A P value of less than 0.05 was considered to indicate statistical significance. 

 Polar maps were generated using the PMOD Cardiac PET Modeling tool (PCARDP, 

version 3.8). All the processing and analyses above were performed in MATLAB (R2015b, 

MathWorks). 
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RESULTS   

For voxel-wise analysis, the normalized root mean square errors were 0.232 ± 0.077 and 0.148 

± 0.095; the peak signal to noise ratios were 31.3 ± 2.8 and 36.2 ± 4.1; the structural similarity 

indices were 0.984 ± 0.008 and 0.993 ± 0.006 for SPECTNC and SPECTDL, respectively. 

Consistently, the voxel-wise correlations were 92.2% ± 3.7 (slope = 0.87; R2 = 0.81) and 97.7% 

± 1.8 (slope = 0.94; R2 = 0.91) for SPECTNC and SPECTDL, respectively (Figure 2).   

 For segment-wise analysis, the errors of SPECTNC scattered from -35% up to 21%; while, 

those of SPECTDL stayed  mostly within ±10% (Figure 3). Consequently, the average errors 

(mean±SD) were -6.11 ± 8.06% and 0.49 ± 4.35%; and the average absolute errors were 7.96 

± 6.23% and 3.31 ± 2.87% for SPECTNC and SPECTDL, respectively, which were consistent with 

the sex-dependent and hepatic uptake-dependent results where the average errors of SPECTNC 

were substantially reduced through DL (Table 1). All results were statistically significant except 

for male (p = 0.10) and subjects with HLU (p = 0.25).  

Figure 4 shows that DL reduced the error distributions of all segments close to zero mean 

within ±10% variation across all subjects, which was consistent with the corresponding error 

distributions for male, female and subjects with HLU and LLU (Supplementary Figure 1). 

Specifically, DL reduced the average absolute error of SPECTNC by > 70% for the segments of 

4,9,10,15 (segment #); > 60% for the segments of 3,5,11; > 50% for the segments of 8,14; > 

40% for the segments of 16,17; and > 17% for the rest. The box plot of each subject across all 

17 segments was found in Supplementary Figure 2. In the analysis of correlation between 

patients’ chest volumes and average segmental errors, no correlation was found for both 

SPECTNC (ρ = 0.016) and SPECTDL (ρ = 0.021), though a moderate non-linear (affine) 

correlation (ρ = 0.6264) was found between SPECTNC and SPECTDL (Supplementary Figure 3). 

 Three categories of subjects were described in Table 2 for illustrating the overall 

performance of our DL approach. Figure 5 illustrates accurately corrected attenuation artifacts 

in the right coronary artery (RCA) territory of SPECTDL. In Figure 6, artifacts were accurately 

corrected in first two cases (25th and 50th percentiles) in the RCA of SPECTDL, though a 

remarkable visual difference between SPECTNC and SPECTCTAC was not observed for the last 

case (75th percentile). Figure 7 illustrates two cases with substantially overestimated SPECTDL 

in the RCA and left circumflex artery (LCx) and substantially underestimated SPECTDL in the 

RCA and left anterior descending artery (LAD). 
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DISCUSSION  

We demonstrated the our DL model substantially reduced the attenuation artifacts of SPECTNC, 

illustrating its potential benefits and pitfalls. To our knowledge, this is the first work to 

demonstrate a CT-less direct AC in image space, as an accelerated one-step process for for 

SPECT MPI in a dedicated SPECT system.  

There are several benefits of our DL approach technically and clinically for SPECT MPI. 

From technical perspective, the biggest potential advantage is to remove the need of attenuation 

map generation that is an essential step of conventional image reconstruction. Most dedicated 

cardiac SPECT systems (7) and approximately 80% of SPECT systems in the market are stand-

alone (i.e., not combined with a CT) (8), which acknowledges the potential value of our DL 

approach. Also, our direct DL approach is much simpler and faster (< 1 s) than conventional 

approaches that require an additional reconstruction step with time-consuming computation. 

From clinical perspective, when approaches such as conventional AC methods or alternative 

prone imaging are not possible (5), our DL model could potentially incorporate AC into routine 

clinical practice (6) and efficiently improve the accuracy of diagnosis in existing stand-alone 

SPECT systems, since attenuation artifacts due to soft-tissue are more likely to be 

misinterpreted as fixed defects in normal patients with normal heart function (21). Also, our 

model trained with datasets acquired in a conventional SPECT/CT scanner could be applied to 

different datasets acquired in a stand-alone scanner if images are reconstructed with similar 

parameters and their pixel sizes are consistent across two different scanners. For example, it 

would be feasible to apply our DL model trained with datasets from a GE D570c (combined 

SPECT/CT) to new datasets acquired in a GE D530c (stand-alone) since the geometries and 

hardware components of the two scanners are very close and thus their non-corrected image 

qualities are similar. Nevertheless, it is expected that an indirect DL approach such as generating 

pseudo CT (12) would perform more consistently than our direct DL approach, since the indirect 

approach keeps every aspect of the conventional image reconstruction; however, a direct 

approach like ours needs to learn attenuation physics and statistics by a DCNN, which requires 

large normative training data. Another important clinical merit of our CT-less DL approach is the 

reduction of radiation dose from CT that may lead to a substantial increase in lifetime cancer risk 

(9), specifically for pediatric patients who are much sensitive to radiation (10, 11). 

The general rules of attenuation in SPECT MPI were derived from the literatures as 

follows (5). First, in male more often than in female, the left hemidiaphragm results in potential 

perfusion artifacts in the RCA, that is more accentuated with abdominal protuberance, elevated 



 8

left hemidiaphragm, or obesity; Second, in female more often than in male, breast attenuation 

causes potential perfusion artifacts in the LAD or LCx; Third, the high-uptake liver may create 

artifacts in the inferior wall. Our result was consistent with the general rules in many aspects. 

Overall, Figure 4 confirmed the most important first rule that large errors were mostly found in 

the RCA of SPECTNC but corrected in SPECTDL: Our DL approach substantially reduced artifacts 

across all RCA, LAC and LCx territories. The errors of SPECTNC in the LAD and LCx were 

relatively much smaller than those in the RCA for both male and female (Supplementary Figure 

1A), implying that breast attenuation (2nd rule) was not dominant in our datasets, and the slightly 

higher error of male for SPECTNC was observed, which might be inferred from the general 

characteristic of men taller and heavier than women (22) but were not able to be thoroughly 

explained due to the missing information of subject height and weight. The larger average error 

of subjects with HLU for SPECTNC (Supplementary Figure 1B) was consistent with the 3rd rule.  

 There is always risk that any new DL models may miss important patterns or generate 

pseudo patterns when exposed to new test data with different characteristics (23). Thus, 

representative cases were selected according to subject-specific quantitative results, which was 

appropriate and desirable for illustrating specific (best/median/worst) cases. The visual 

performance of our DL approach was not consistent across all subjects likely due to different 

amount of soft tissue and uptake patterns, that was inferred from the literatures demonstrating 

substantially degraded image quality of SPECTNC for obese patients (5); however, at least in our 

dataset, there was no correlation between patients’ chest volumes and average errors for both 

SPECTNC and SPECTDL (Supplementary Figure 3). From the perspective of model training, since 

our DL model was optimized only in our limited dataset, the current model might not be able to 

achieve high accuracy for such cases (Figure 7) whose attenuation artifacts might be unique 

and very different from the artifacts of other subjects. Therefore, there is still room to improve 

the accuracy of our model towards clinical translation.  

 Despite the promising results, our study has several limitations. First, 100 subjects may 

not be enough to represent all possible patterns involved with attenuation artifacts. For example, 

the female population might not contain significant breast attenuation as discussed above, which 

implies the need of constructing a large dataset with more diverse cases for future studies. 

Second, the clinical information (weight, height, clinical interpretation, etc.) was missing due to 

the deidentification, and  a thorough investigation of their effects on the current results is beyond 

the scope of this study. Third, any observer study or clinical interpretation (e.g., scoring SPECTDL 

verse SPECTCTAC) was not performed, though summed perfusion scores derived from a normal 
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dataset would improve the quality of this study; however, the uptake distribution of SPECTCTAC 

(i.e., reference standard) was not uniform as shown in the x-axis of the Bland-Altman plot (Figure 

3) and thus a normal dataset was not able to be derived for the scoring. Fourth, SPECTCTAC 

might include unexpected artifacts because of uncorrected scatter produced by 

subdiaphragmatic high uptake organs (24). Unfortunately, conventional scatter correction 

approaches are not applicable to GE D570c scanners due to the unique energy spectrum of 

pixelated CZT detectors with a tailing effect caused by incomplete charger and inter-detector 

scatters, thus clinical adoption of CZT-specific scatter correction methods are needed in the 

future (25,26). Finally, the right ventricle was unseen in SPECTDL since low-count voxels out of 

the myocardium were considered background noise and removed by binary masking; however, 

an advanced network architecture might enable to skip the binary masking. 

Therefore, for future work, it would be important to construct a large normative database 

with more diverse and outlier cases for investigating the effects of patient characteristics on 

model training and evaluation, deleting suspicious data with unexpected artifacts based on 

physicians’ interpretation. Also, it would be of great value to develop a validation program for 

evaluating large test datasets efficiently using automatic myocardium segmentation (27) and 

image quality assessment (28), which could accelerate quantitative and qualitative analyses. 

These future efforts would establish safety and consistency required for reliable interpretation 

towards clinical translation.   

 

CONCLUSION 

We demonstrated the feasibility of direct AC using DL for SPECT MPI, illustrating potential 

benefits and pitfalls. Overall, the DL model reduced attenuation artifacts substantially compared 

to SPECTNC, justifying further studies to establish safety and consistency for clinical applications 

in stand-alone SPECT systems suffered from attenuation artifacts.  
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KEY POINTS 

QUESTION: Is it feasible to employ deep learning (DL) for CT-less attenuation correction (AC) 

in image space for myocardial perfusion imaging (MPI) in a dedicated cardiac SPECT system? 

PERTINENT FINDINGS: In a cohort study evaluating DL-based AC in 100 patients undergoing 

SPECT MPI with and without AC, our DL approach achieved quantitative and qualitative 

accuracy comparable to the conventional CT-based AC, reducing attenuation artifacts observed 

in non-corrected SPECT.  

IMPLICATIONS FOR PATIENT CARE:  

This DL technique demonstrated its potential to efficiently reduce attenuation artifacts observed 

in stand-alone SPECT systems for improving sensitivity and specificity in clinical interpretation. 
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Figure 1. Schematic of a proposed deep convolutional neural networks (DCNN)-based 

attenuation correction (AC) performed in image space (left), compared to the conventional AC 

performed through system matrix during SPECT image reconstruction (right) (NC: non-

corrected, Conv: convolution; BN: batch normalization; ReLU: rectified linear unit).   
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Figure 2. Deep Convolution Neural Network (DCNN) architecture (Conv: convolution; BN: batch 

normalization; ReLU: rectified linear unit). 
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Figure 3. Bland-Altman plots for percentage segmental errors across all subjects, male and 

female subjects, and subjects with high liver uptake (HLU) and low liver uptake (LLU): SPECTNC 

(a, blue) and SPECTDL (b, red) (reference: SPECTCTAC). 
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Figure 4. Polar map (a) and box plots for percentage segmental errors across all subjects (b), 

male and female subjects (c) and subjects with HLU and LLU (d): SPECTNC (blue) and SPECTDL 

(red) (reference: SPECTCTAC, M: male, F: female, HLU: high liver uptake, LLU: low liver uptake). 
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Figure 5. Examples of three subjects (A, male; B, male; C, male) with the smallest absolute 

mean segmental error in short axis (SA) and vertical long axis (VLA) views and polar maps: 

SPECTNC (top), SPECTCTAC (middle) and SPECTDL (bottom). 

  



 19 

 

Figure 6. Examples of three subjects with the 25th (A, male), 50th (B, male) and 75th (C, female) 

percentiles of absolute mean segmental errors in short axis (SA) and vertical long axis (VLA) 

views and polar maps: SPECTNC (top), SPECTCTAC (middle) and SPECTDL (bottom). 

  



 20 

 

Figure 7. Examples of two subjects with the most overestimated (A, male) and underestimated 

(B, female) mean segmental errors in short axis (SA) and vertical long axis (VLA) views and 

polar maps: SPECTNC (top), SPECTCTAC (middle) and SPECTDL (bottom). 
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Table 1. Average error, average absolute error and correlation coefficients of all segments across all 

subjects (17 segments × 100 subjects = 1700 segments in total), 58 males, 42 females, and 44 subjects 

with high liver uptake (HLU) and 56 subjects with low liver uptake (LLU), respectively. The reference is 

SPECTCTAC. P < 0.05 is considered statistically significant. 

Cohort (#) SPECT 
Error (%) 

mean ± SD 

|Error| (%) 

mean ± SD 
Corr. Coef. (%) P value 

All (100) 
NC -6.11 ± 8.06 7.96 ± 6.23 88.05 < 0.001 

DL 0.49 ± 4.35 3.31 ± 2.87 96.17 < 0.001 

Male (58) 
NC -6.96 ± 8.62 8.80 ± 6.72 86.66 < 0.001 

DL 0.22 ± 4.28 3.19 ± 2.85 96.22 0.10 

Female (42) 
NC -4.95 ± 7.05 6.80 ± 5.29 90.36 < 0.001 

DL 0.85 ± 4.44 3.46 ± 2.90 96.12 < 0.001 

HLU (44) 
NC -7.30 ± 8.28 8.71 ± 6.79 86.72 < 0.001 

DL -0.21 ± 4.99 3.75 ± 3.30 94.75 0.25 

LLU (56) 
NC -5.18 ± 7.75 7.38 ± 5.70 89.36 < 0.001 

DL 1.03 ± 3.69 2.96 ± 2.43 97.33 < 0.001 

# = number of subjects 
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Table 2. Selected subjects for Figures 5-7 and their average errors across 17 segments for SPECTDL 

and SPECTNC. Note that Supplementary Figure 1 provides the average segmental errors of all subjects 

through box plots (HLU: high liver uptake, LLU: low liver uptake). 

Subject # Figure # DL error (%) NC error (%) Criteria for DL selection 

66, Male, HLU Figure 5a  0.10 ± 4.08 -12.61 ± 10.04 Smallest |error| 

54, Male, HLU Figure 5b 0.10 ± 2.26 -8.73 ± 8.44 Smallest |error| 

93, Male, LLU Figure 5c -0.10 ± 2.99 -6.32 ± 6.69 Smallest |error| 

9, Male, LLU Figure 6a 1.10 ± 2.46 -9.04 ± 7.49 25th percentile |error| 

89, Male, HLL Figure 6b 1.99 ± 3.05 -4.59 ± 6.85 50th percentile |error| 

77, Female, HLL Figure 6c 3.15 ± 4.07 1.17 ± 5.25 75th percentile |error| 

7, Male, LLU Figure 7a 9.20 ± 4.55 2.65 ± 2.63 The most overestimated error 

57, Female, HLU Figure 7b -7.21 ± 4.85 -12.25 ± 7.25 The most underestimated error 

# = number 

 



 

 
Supplementary Figure 1. Box plots for percentage segmental errors across (A) male and female 

subjects and (B) subjects with HLU and LLU (reference: SPECTCTAC, NC: non-corrected, DL: deep 

learning, M: male, F: female, HLU: high liver uptake, LLU: low liver uptake). 

 

  



 

 
Supplementary Figure 2. Box plots of (A) 1-50 and (B) 51-100 subjects for percentage segmental 

errors for SPECTNC (blue) and SPECTDL (red) (reference: SPECTCTAC, M: male, F: female, H: high liver 

uptake, L: low liver uptake).   



 
Supplementary Figure 3. (A) Scatter plot of the chest volumes (x-axis) and average segmental 

errors (y-axis) of SPECTNC (blue) and SPECTDL (red) across 100 subjects and (B) affine regression 

relation between the errors of SPECTNC (x-axis) and those of SPECTDL (y-axis) across 100 subjects 

(ρ = correlation coefficient). 

 


