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Rationale: CR3022 is a human antibody which binds to the SARS-CoV-2 virus. Here, we explore 

the use of CR3022 as a molecularly targeted radiotherapeutic. 

 

Methods: CR3022 was labeled with Iodine-131 using the Iodogen-method and purified, yielding 

[131I]I-CR3022. Using a magnetic bead assay and a recombinant SARS-CoV-2 spike protein 

fragment, we tested binding of [131I]I-CR3022 in the presence and absence of CR3022.  

 

Results: We conjugated the antibody CR3022 with a purity > 98% and a specific activity > 292 

MBq/mg. Using a bead-based assay, we confirmed that binding of [131I]I-CR3022 is selective, and 

is significantly reduced in the presence of unlabeled antibody (3.14 ± 0.14 specific uptake and 0.10 

± 0.01 specific uptake, respectively; P < 0.0001).  

 

Conclusion: Our results confirm the potential of CR3022 as a molecularly targeted probe for 

SARS-CoV-2. A labeled version of CR3022 could potentially be used for Auger radiotherapy or 

non-invasive imaging.  
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INTRODUCTION 

Radiotherapy, the treatment of disease with ionizing radiation, plays a significant role in the 

treatment and management of cancer. Most recently, molecularly targeted endoradiotherapeutics 

have received significant attention (1). These agents consist of a targeted vector (a small molecule, 

a peptide, an antibody) and a radioactive payload (an α-emitter, a β-emitter or an Auger emitter). 

Some of these treatments have generated impressive responses, as with [177Lu]Lu-DOTATATE 

(Lutathera), a recently FDA-approved β-emitter with a half-life of 6.7 days that extends both 

progression-free and overall survival in the setting of midgut neuroendocrine tumors (2).  

 

For molecularly targeted endoradiotherapeutics, a particular focus has to be placed on the 

kind of radioactive emitter, as different disintegration pathways produce particle emissions of 

varying type and profile (3,4). Matching the half-life and decay type to a particular application is 

therefore imperative and can determine success and failure.  

 

The most recognized radioactive emissions of therapeutic relevance are α or β particles, 

which represent a He  nucleus and an electron, respectively. α-emitting radioisotopes have 

particle pathlengths of 50–100 μm and high linear energy transfer (5) rates (80 keV/μm). β-

emitting radioisotopes have particle pathlengths of up to several mm in soft tissue and significantly 

lower linear energy transfer rates (~0.2 keV/μm). With the coronavirus disease 2019 (COVID-19) 

pandemic in mind, both α and β particles are therefore likely sub-optimal therapeutics, considering 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions’ diameters (80–120 nM, 

(6)) and the associated potential for detrimental effects on surrounding tissue. However, Auger 

electron emitters appear to be of particular significance here. Auger electrons combine a relatively 

high LET (4–26 keV/μm) with extremely short nm-μm particle path lengths, concentrating their 

cytotoxic potential into minute volumes compared with cellular dimensions.  In a rough 

approximation, Auger electrons with energies between 0.5 and 10 keV are sufficiently energetic 

to penetrate deep into the virus producing direct and indirect radiological effects (i.e. therapeutic 

action) when originating at the viral envelope, but are insufficiently energetic to directly damage 

neighboring cell nuclei.  
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In oncology, such characteristics led to attempts to incorporate Auger electrons into 

artificial nucleotides in order to treat cancers by causing complex DNA damage in tumor cells, but 

this approach has ultimately not been successful due to the difficulty of delivering lethal doses to 

a large enough fraction of tumor cells within a particular lesion (7-9). Recent preclinical work, 

using different delivery mechanisms, suggests a renewed promise and corroborates the 

considerable toxic effect of Auger emitters on tumor cells (10). In Figure 1, we illustrate the 

relationship between Auger/conversion electron energy and yield for 125I. Examples for other 

prolific auger emitters (11) can be found in Figure 2. 

 
125I is reactor-produced and available in large quantities. At the time of writing, the 

McMaster nuclear reactor in Hamilton, Ontario produces the isotope predominantly for 

brachytherapy, allowing treatment of 70,000 patients annually.  

 

In the past, 125I was explored as an Auger-based radiotherapeutic for a genetically 

engineered measles virus. The virus, which expressed the sodium iodide symporter in infected 

cells, was sensitive to 125I in vitro, where virus replication could be stopped. These results, 

however, did not translate to an in vivo model, suggesting sub-optimal pharmacokinetics of [125I]-

iodide (12). A selective, molecularly targeted vector such as the monoclonal antibody (mAb) 

CR3022 could serve as a delivery agent for 125I. CR3022 binds to the SARS-CoV-2 receptor 

binding domain (RBD) with a KD of 6.3 nM. The antibody is cross-reactive and conserved across 

several coronaviruses, making it ideal for targeting SARS-CoV-2, but potentially also related 

diseases (13,14).  

 

Another iodine isotope, 131I, is used not only as a standard-of-care treatment for certain 

types of thyroid cancers but also finds widespread use in scintigraphies and whole body SPECT 

imaging. Intuitively, a radiolabeled CR3022 could be valuable for imaging, potentially serving as 

a direct, spatially resolved, contemporaneous and non-invasive readout of viral load within a 

patient. From a drug-development perspective, a direct readout of SARS-CoV-2 viral load could 

represent a quick, upstream indicator of therapy success. This could be particularly interesting as 

a tool for clinical research, and similar approaches have been used to accelerate oncologic drug 

development pipelines in the past (15).    
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MATERIALS AND METHODS 

 

General  

All reagents were obtained from commercial vendors and used without any further 

purification. 0.9% Phosphate buffered saline (PBS), Iodogen® and dichloromethane were obtained 

from Thermo Fisher Scientific (Waltham, MA). Anti-SARS-CoV-2 antibody CR3022 was 

purchased from Creative Biolabs (Shirley, NY). Recombinant SARS-CoV-2 spike protein - S1 

subunit (host cell receptor binding domain - RBD) with N-terminal histidine tag was purchased 

from Raybiotech (Peachtree Corners, GA, catalog # 230-01102-100). 1-micron diameter magnetic 

beads functionalized with Ni-NTA (Nickel-Nitrilotriacetic acid; HisPur™ Ni-NTA magnetic 

beads; Catalog # 88831) used for bead assay were purchased from Thermo Fisher Scientific. 

Iodogen® (1,3,4,6-tetrachloro-3α,6α-diphenyl-glycoluril, catalog # PI28600) coated glass reaction 

tubes were prepared by evaporating 50 L of Iodogen® solution (50 g, 1 mg/mL) in a borosilicate 

glass test tube (12 x 75 mm, catalog # 14-961-26). PD MiniTrap G-25 columns (GE Healthcare, 

catalog # 28918007) were preconditioned with 2 mL of PBS (Catalog # 10-010-023) before using 

for separating radioiodinated antibody from the free radioiodine.  

 

Radiosynthesis  

70 µL of PBS was added to an Iodogen (100 g) precoated culture tube. To the resulting 

solution 25 µg of CR3022 mAb (25 µL, 1.0 mg/mL) was added. To the solution 9.25 MBq (250 

µCi) of [131I]I-NaI (in 17 L of 0.1 N NaOH) was added to the tube and the mixture was allowed 

to react for 4 min at room temperature and loaded onto a PD MiniTrap G-25 column (GE 

Healthcare, catalog # 28918007) which was preconditioned with 2 mL of PBS. The radiolabeled 

antibody was purified using saline as eluant. The fraction #3 was used for the binding studies. The 

purity of the compound was measured using SG-ITLC paper using 10% trifuloroacetic acid in 

water as eluent. The specific activity of the final product was 292 MBq/mg (7.9 mCi/mg; 177.5 

µCi/22.5 µg).   

  

Magnetic bead assay  

We have described the details of the bead-based assay in a previous publication (PMID: 

31128476).  The assay comprises of three separate arms – control with no antigen, positive control 
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and a blocking control and each arm analyzes samples in triplicates. The first arm serves as a 

control to measure non-specific binding (NSB) of the radioligand to the beads without any target 

antigen (SARS-CoV-2 spike protein - S1 subunit - SARS-CoV-2 –S1), the second arm assesses 

radioligand binding to SARS-CoV-2-S1 coated beads, and the third arm validates the specificity 

of radioligand binding to the cognate antigen in the presence of an excess of unlabeled ligand.  

Briefly, samples were prepared by aliquoting 20 μL of the magnetic bead slurry into a 

1.5 mL lo-bind microcentrifuge tube (13-698-794; Fisher Scientific). The beads were washed by 

adding 380 μL of PBS-BSA (PBS containing 1% bovine serum albumin) and the tubes were 

vortexed for 5 s followed by a brief spin in a mini-centrifuge prior to placing the tubes on a 

magnetic rack (12321D; DynaMag™-2; ThermoFisher Scientific) for 30–45 s to isolate the 

magnetic beads. The SARS-CoV-2 –S1 antigen was resuspended to achieve a concentration of a 

0.1 mg/mL. The washed beads were resuspended in 390 μL of PBS-BSA and the beads in all tubes 

except the control arm were incubated with 1 μg (10 μL) of His-tagged or biotinylated antigen for 

15 min on an Eppendorf™ Thermomixer at 300 RPM at room temperature. Subsequently, the 

beads were washed once with 400 μL of PBS-T before adding 1 ng of the radiolabeled antibody 

([131I]I-CR3022) resuspended in 1% BSA-PBS. [131I]I-CR3022 was incubated with antigen coated 

beads for 30 min on a rotating mixer at room temperature. A large excess (5 μg) of the unlabeled 

cold antibody CR3022 was added a few seconds prior to adding 1 ng of the radioligand to antigen-

coated beads in the blocking arm. Thereafter, the beads were isolated using a magnet, and the 

supernatant containing unbound radioligand was aspirated with a pipette and collected in separate 

tubes. To remove non-specifically-bound radioligand, the beads were washed twice with 400 μL 

of PBS-BSA. Finally, the beads, supernatant and washes were measured for radioactivity on a 

gamma counter. The relative binding fractions were determined by dividing percentage of total 

activity bound to magnetic beads to the total activity (beads + supernatants + wash). 
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RESULTS AND DISCUSSION 

SARS-CoV-2 is a coronavirus which emerged in late 2019 and has resulted in an ongoing 

pandemic, causing cases of COVID-19 across the globe. Common symptoms include fever, cough, 

shortness of breath and muscle aches (16). SARS-CoV-2 enters host cells via the angiotensin-

converting enzyme 2 receptor (ACE2), which is expressed in type II alveolar cells of the lungs, 

and can severely affect lung function (17,18). 

 

Intuitively, many lessons learned from attempts to treat tumors with Auger emitters could 

be adapted for radiotherapeutically inactivating extracellularly circulating SARS-CoV-2 in 

patients. After all, tumor cells and SARS-CoV-2 share an important hallmark in their ability to 

evade patients’ immune systems (19,20). However, while tumor cells may permanently escape the 

immune system (or only become tolerant over the course of the disease), pathogens like SARS-

CoV-2 can be efficiently eliminated once adaptive immunity has been acquired (21). While it is 

unlikely that treatment of SARS-CoV-2, mediated by a radiotherapeutic Auger emitter, can lead 

to elimination of all virions, radiotherapy could be used in combination with other treatments and 

consequently improve outcomes (Fig. 1). Such treatment combinations could include currently 

tested treatments, including anti-IL-6 antibodies or remdesivir. However, radiation therapy was 

reported to initiate and influence the inflammatory and immune system (22), and care has to be 

taken that this does not negatively affect the likelihood of cytokine storms (23).  

 

As a proof-of-concept that molecular targeting of SARS-CoV-2 is possible, we turned to 

CR3022, a human IgG1 antibody constructed from RNA, which was isolated from the 

lymphocytes of a convalescent SARS-CoV patient originating from Singapore (24). While 

CR3022 is therefore a potent binder of the SARS-CoV-2 RBD, the recognized epitope does not 

overlap with the ACE2 binding site (the receptor binding motif, RBM), and CR3022 consequently 

does not compete with ACE2 for binding to SARS-CoV-2. This is notably not a drawback for 

Auger radiotherapy of SARS-COV-2. Using Iodogen for iodination, a method established both in 

preclinical and clinical settings (25,26), we covalently conjugated 131I to commercially available 

CR3022 with a purity of > 98% and a specific activity of 292 MBq/mg (Fig. 1C). We confirmed 

that the modified [131I]I-CR3022 retained its potent binding to SARS-CoV-2 using a magnetic 

bead assay, testing its binding to a recombinant His-tagged SARS-CoV-2 RBD. 
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The specific binding of [131I]I-CR3022 alone was significantly higher without pre-

incubation of unlabeled CR3022, confirming both that CR3022 binds to SARS-CoV-2 and that 

binding is not perturbed after covalent modification with Iodine-131 (3.14 ± 0.14 and 0.10 ± 0.01 

specific uptake for [131I]I-CR3022 and CR3022, respectively; P < 0.0001; Fig. 1D). We consider 

this experiment a potent first step toward translating an orthogonal therapeutic approach for SARS-

CoV-2, which could potentially be used as a combination or monotherapy for patients with active 

infection. The translational hurdles for such a drug could be lower than with traditional 

therapeutics or vaccines, because the pharmacokinetics (which are dictated by the antibody) are 

decoupled from the pharmacodynamics (dictated by the radioisotope). While both work 

synergistically, they can be optimized separately, similar to what has been done for [177Lu]Lu-

PSMA and [225Ac]Ac-PSMA, two anti-cancer radiotherapeutics (27). Substitution of the isotope 

preserved the pharmacokinetic profile while simultaneously showing therapeutic efficacy in 

patients with acquired resistance to [177Lu]Lu-PSMA. 

 

Lastly, the integration of other, previously oncologically deployed strategies could lead to 

the rapid rollout of SARS-CoV-2 therapeutics as well, including the conjugation of drug-

conjugates for treating affected cells, or known antigens for efficiently decloaking SARS-CoV-2 

from the immune system.  
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CONCLUSION 

Our preliminary data, in combination with the available literature, suggests further 

development of a radiotherapeutic CR3022, which would be merging different pharmacological 

approaches.  

  



 10

 

ACKNOWLEDGEMENTS 

We thank the Small Animal Imaging Core, the Radiochemistry and Molecular Imaging Probes 

Core, and the Molecular Cytology Core at Memorial Sloan Kettering Cancer Center. This work 

was supported by National Institutes of Health grants R01 CA204441, R35 CA232130 and P30 

CA008748. The authors thank the Tow Foundation and Memorial Sloan Kettering Cancer Center's 

Center for Molecular Imaging & Nanotechnology (CMINT) and the Memorial Sloan Kettering 

Cancer Center Imaging and Radiation Sciences Program.  

 

KEY POINTS  

Question  

Can the human monoclonal antibody CR3022 be used as a specific targeted vector for shuttling 

activity to SARS-CoV-2 virions?  

 

Pertinent findings 

Labeling of CR3022 is possible, and binding affinity of the antibody for the SARS-CoV-2 receptor 

binding domain is retained.   

 

Implications for patient care 

CR3022, modified with a radiolabel, could be used for direct imaging of SARS-CoV-2, but also 

potentially as an Auger radiotherapeutic in patients with active infection.  
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FIGURES  

 

Figure 1. A new trick for an old 

dog. (A) Destruction of tumor 

cells with targeted radioactive 

isotopes is an important part of 

standard of care oncology. 

[125I]Iodine has an energy profile 

which would allow deposition of 

energy within the radius of a 

SARS-CoV-2 virion. (B) Decay 

events damage sensitive DNA 

within a tumor cell nucleus, 

causing catastrophic single- and 

double strand breaks. Clinical use 

of Antibody-delivered Auger 

emitters could open a window for 

the targeted destruction of 

extracellular COVID-19 virions, 

decreasing the viral load during 

active infection and potentially 

easing the disease burden for a 

patient. (C) Labeling of CR3022 

with [131I]Iodine and (D) 

confirmation of specific binding 

the the SARS-COV-2 spike 

protein - S1 subunit (**** = P < 

0.0001, unpaired Student’s t test).  
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Figure 2. Net yields of monoenergetic electrons (Auger, conversion electrons) per nuclear 

transformation for 67Ga, 123I, 125I, 111In, and 99mTc.  The red bars represent the contribution to the 

total yield, of electrons within the 0.5 – 10 keV energy range.  Yields were obtained from ICRP 

Publication 107 (28). 

 


