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ABSTRACT 

Head motion degrades image quality and causes erroneous parameter estimates in tracer kinetic modeling in brain 

PET studies. Existing motion correction methods include frame-based image-registration (FIR) and correction using 

real-time hardware-based motion tracking (HMT) information. However, FIR cannot correct for motion within one 

predefined scan period while HMT is not readily available in the clinic since it typically requires attaching a 

tracking device to the patient. In this study, we propose a motion correction framework with a data-driven algorithm, 

i.e., using the PET raw data itself, to address these limitations.  

Methods: We propose a data-driven algorithm, Centroid of Distribution (COD), to detect head motion. In COD, the 

central coordinates of the line of response (LOR) of all events are averaged over 1-sec intervals to generate a COD 

trace. A point-to-point change in the COD trace in one direction that exceeded a user-defined threshold was defined 

as a time point of head motion, which was followed by manually adding additional motion time points. All the 

frames defined by such time points were reconstructed without attenuation correction and rigidly registered to a 

reference frame. The resulting transformation matrices were then used to perform the final motion compensated 

reconstruction. We applied the new COD framework to 23 human dynamic datasets, all containing large head 

motions, with 18F-FDG (N=13) and 11C-UCB-J (N=10), and compared its performance with FIR and with HMT 

using the Vicra, which can be considered as the “gold standard”.  

Results: The COD method yielded 1.0±3.2% (mean ± standard deviation across all subjects and 12 grey matter 

regions) SUV difference for 18F-FDG (3.7±5.4% for 11C-UCB-J) compared to HMT while no motion correction 

(NMC) and FIR yielded -15.7±12.2% (-20.5±15.8%) and -4.7±6.9% (-6.2±11.0%), respectively. For 18F-FDG 

dynamic studies, COD yielded differences of 3.6±10.9% in Ki value as compared to HMT, while NMC and FIR 

yielded -18.0±39.2% and -2.6±19.8%, respectively. For 11C-UCB-J, COD yielded 3.7±5.2% differences in VT 

compared to HMT, while NMC and FIR yielded -20.0±12.5% and -5.3±9.4%, respectively. Conclusion: The 

proposed COD-based data-driven motion correction method outperformed FIR and achieved comparable or even 

better performance as compared to the Vicra HMT method in both static and dynamic studies. 
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INTRODUCTION 

The spatial resolution of PET scanners has improved over the years. For instance, the dedicated brain scanner, 

high resolution research tomography (HRRT), has a resolution of < 3 mm in full-width-half-maximum (FWHM). 

However, head motion during brain PET studies reduces image resolution (sharpness), lowers concentrations in 

high-uptake regions and causes bias in tracer kinetic modeling. Existing motion correction (MC) methods include 

frame-based image-registration (FIR) (1) and correction using real-time hardware motion tracking (HMT) 

information (2). FIR cannot correct for motion within one scan period (intra-frame) while HMT is not routinely used 

in the clinic, since it typically requires attaching a tracking device to the patient. Thus, there is a need to develop a 

robust data-driven approach to detect and correct head motion.  

Several data-driven approaches (3-5) have been proposed. Thielemans et al. (3) used principal component 

analysis (PCA) and Schleyer et al. (6) compared PCA to an approach that used total-count changes with the aid of 

time-of-flight (TOF) information. However, for the real patient studies in (3,6), there lacked a comparison with a 

“gold standard”. In addition, the impact of MC on accuracy of absolute quantification was not investigated in (3,6). 

Feng et al. (5) proposed to directly estimate the head motion using the second moment information with thorough 

validation study remained to be performed. Please see additional articles (7,8) for a more complete review. 

Here, we propose a data-driven algorithm, Centroid of Distribution (COD), to detect head motion, and perform 

MC within the list-mode reconstruction. A similar concept had been previously proposed by other groups (9) and the 

COD method was also previously developed for respiratory motion detection (10) and voluntary body motion 

detection (11) with the aid of TOF information. In this paper, we extended the use of COD to a non-TOF scanner, 

HRRT, to detect head motion, followed by event-by-event correction (12). The proposed approach was compared to 

FIR and HMT with the Vicra, an optical HMT device (13)(14). Vicra-based correction provided continuous head 

motion monitoring with event-by-event MC, which can be considered as the “gold standard”. The proposed method 

was evaluated using both SUV and model-based quantification measures for 23 human dynamic scans, all 

containing large head motions, with 18F-FDG and 11C-UCB-J (15). 



 Data-driven Head Motion Correction Page 4 

MATERIALS AND METHODS 

Human Subjects and Data Acquisitions 

Twenty-three previously acquired human PET dynamic studies with 2 different radiotracers were analyzed. The 

subjects belonged to multiple diagnostic categories. These included thirteen with 18F-FDG (injected activity: 184±4 

MBq) and ten with 11C-UCB-J (363±178 MBq), a novel radiotracer that binds to the synaptic vesicle glycoprotein 

2A (SV2A) (15), which has shown its potential as a synaptic density marker in Alzheimer’s disease (16). The 23 

datasets for this study were chosen by identifying the subjects who exhibited largest head motions out of 290 

examined cases. The head motion magnitude of any point within the field-of-view (FOV) was determined from the 

Vicra data as twice the standard deviation of motion of that point. To describe the motion of the entire brain, eight 

points were selected as the vertices of a 10-cm side-length cube centered in the scanner FOV. The final motion 

magnitude was the average of the values from the eight points. More details can be found in (13). This study was 

approved by the Yale University Human Investigation Committee and Radiation Safety Committee. 

A transmission scan, used for attenuation correction, was performed before the PET emission acquisition. For 

both tracers, dynamic scans of 90 min duration were performed on the HRRT scanner with the Vicra used for 

motion monitoring. Individual T1-weighted MR images were segmented using FreeSurfer (17) to generate regions 

of interest (ROIs), which were resliced to the individual PET space based on the MR-PET rigid registration using 

mutual information.   

COD Motion Detection and Event-by-event Motion Correction 

Head motion information was extracted from the listmode data using the COD algorithm. In COD, for every 

listmode event i, the line-of-response (LOR) is determined by the pair of detectors. The spatial coordinates of the 

two detectors were recorded in mm from the center of the scanner FOV, and the center of each event’s LOR, (Xi, Yi, 

Zi), was determined. The (Xi, Yi, Zi) for each event was averaged over a short time interval Δt, e.g., 1 second in this 

study, to generate raw COD traces in three directions: CX for lateral, CY for anterior-posterior, and CZ for superior-

inferior directions; a sample is shown in Figure 1(A). Next, a semi-automatic motion detection algorithm was 

implemented based on the assumption that sharp changes in COD represent head motions. The detection algorithm 

included four phases: a) selection of the COD direction to use for motion detection, b) automatic detection of step 
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motions, c) visual assessment of the COD trace to identify additional motions, and d) detection of slow motions (see 

Discussion for details of the parameter settings in the algorithm). 

a) The variance of each COD directional value was calculated from the period beginning 2 min post-injection 

until the end of the scan. The direction with the highest variance was chosen for motion detection (denoted C(t)). An 

example is shown in Figure 1, where CZ contained the largest variance. 

b) In the automatic detection phase, the algorithm includes:  1) applying a 1-D 15-sec median filter to obtain a 

new trace M(t); 2) to determine motion time points (ti, times when motion occurs), we calculate the forward 

difference of M(t) (example shown in Supplemental Figure 1(A)) as: D(t) = M(t+Δt)-M(t), and compare D(t) with a 

user-defined threshold (see Discussion). If D(t) exceeds the threshold, time t is chosen as a motion time point and 

added to a list ti ; 3) label each frame between ti and ti+1 as a “motion-free” frame (MFF); and 4) if a MFF is shorter 

than 30 seconds, data within this frame was excluded from further analysis. This step ensures that the preserved 

MFFs contain sufficient counting statistics for later motion estimation.  

c) Since we only considered forward differences, i.e., an abrupt change in COD over Δt = 1 sec in phase (b), we 

may miss motions that were relatively slow, e.g., lasting 2-3 sec. For those obvious missed motions, we manually 

added ti values based on the visual observation of the COD changes. An example can be found in Figure 1(B). 

d) Some subjects exhibited slow motions, in which case a ti value was automatically added in the middle of 

each MFF that was longer than 10 min (see Discussion).  

Due to rapid tracer distribution changes immediately after injection, COD alters rapidly, so it is challenging for 

the proposed method to detect motion within very early frames, e.g., the first 2 minutes post-injection (Figure 1). 

Thus, we did not attempt to detect motion during the first 2 min of each study.  

An example of detection results is shown in Figure 1(B). The horizontal lines at the top of the graph define each 

MFF and the blue vertical lines indicate the automatically-detected ti values. Gaps in the horizontal lines at the top 

indicate discarded frames due to rapid motion. Green edges show the manually added ti values in phase (c). As 

reference, Supplemental Figure 1(B) shows the averaged distance of the eight vertices of the reference cube (13) in 

Z direction in comparison to the position during the transmission scan, computed from the Vicra information. 
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Once the ti values were determined, motions between MFFs were estimated and corrected as follows: 1) 

reconstruct each MFF using OSEM without attenuation correction; 2) smooth each MFF reconstruction using a 

3x3x3 median filter followed by a 5-mm FWHM Gaussian filter; 3) register each MFF image to a reference frame 

rigidly, i.e., the first 2 min; 4) build a motion file for the entire study using each ti and the transformation matrix to 

be used for all the events between ti and ti+1; 5) use MOLAR (12) to perform event-by-event motion compensated 

OSEM reconstruction (2 iteration ×30 subsets), based on the chosen frame timing. Note that for the COD method, 

no change in position is assumed during each MFF, however, there may be multiple MFFs within each reconstructed 

frame, so a final reconstructed frame may include data from multiple “poses”. In addition, if any of the discarded 

frame periods from detection phase b) overlap with each reconstructed frame, that portion of list mode data was not 

included in the reconstruction of that frame. Therefore, COD results may be slightly noisier than other methods due 

to the discarded data.  

Between-frame registrations were performed using FLIRT (18) with normalized mutual information as the 

similarity metric. Motion between the transmission and emission scans was corrected through manual registration 

between the MFF reference frame (without attenuation correction) and the transmission image. This transformation 

was incorporated into the motion file (step 4, above).   

Motion correction methods for comparison 

In this study, the COD-based method was compared with conventional FIR and Vicra-based event-by-event 

correction (referred to as Vicra), which was treated as the gold standard. For the FIR method, predefined dynamic 

frames (10×30sec and 17×5min) were first reconstructed using OSEM (2 iterations × 30 subsets) and registered to a 

reference frame, i.e., first 10 min. For the Vicra method, subject motion was recorded with a Vicra optical tracking 

system at 20 Hz, i.e., a rigid transformation matrix was determined every 50 msec, which was used for MC in the 

MOLAR reconstruction (12). Thus, all 3 methods used the same reconstruction pipeline with the same frame timing, 

just with different motion information, i.e., none for FIR, 20 Hz for Vicra, and piecewise constant (during each MFF) 

with possible gaps for COD. For Vicra, mean position information during the transmission scan was used for 

correction between emission and attenuation images. For FIR, no motion correction (NMC) was performed between 

emission and attenuation images, consistent with typical practice.  
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Image Analysis 

Twelve gray matter (GM) ROIs (17) were used to generate time-activity curves (TACs): amygdala, caudate, 

cerebellum cortex, frontal, hippocampus, insula, occipital, pallidum, parietal, putamen, temporal and thalamus. The 

proposed COD-based approach was compared to NMC, FIR, and Vicra, which was considered as the gold standard. 

Mean and standard deviation of the standardized uptake value (SUV) of 0-10 min and 60-90 min frames were 

computed for all GM ROIs. For this comparison, for each approach, the MR was registered to each frame, i.e., 0-10 

min and 60-90 min. For both 18F-FDG and 11C-UCB-J, tracer concentrations are higher in GM than in white matter, 

so SUV will typically decrease in GM if motion is present during the frame and attenuation correction (AC) 

mismatch is not considered. Note that the effects of AC mismatch can be very complicated depending on the motion 

direction and tracer distributions. In other words, a better motion correction method shall, in general, yield higher 

GM concentrations, unless large motion introduces inter-GM ROI cross talk.  

Dynamic analysis was also performed, and the effects of residual motion were determined by its effect on fits to 

respective kinetic models. For both tracers, time activity curves (TACs; 27 frames: 10×30sec, 17×5min), of each 

ROI were computed for each correction method.  

For 18F-FDG, Patlak analysis was performed (19), with t* set to 60 min and a 30-min scan duration was used. 

The slope Ki was calculated for each GM ROI. A population-based input function (PBIF) was used. To generate the 

PBIF, arterial plasma curves (in SUV units) from 40 subjects (not included in this study) were averaged. The PBIF 

was scaled for each subject using the injected dose normalized by body weight. 

For 11C-UCB-J, one-tissue compartment model (20) fitting was applied to each ROI to generate distribution 

volume, VT, the tissue to plasma concentration ratio at equilibrium reflecting specific plus nonspecific binding.  The 

rate of entry of tracer from blood to tissue, K1, was also estimated. Note that K1 is mostly governed by the early 

tracer kinetics while VT is more affected by the late kinetics. Thus, K1 is more sensitive to head motion in the early 

frames while VT is affected more by late-frame motions. Metabolite-corrected arterial plasma curves were used as 

the input function.  

The estimated kinetic parameters were compared between methods, using Vicra as the gold standard. In 

addition, the model fitting normalized residual error was calculated for each ROI, as follows:  
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where i is the frame number index,  T iC t  represents the mean ROI concentration of frame i,  TF iC t  is the mean 

concentration value of the fitted kinetic model of frame i, and wi is the weighting factor used in the model fit. 

Uncorrected motion will cause increased residual error. Note that two 11C-UCB-J studies underwent levetiracetam 

displacement at 60min, which were excluded from K1, VT and residual error calculations. 

RESULTS 

COD computation time (mean ± standard deviation) was 9.3±5.1 min using a single-core 2.4G Hz CPU. CX was 

selected for automatic detection in 7 cases and CZ was selected for the other 16 cases. The user-defined threshold in 

step (2) of phase (a) was 0.13±0.03 mm (note that COD units do not correspond to actual distances) for 18F-FDG 

and 0.23±0.12mm for 11C-UCB-J. The larger threshold variation for 11C-UCB-J was due to greater variability in 

injected dose (11C-UCB-J: 363±178 MBq; 18F-FDG: 184±4 MBq). During the 90-min scans, for 18F-FDG, there 

were 27±7 MFFs (41±14 for 11C-UCB-J) which included 6.6±3.7 manually-added MFFs (8.0±3.8 for 11C-UCB-J). 

The fraction of scan time that was discarded was 6.4±3.5% for 18F-FDG (7.1±5.5% for 11C-UCB-J). 

In Figure 2 (18F-FDG), transverse 60-90 min SUV images from three cases are shown. A coronal view of these 

studies is shown in Supplemental Figure 2. In terms of mean SUV compared with Vicra, the three cases yielded 

+3.0% (ranked 2/13, second best), +0.6% (6/13) and -2.7% (13/13) for the COD method. Visually, COD and Vicra 

yielded very similar images for all three cases. Detailed SUV results are shown in Supplemental Table 1. For the 

first 10 min, minimal SUV bias was observed among all methods, which indicates minimal motions happened 

during the early scan. For the 60-90 min studies, NMC yielded large negative bias (-15.7%) in SUV while FIR 

largely reduced the bias to -4.7% across all subjects and regions. The bias was calculated by averaging the percent 

difference between a given method’s ROI results, e.g., NMC, and the Vicra across all the subjects, and these values 

were then averaged over all the ROIs. The COD method yielded positive bias for 9/12 ROIs with mean 1% higher 

than the Vicra, which indicated that excellent correction performance was achieved by COD. Furthermore, the ROI-

level mean of inter-subject variation (with respect to Vicra) was smallest for COD (3.2%) compared with FIR (6.9%) 

and NMC (12.2%).  
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TACs of three representative ROIs, i.e., frontal (large in size), thalamus (medium) and hippocampus (small), of 

the selected cases are shown in Figure 3, respectively. For the first 10 min, TACs of all methods highly overlapped, 

which indicated minimal motions occurred, consistent with the numerical results in supplemental Table 1. For all 

regions, FIR (green), though outperforming NMC (red), yielded “noisier” and lower-in-value TACs for most frames 

as compared with the Vicra (purple). COD (blue) yielded highly overlapped TACs with Vicra for the first two 

subjects. For the frontal region of the first subject, COD even exceeded Vicra. For the third case in which COD 

performed worst, COD was slightly worse than Vicra and similar to FIR for the last 30 min.  

In Figure 4 (11C-UCB-J), 60-90 min transverse SUV images of three cases are shown, ranking 2/10, 4/10 and 

9/10 in the COD method in terms of mean SUV bias compared to Vicra. A coronal view of these studies is shown in 

Supplemental Figure 3. Visually, compared to NMC, FIR substantially improved image sharpness for all cases. For 

the third case, the NMC image shows the large head motion for this subject, which was corrected by FIR. COD 

further improved sharpness and quantitation for all cases. As compared with the Vicra, COD yielded sharper and 

higher concentration values for the first and second cases, as can be seen in cortical regions (arrows). Note that for 

the Vicra method, the reflecting marker occasionally fails to maintain a rigid attachment to the subject’s head, which 

may explain the sub-optimal performance of the Vicra in these cases (see Discussion). Detailed SUV results are 

provided in supplemental Table 2. For the first 10 min, COD (-1.5%) slightly outperformed FIR (-3.4%) in terms of 

SUV bias compared with Vicra. For 60-90min, FIR (-6.2%) yielded substantial improvement compared to NMC (-

20.5%), whereas COD exceeded Vicra by 3.7%. Inter-subject standard deviation was smallest in COD (5.4%) 

compared with FIR (11.0%) and NMC (15.8%).  

In Figure 5, TACs of the frontal, thalamus, and hippocampus regions of the three selected cases in 11C-UCB-J 

studies are shown. Consistent with the visual comparison shown in Figure 4, COD outperformed Vicra by yielding 

higher TACs in value for the first and second cases while comparable for the third case. Note that bolus injection 

only was used for the first two cases while bolus plus infusion was used for the third.  

 For 18F-FDG dynamic studies, Ki results are shown in Table 1. NMC yielded a large negative bias (-18%) with 

very high inter-subject variation (39%) compared with Vicra. FIR substantially reduced the bias and inter-subject 

variation to -2.6±19.8%. The COD method outperformed FIR with +3.6% mean bias and 10.9% inter-subject SD. In 

terms of residual error of Patlak fitting, averaging over all regions and subjects, NMC yielded 4.6%, FIR reduced the 
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error by half (2.6%) whereas COD yielded better performance, comparable to Vicra, 1.5% vs. 1.2%, respectively. 

Residual error results are shown in Supplemental Table 3. 

For 11C-UCB-J dynamic studies, K1 and VT results are shown in Table 2. For all methods, very small K1 bias 

was found since K1 is sensitive to motion in the early frames, but there was minimal motion from 0-10min 

(Supplemental Table 2). Note that COD yielded the lowest inter-subject variation (1.9%) compared with FIR (6.2%) 

and NMC (9.0%). For VT, NMC yielded large negative bias and inter-subject variation (-20.0±12.5%) whereas FIR 

showed great improvement in both (-5.3±9.4%). COD yielded higher VT values (3.7±5.2%) than Vicra. Since COD 

yielded higher activity values than Vicra in SUV analysis (Supplemental Table 2), VT estimated using COD will be 

higher, and are likely to be closer to the truth. In terms of model fitting residual error, COD (2.5%) outperformed all 

other approaches, i.e., NMC (7.3%), FIR (4.6%) and Vicra (2.8%) (Supplemental Table 4). Therefore, COD yielded 

the best performance in MC for the 11C-UCB-J studies.  

DISCUSSION   

In this study, we proposed a data-driven head motion detection method followed by rigid MC. The proposed 

method was compared with frame-based image registration method and hardware-based event-by-event Vicra 

method, which was treated as the gold standard. For 18F-FDG and 11C-UCB-J, the proposed method outperformed 

FIR and achieved comparable or better results to Vicra for both static and dynamic data.  

In theory, the Vicra method should yield the best possible performance. However, we found that COD yielded 

slightly higher gray matter SUVs (1% for 18F-FDG, 3.7% for 11C-UCB-J), suggesting that Vicra HMT was not ideal 

for this patient cohort with large head motion. Ideally, the Vicra tool must be rigidly fixed to the head, but this may 

fail in several ways. For instance, the tool may permanently displace from its original location due to imperfect 

fixation. In this study, although we excluded scans containing obvious Vicra failure based on the technologist report, 

the positive percent difference of COD over Vicra indicated that imperfect Vicra HMT still existed. Thus, the 

excellent performance by COD showed that a data-driven approach can be as effective as HMT.  

In this study, the COD method discarded ~7% of the counts, due to excessive and frequent motion. In contrast, 

Vicra used all the data. If these large-motion periods affect the Vicra tracking, e.g., by introducing non-rigid 

attachment between the marker and subject’s head, then by excluding the same data, the performance of Vicra may 
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improve. If so, a hybrid approach, i.e., Vicra plus COD, could be implemented in the future to further improve Vicra 

tracking.  

As an alternative to all the aforementioned approaches, markerless motion tracking using camera systems 

requires no attachment to a patient (21). However, the accuracy of such methods remain to be thoroughly tested, 

since the results can be affected by non-rigid facial expression changes (21) and performance may vary for different 

populations.  

 Success of the proposed method can be tracer dependent. Here, we used 11C-UCB-J and 18F-FDG for the 

following reasons: 18F-FDG is the most clinically used PET tracer while 11C-UCB-J, as a very novel tracer, has 

shown its efficacy for studying multiple neurological disorders (16,22), and has great potential for wider clinical and 

research use. In addition, the 20-min half-life of 11C added a challenge for the COD algorithm due to the high-noise 

condition for the late scan frames. However, we note that both tracers have a broad distribution in the brain with 

patterns that do not vary substantially over time. This characteristic could make the image registration step more 

robust than for tracers with those with heterogeneous and time-varying distribution, e.g., 11C-Raclopride. In the 

future, we will evaluate COD with a wider variety of tracers.  

In this implementation of the algorithm, several user-defined parameters were applied: the length of the median 

filter applied to the COD trace, the threshold for motion determination, the minimum duration of a MFF, the 5-min 

maximum length of a MFF for slow-motion detection, and the smoothing kernel for MFF reconstructions. These 

parameters were chosen empirically. Here, we clarify the rationale behind the choice of parameters for this 

algorithm: 5-min maximum MFF length was chosen as a tradeoff among the sensitivity to slow motion, the 

computational cost, and the registration accuracy which is affected by noise and tracer distribution change. The 30-

sec shortest MFF was chosen to be the same length as the shortest dynamic frame. Another choice could be a count-

level based approach, in which the threshold could be set based on the minimal number of counts for each MFF. The 

15-sec median filter and threshold were tested against human detection of the abrupt changes in the COD curve for 

the same studies, and we adjusted the threshold to best match the human observations. In addition, in this study, we 

did not evaluate how much of the good performance of the COD method was due to manually added MFFs. In the 

future, further optimization of each parameter is required.  



 Data-driven Head Motion Correction Page 12 

There are other limitations of this study. First, the COD method cannot accurately detect motion in the early 

period postinjection, due to rapid changes in tracer distribution, so data-driven MC during this period will remain 

challenging. Also, here we used list-mode reconstruction, however, our approach can be extended to sinogram-based 

reconstruction (23) with minimal modification. In addition, we compared the COD-based approach to conventional 

FIR, in which each frame was reconstructed with attenuation correction. Thus, FIR not only suffered from intra-

frame motion, but also attenuation mismatch artifact. To minimize the latter effect, motion estimation could be 

performed using images without attenuation correction (13,24) . We note that in this study, we did not compare our 

approach to other data-driven approaches (3-5); such a comparison is important to clarify what method will provide 

the most robust and accurate method for motion detection and correction. The current detection method may detect 

some false-positive motions (in the absence of motion) purely due to noise in the COD. However, such false-

positive detected motion should not substantially affect the reconstruction results despite of the fact that small errors 

may still occur since the registration is subject to image noise. In addition, false-positive detection could also occur 

due to very rapid tracer kinetics. 

CONCLUSION 

We proposed a data-driven head motion detection method followed by rigid motion correction. The proposed 

method was compared with frame-based image registration method and the hardware-based Vicra method. For both 

18F-FDG and 11C-UCB-J, the proposed method outperformed FIR and achieved comparable or better results 

compared with Vicra for both static and dynamic studies.  
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KEY POINTS 

QUESTION: Can data-driven head motion correction method achieve similar performance as compared to 

hardware-based motion tracking? 

PERTINENT FINDINGS: In a dynamic PET study of subjects with large head motions using 18F-FDG (N=13) or 

11C-UCB-J (N=10), both static and dynamic measures showed that the proposed data-driven head motion detection 

and correction method yielded comparable or better results as compared with the hardware-based approach.  

IMPLICATIONS FOR PATIENT CARE: Data-driven head motion correction can be reliably performed for clinical 

or research brain PET scans for tracers with broad distributions. 
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Table 1. 18F-FDG Ki difference (%) compared to Vicra.  

 
No Motion 
Correction 

(NMC)   

 Frame-
based Image 
Registration 

(FIR)  

Centroid of 
Distribution 

(COD)  

Amygdala 18.0±60.4 -5.8±22.4 3.1±11.3 

Caudate -11.3±39.0 -0.8±29.8 6.3±18.2 

Cerebellum  -21.9±38.2 -2.1±12.4 2.6±9.8 

Frontal -36.0±43.4 -2.6±25.4 8.5±12.0 

Hippocampus -4.3±40.9 -5.6±19.7 -2.5±13.3 

Insula -11.7±19.3 -3.9±14.1 4.7±8.1 

Occipital -19.3±27.5 3.4±19.7 7.5±11.8 

Pallidum -9.4±47.6 0.2±15.2 0.9±12.9 

Parietal -27.6±40.9 -1.4±19.3 3.6±8.6 

Putamen -35.0±48.3 -1.3±23.9 6.0±9.7 

Temporal -27.5±27.6 -3.6±16.4 3.9±7.4 

Thalamus -30.3±38.0 -8.4±19.0 -0.9±7.3 

Average difference 

(%) 

-18.0 -2.6 3.6 

Average SD (%) 39.2 19.8 10.9 

(SD: standard deviation across all subjects) 
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Table 2. 11C-UCB-J K1 and VT difference (%) compared to Vicra. 

 
No Motion Correction (NMC)   

 Frame-based Image 
Registration (FIR)  

Centroid of 
Distribution (COD)  

Parameter K1 VT K1 VT K1 VT 

Amygdala 0.8±10.4 -24.6±13.0 -1.2±7.6 -7.5±12.5 -0.7±2.7 5.0±6.2 

Caudate -3.5±11.3 -29.9±12.6 -3.9±7.2 -6.6±8.6 -0.8±2.0 5.4±5.3 

Cerebellum  0.0±5.5 -10.4±9.9 -0.8±3.6 -4.6±6.8 -0.4±1.5 2.1±4.4 

Frontal 1.2±12.8 -37.8±12.9 -3.1±8.0 -5.2±8.7 0.3±1.1 3.5±2.9 

Hippocampus -4.3±6.7 -14.0±12.9 -1.5±6.5 -6.1±10.2 0.5±2.2 3.6±5.7 

Insula 2.1±9.4 -21.1±11.5 -0.7±5.4 -6.7±7.5 0.4±0.7 2.1±3.5 

Occipital 0.3±6.8 -10.5±12.8 -0.3±4.5 -0.6±10.9 -0.9±2.5 6.2±7.5 

Pallidum -0.7±6.4 7.7±19.3 -0.2±7.1 -5.1±10.5 0.4±3.2 0.5±7.0 

Parietal 0.2±10.5 -25.8±10.3 -1.6±6.5 -1.3±11.2 -0.8±2.4 5.5±6.2 

Putamen 1.3±8.5 -29.9±9.7 -1.2±5.2 -7.8±7.3 0.2±1.1 2.5±4.2 

Temporal 0.8±10.9 -27.2±10.9 -1.1±6.2 -5.6±12.7 -0.1±1.8 5.8±5.6 

Thalamus -2.4±8.7 -16.7±14.8 -2.2±6.3 -6.0±5.6 -0.6±1.7 2.4±4.2 

Average difference (%) -0.5 -20.0 -1.5 -5.3 -0.2 3.7 

Average SD (%) 9.0 12.5 6.2 9.4 1.9 5.2 

(SD: standard deviation across subjects) 
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Figure 1 (A) Centroid Of Distribution (COD) traces in three directions of an 18F-FDG study. Arrows denote abrupt 

changes in CZ, which indicate head motions. (B) Motion detection results. Blue vertical edges indicate motion time 

points (MTP) from automated detection and green vertical edges indicate manually-added points from visual 

assessment of undetected abrupt changes. Top horizontal line segments indicate a preserved motion-free frame and 

short bottom line segments indicate discarded frames due to overly-frequent motion.  
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Figure 2. Sample slices in SUV units of motion-corrected reconstructions of 18F-FDG studies (60-90min). Studies 

from (A), (B) and (C) ranked 2/13, 6/13 and 13/13 (worst) of the COD-based approach, respectively. Subtle motion 

blur at frontal region (arrow) can be seen in COD (C). 
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Figure 3. Three time activity curve examples of the 18F-FDG studies for three regions (columns). Studies from (A), 

(B) and (C) ranked 2/13, 6/13 and 13/13 (worst) of the COD-based approach, respectively. 
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Figure 4. Sample slices in SUV units of motion-corrected reconstructions of 11C-UCB-J studies (60-90min). Studies 

from (A), (B) and (C) ranked 2/10, 4/10 and 9/10 of the COD-based approach, respectively. Arrows in (A) and (B) 

point to cortical regions, where COD showed sharper and higher concentration values than Vicra. Arrows in (C) 

show the large magnitude of head motion in this subject. 
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Figure 5. Three time activity curve examples of the 11C-UCB-J studies for three regions (columns). Studies from (A), 

(B) and (C) ranked 2/10, 4/10 and 9/10 of the COD-based approach, respectively. Case A used bolus injection and 

underwent displacement at 60 min. Case B used bolus injection while C used an infusion paradigm. 
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Supplemental material 

 

SUPPLEMENTAL FIGURE 1. (A) Forward difference of Figure 1(B) used in automatic MTP detection with the 

motion threshold set to 0.09. (D) Averaged coordinates absolute distance of the eight vertices of the reference cube 

in Z direction, which were computed based on the Vicra motion information. 

 

 

SUPPLEMENTAL FIGURE 2. Same as Figure 2 in coronal orientation. 
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SUPPLEMENTAL FIGURE 3. Same as Figure 4 in coronal orientation. 
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Supplemental Table 1. 18F-FDG SUV difference (%) compared to Vicra.  

 No Motion Correction 
(NMC)   

 Frame-based Image 
Registration (FIR)  

Centroid of 
Distribution (COD)  

Time(min) 0-10 60-90 0-10 60-90 0-10 60-90 

Amygdala -1.9±3.6 -9.7±13.3 -1.5±3.5 -5.7±7.0 -2.9±4.1 1.8±2.6 

Caudate -3.7±4.0 -22.8±10.0 -3.2±3.4 -6.5±8.7 -2.4±3.7 -2.6±4.6 

Cerebellum  -2.4±1.7 -14.6±16.1 -2.3±1.7 -5.4±6.0 -2.8±2.4 0.8±2.4 

Frontal -3.8±3.0 -25.3±9.9 -3.3±2.3 -4.0±6.6 -2.2±2.7 0.2±3.4 

Hippocampus -2.0±1.6 -11.4±10.6 -1.7±1.5 -6.0±6.8 -2.2±4.9 -1.8±1.8 

Insula -2.2±2.2 -10.7±11.1 -2.3±2.0 -4.1±5.4 -1.3±2.9 1.6±1.8 

Occipital -2.9±2.6 -12.1±9.9 -2.9±2.2 -2.1±7.6 -2.4±2.4 4.7±6.9 

Pallidum -1.5±2.9 -0.7±17.4 -1.9±2.9 -2.3±7.2 -2.6±3.5 4.8±3.2 

Parietal -3.4±2.6 -17.7±11.4 -3.1±2.2 -4.7±7.3 -2.8±2.6 0.4±4.1 

Putamen -3.9±3.1 -22.5±11.8 -3.6±2.8 -4.4±5.7 -3.3±3.2 1.7±2.9 

Temporal -3.1±2.0 -22.0±12.8 -2.9±1.8 -4.8±5.9 -2.7±2.5 0.9±2.6 

Thalamus -2.3±2.4 -18.5±12.7 -2.1±2.3 -6.5±7.9 -2.5±3.5 -0.5±1.8 

Average difference (%) -2.8 -15.7 -2.6 -4.7 -2.5 1.0 

Average SD (%) 2.6 12.2 2.4 6.9 3.2 3.2 

Mean ± standard deviation across subjects. 
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Supplemental Table 2. 11C-UCB-J SUV difference (%) compared to Vicra. 

 No Motion Correction 
(NMC)   

 Frame-based Image 
Registration (FIR)  

Centroid of 
Distribution (COD)  

Time(min) 0-10 60-90 0-10 60-90 0-10 60-90 

Amygdala -2.5±4.6 -23.1±15.1 -2.4±4.1 -7.0±10.5 -0.6±1.9 4.5±5.2 

Caudate -5.0±6.9 -24.2±15.7 -4.6±5.5 -5.8±10.1 -1.3±1.3 6.4±6.3 

Cerebellum  -2.8±1.5 -12.7±13.8 -2.7±1.3 -6.4±10.2 -2.0±1.4 2.6±4.7 

Frontal -4.4±7.3 -39.0±14.9 -4.0±6.2 -6.3±12.0 -0.6±1.2 3.9±3.4 

Hippocampus -3.6±5.3 -12.8±8.9 -3.5±4.8 -7.8±11.5 -0.8±1.4 1.6±6.7 

Insula -2.9±2.9 -22.4±18.2 -2.7±2.9 -7.2±8.4 -1.3±1.0 1.9±3.3 

Occipital -2.9±2.0 -14.3±15.2 -2.9±2.0 -2.3±11.7 -2.4±2.2 6.4±7.4 

Pallidum -2.5±4.6 5.9±23.0 -2.2±4.6 -4.1±12.3 -1.1±1.6 1.3±7.1 

Parietal -4.1±4.2 -28. ±15.1 -4.1±3.7 -3.5±12.7 -2.5±1.8 4.3±6.4 

Putamen -3.6±4.6 -30.2±13.9 -3.3±3.9 -7.6±8.4 -1.6±1.6 3.2±3.7 

Temporal -3.8±2.9 -27.9±17.3 -3.7±2.7 -7.4±12.4 -1.5±1.0 4.4±4.6 

Thalamus -4.4±4.8 -16.9±18.4 -4.2±4.2 -9.4±11.8 -2.0±1.5 3.7±5.5 

Average difference (%) -3.5 -20.5 -3.4 -6.2 -1.5 3.7 

Average SD (%) 4.3 15.8 3.8 11.0 1.5 5.4 

(SD: standard deviation across all subjects) 
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Supplemental Table 3. 18F-FDG Patlak-model fitting residual error (averaged over subjects). 

 No Motion 
Correction 

(NMC)   

 Frame-
based Image 
Registration 

(FIR)  

Vicra 
Centroid of 
Distribution 

(COD) 

Amygdala 4.8% 4.0% 2.6% 3.4% 

Caudate 5.2% 3.8% 1.4% 2.3% 

Cerebellum Cortex 4.2% 1.7% 0.7% 0.7% 

Frontal 4.5% 3.2% 0.7% 1.6% 

Hippocampus 4.2% 2.4% 1.6% 2.0% 

Insula 3.6% 1.8% 0.8% 1.1% 

Occipital 2.7% 1.8% 1.0% 1.0% 

Pallidum 6.6% 2.4% 2.0% 1.7% 

Parietal 3.3% 2.2% 0.7% 1.1% 

Putamen 6.1% 2.9% 1.1% 1.4% 

Temporal 4.9% 2.3% 0.8% 0.8% 

Thalamus 5.2% 2.4% 1.0% 1.2% 

Average 4.6% 2.6% 1.2% 1.5% 
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Supplemental Table 4. 11C-UCB-J 1T-model fitting residual error (averaged over subjects). 

 No Motion 
Correction 

(NMC)   

 Frame-
based Image 
Registration 

(FIR)  

Vicra 
Centroid of 
Distribution 

(COD) 

Amygdala 8.4% 6.0% 5.1% 4.2% 

Caudate 11.2% 5.4% 2.8% 2.9% 

Cerebellum Cortex 4.8% 3.4% 2.2% 2.1% 

Frontal 9.2% 5.7% 1.5% 1.7% 

Hippocampus 7.7% 5.1% 4.5% 4.1% 

Insula 5.7% 3.8% 2.1% 2.1% 

Occipital 5.2% 3.5% 2.2% 1.5% 

Pallidum 6.1% 4.8% 3.9% 3.6% 

Parietal 7.2% 4.3% 2.1% 1.5% 

Putamen 7.6% 4.2% 2.1% 1.8% 

Temporal 6.9% 4.3% 2.0% 1.4% 

Thalamus 7.1% 4.4% 2.5% 2.5% 

Average 7.3% 4.6% 2.8% 2.5% 

 


