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ABSTRACT 

Combined analysis of SPECT myocardial perfusion imaging (MPI) performed with a solid-state 

camera on patients in two positions (semi-upright, supine) is routinely used to mitigate attenuation 

artifacts. We evaluated the prediction of obstructive disease from combined analysis of semi-

upright and supine stress MPI by deep learning (DL) as compared to standard combined total 

perfusion deficit (TPD). Methods: 1160 patients without known coronary artery disease (64% 

males) were studied. Patients underwent stress 99mTc-sestamibi MPI with new generation solid-

state SPECT scanners in four different centers. All patients had on-site clinical reads and invasive 

coronary angiography correlations within six months of MPI. Obstructive disease was defined as 

≥70% narrowing of the 3 major coronary arteries and ≥50% for the left main coronary artery. 

Images were quantified at Cedars-Sinai. The left ventricular myocardium was segmented using 

standard clinical nuclear cardiology software. The contour placement was verified by an 

experienced technologist. Combined stress TPD was computed using gender- and camera-specific 

normal limits. DL was trained using polar distributions of normalized radiotracer counts, 

hypoperfusion defects and hypoperfusion severities and was evaluated for prediction of obstructive 

disease in a novel leave-one-center-out cross-validation procedure equivalent to external 

validation. During the validation procedure, four DL models were trained using data from three 

centers and then evaluated on the one center left aside. Predictions for each center were merged to 

have an overall estimation of the multicenter performance. Results: 718 (62%) patients and 1272 

of 3480 (37%) arteries had obstructive disease. The area under the receiver operating 

characteristics curve for prediction of disease on a per-patient and per-vessel basis by DL was 

higher than for combined TPD (per-patient: 0.81 vs 0.78, per-vessel: 0.77 vs 0.73, P<0.001).  With 

the DL cutoff set to exhibit the same specificity as the standard cutoff for combined TPD, per-
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patient sensitivity improved from 61.8% (TPD) to 65.6% (DL) (P<0.05), and per-vessel sensitivity 

improved from 54.6% (TPD) to 59.1% (DL) (P<0.01). With threshold matched to specificity of 

normal clinical read (56.3%) DL had sensitivity 84.8% vs 82.6% for on-site clinical read (P=0.3). 

Conclusion: Deep learning improves automatic interpretation of MPI as compared to current 

quantitative methods. 

Keywords: obstructive coronary artery disease, SPECT myocardial perfusion imaging, deep 

learning, convolutional neural network, total perfusion deficit. 
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INTRODUCTION 

SPECT myocardial perfusion imaging (MPI) is widely used for the diagnosis of coronary artery 

disease (CAD), with more than 6.3 million scans performed annually in North America (1).  High-

efficiency SPECT scanners equipped with solid-state detectors and specialized collimators have 

dramatically improved count sensitivity and image resolution (2). They enable shorter acquisition 

times that facilitate imaging patients in multiple positions to assess image artifacts, or alternatively 

the implementation of low radiation protocols by performing standard time acquisitions or stress-

only protocols (3). 

Machine learning is the capability of artificial intelligence systems to acquire their own 

knowledge from raw data. Recent research has demonstrated increased capabilities of deep 

convolutional neural networks (often referred to as deep learning-[DL]) to solve challenging tasks 

such as classification and image segmentation (4). In contrast to conventional machine learning 

that requires pre-defined statistics to be computed in advance (5,6), convolutional networks are 

connected directly to image pixels and learn image statistics in a self-taught manner therefore 

processing the images in their natural form (4).  DL ability to simultaneously analyze normalized 

radiotracer counts, hypoperfusion defects and hypoperfusion severities SPECT-MPI maps to 

predict CAD has been recently demonstrated (7).  

In this work, we aimed to apply DL to upright and supine images acquired for the same 

patient on a high-efficiency camera. Physicians need to review these two images for the final 

interpretation. Simple rule-based computational methods are currently used for combined 

quantification of upright/supine images (8) to mitigate various imaging artifacts, such as 

attenuation artifacts. In this study, utilizing a large international cohort of high-efficiency MPI 
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with correlating invasive coronary angiography (ICA) we use DL to improve the interpretation of 

upright/supine images.  

MATERIALS AND METHODS 

Study Population 

The studied dataset was collected under NIH sponsored REgistry of Fast Myocardial 

Perfusion Imaging with NExt generation SPECT (REFINE-SPECT) (9). The registry contains MPI 

studies and on-site clinical reads of consecutive patients without known CAD who underwent 

clinically indicated ICA within 180 days of MPI (7). This information was transferred to the core 

laboratory (Cedars Sinai) for processing. We analyzed stress MPI images from 1160 patients (64% 

males) from the registry who underwent upright and supine SPECT MPI (performed on DSPECT 

system) in 4 nuclear cardiology centers in the USA, between 2008 and 2015. The study was 

approved by the institutional review board of each center and the requirements to obtain informed 

consent was waived.  

Stress Image Acquisition  

99mTc-sestamibi stress imaging was performed using high-efficiency solid-state D-SPECT 

scanners (Spectrum-Dynamics, Haifa, Israel) for patients positioned semi-upright and supine (10). 

Patients underwent either symptom-limited Bruce protocol treadmill exercise testing only (522 

[45%]) or pharmacologic stress (638 [55%]), with radiotracer injection at peak exercise or during 

maximal hyperemia, respectively. Upright and supine stress imaging began 15-60 min after stress 

and followed fast acquisition protocols –acquisition lasted 4-6 min each. Reconstructed images 

were generated on-site from the list-mode data by vendor-recommended iterative reconstruction 
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with resolution recovery as optimized on this scanner (10). No attenuation, scatter or motion 

correction was applied.  

Invasive Coronary Angiography 

ICA was performed within 180 days of the MPI examination according to standard clinical 

protocols and routine. All coronary angiograms were visually interpreted by an on-site 

cardiologist, independent from MPI but not formally blinded to MPI. Luminal diameter narrowing 

of 50% or greater of the left main artery, or of 70% or greater in the left anterior descending (LAD), 

left circumflex (LCx) or right coronary arteries (RCA), was considered significant and used as the 

gold standard for obstructive CAD.  

Image Processing  

Image datasets were transferred and quantified at Cedars-Sinai Medical Center. Left 

ventricular (LV) myocardial contours were computed using standard Cedars-Sinai Quantitative 

Perfusion SPECT software version 2015 (11). LV contours were verified by a technologist with 

>15 years of experience in nuclear cardiology who was blinded to angiographic and clinical 

findings. When needed, the technolgist corrected the gross initial LV localization, the LV mask, 

and the valve plane position (6,12). 

Automated Myocardial Perfusion SPECT Quantification  

Polar map samples derived from the raw images by the standard algorithm were used to 

generate raw polar maps showing radiotracer count distributions normalized to the maximal 

counts. SPECT images were quantified by gender-specific normal limits deriving upright and 

supine blackout and total perfusion deficit (TPD) maps—four polar maps in total (8,13). Blackout 

polar maps defined areas of hypoperfusion (11) as blacked out samples in the raw map. TPD polar 
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maps described perfusion deficits—individual hypoperfusion severity—as polar map samples on 

a 0-4 scale (13).  

Standard Measures 

Standard clinical combined TPD (cTPD) measures per-patient and per-vessel for LAD, 

LCx and RCA territories were computed using the rule of concomitant location of the perfusion 

defect (8) for comparison to DL. Final on-site clinical reads incorporating all clinical information 

and imaging data (static, gated, stress, rest), were reported on scale 0-4 (0-normal, 1-probably 

normal, 2-equivocal, 3-abnormal, 4-definitely abnormal) by experts from each site during clinical 

reporting. Clinical scores 0-1 were considered as normal, and 2-4 were considered as abnormal for 

sensitivity/specificity calculation.    

Deep Learning  

The DL procedure illustrated in Fig. 1 extends previous approach detailed in (7) by 

processing upright and supine polar maps simultaneously. Gender information was included to 

account for the image differences between males and females on non-attenuation corrected MPI. 

The model estimates the obstructive per-vessel CAD probability, without the use of pre-defined 

coronary territories or any assumed subdivision of the input polar map. The maximum per-vessel 

probability of obstructive CAD was retained as the per-patient score.  

Leave-one-center-out cross-validation 

To externally validate the expected performance of the DL model for each participant center, we 

divided the studied population per center (four groups) then trained four DL models with data from 

three centers and evaluated them on the remaining external center in a leave-one-center-out cross-

validation (14) (Fig. 2). Therefore, the generalizability of the prediction to new MPI data was 

determined by evaluating unseen patients from a separate center. External validation aims to assess 
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the accuracy of a model in patients from a different but plausibly related population (15).  

Externally-validated predictions for each center were subsequently merged which reduces the 

variability of the estimated performance as compared to an external validation in a single external 

center.Implementation 

The DL model was implemented using the convolutional architecture for fast feature 

embedding DL toolkit (Berkeley Artificial Intelligence Research Lab, USA) in Python 

programming language 2.7.12 (7,16). Model training was performed on graphics processing units 

in a GeForce GTX 1080 Ti card (Nvidia, Santa Clara CA). 

Statistical Analysis 

DL and cTPD were compared using pairwise comparisons of the area under the receiver 

operating characteristic curve (AUC) according to DeLong et al. (17).  Per-vessel curves were 

computed by merging LAD, LCx and RCA scores by per-vessel cTPD and by the DL scores. 

McNemar’s test was used to assess differences in sensitivity. The per-patient and per-vessel 

improvements in sensitivity were computed for the DL thresholds matching the specificity when 

using previously established diagnostic cutoff values of per-patient cTPD = 3%, and per-vessel 

cTPD = 1% (8). Per-patient sensitivity was also evaluated for DL and cTPD thresholds matching 

the specificity of clinical readers. A two-tailed P-value < 0.05 was considered significant. 

Statistical calculations were performed in R software version 3.4 (18).   

RESULTS 

Baseline characteristics of the studied population (Table 1) were similar to reported single-

center studies, with a higher incidence of diabetes (8,19). The prevalence of obstructive CAD 
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(Table 2), age, incidence of diabetes mellitus and hypertension (Supplemental Tables 1 and 2) 

were the same across centers. Injected radiotracer activity for stress image acquisition are in Table 

3. 

Left Ventricle Segmentation 

LV contours were manually corrected in 143 (12.3%) upright images and 238 (20.5%) 

supine images (P<0.0001). Upright image modifications included 142 corrections for LV location, 

15 corrections for LV mask and 139 valve plane corrections (12). Supine image modifications 

included 238 LV location, 29 LV mask, and 200 valve plane corrections.  

Deep Learning 

Overall, the leave-one-center-out cross-validation training/validation loop took less than 

30 min using graphics processing units, which includes the creation of four DL models. In the 

testing phase, the prediction of LAD, LCx and RCA disease could be completed in less than 0.5 

seconds per patient using CPU computation.   

Per-patient. The merged per-patient AUC by DL was significantly higher than the AUC 

by cTPD (Fig. 3A). When operating with the same specificity as cTPD with a per-patient threshold 

of 3%, DL significantly improved the sensitivity of per-patient disease prediction. When operating 

with the same specificity as normal clinical reads, DL had the same sensitivity for disease 

prediction as on-site clinical readers, and significantly improved the sensitivity compared to cTPD 

(Fig. 4).  
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Per-vessel. The merged per-vessel AUC by DL was significanlty higher than the AUC by 

per-vessel cTPD (Fig. 3B). When operating with the same specificity as cTPD with a per-vessel 

threshold of 1%, DL significantly improved the sensitivity of per-vessel disease prediction. 

Per-center Analysis. DL resulted in significant improvements of per-patient and per-vessel 

AUCs as compared to cTPD for all externally validated centers except for per-patient CAD 

prediction in Center 3 where they were similar (Fig. 3 [bottom]). 

Performance Per Subpopulation. DL resulted in significant improvements as compared to 

cTPD for all studied subpopulations except for per-patient AUC for females and for patients 

undergoing exercise stress test were DL performed the same (Fig. 5).  

Case Examples 

Fig. 6 illustrates two cases with obstructive CAD correctly predicted by DL. Fig. 6A shows 

one case with LAD disease correctly predicted by DL but with normal per-vessel and per-patient 

cTPD. Fig. 6B shows one case with triple-vessel disease correctly identified by DL but with normal 

TPD at LAD and LCx territories. 

DISCUSSION 

In this study, we applied DL to automatically combine upright and supine MPI polar maps 

and to predict obstructive CAD. The performance of DL was compared to clinically established 

combined perfusion quantification by upright and supine TPD using the rule of the concomitant 

location of the defect (8,13), and to on-site clinical readers. D-SPECT MPI data was collected in 

a large multicenter registry, to our knowledge the largest to date with ICA correlations, with the 
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number of samples per vessel disease similar to the number of samples per category in computer 

vision datasets or new applications in medicine (7,20,21).  

In a novel leave-one-center-out cross-validation procedure, equivalent to external 

validation, we observed that DL from upright and supine polar MPI images outperformed cTPD 

in the prediction of obstructive disease. The observed gains for CAD prediction were greater than 

those obtained by attenuation-corrected TPD, or by visual analysis of attenuation-corrected 

SPECT MPI images (22). These gains by DL derive from an improved processing of the same 

information used by cTPD with no additional testing, radiation, or cost. It should be also kept in 

mind that there is an upper limit in diagnostic MPI performance measured versus ICA due to 

physiological constraint of prediction of stenosis from perfusion defect. 

We demonstrate that DL matched the sensitivity/specificity of disease prediction by 

clinical expert reading, even though on-site reader experts made their diagnosis with all imaging 

data (including rest scans and gated scans) as well as patient’s clinical information, all unknown 

by DL and cTPD. Moreover, experts reported in their own laboratory, while DL was trained on 

data excluding patients from the tested laboratory. This validation approach conservatively reflects 

the performance estimate of the generalization of the DL approach to unseen centers for potential 

external deployment of such technology.   

The proposed DL procedure performs an automatic end-to-end prediction of CAD (from 

the image pixels to the predicted CAD score) of upright and supine MPI. This demonstrates DL 

flexibility and extends previous single-view approach (7). The DL procedure learned image 

statistics from supine and upright maps and integrated them with gender information to compute 

a score for obstructive CAD outperforming cTPD prediction. The DL procedure was able to 
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capture complex relationships that were not easily captured with the rule for upright and supine 

concomitancy as observed on the clinical examples in Fig. 6.  

We observed AUC improvements for males, patients undergoing pharmacological stress, 

same-day rest/stress, two-day stress/rest or stress-only MPI. We also observed per-patient and per-

vessel AUC improvements by DL as compared to cTPD, for each participant center. Some inter-

center AUC variability was observed, likely due to the differences in patients between centers. For 

instance, we observed a higher proportion of patients undergoing the exercise stress test in Center 

1 than the other two centers (Supplemental Table 1). The variability may also be due to the 

differences in imaging protocols for obtaining the upright and supine images among the centers.   

The proposed DL method can be easily and immediately deployed clinically. The expected 

increased performance should be reproduced in new upright/supine data from unseen centers as 

observed here after rigorous external validation. Potentially, the method can be extended for the 

simultaneous analysis of prone and supine images, or attenuation-corrected and non-attenuation-

corrected images. The proposed method is standalone and utilizes only image data, combining 

optimally the upright and supine views, which is difficult visually. In comparison to machine 

learning models combining image and clinical information (23), the presented technique does not 

require entering clinical information by the physician, which is potentially dependent on the 

automatic access to the electronic health records. The predicted per-vessel probabilities of 

obstructive CAD could be integrated with the quantitative software, in the form of polar maps (Fig. 

6) to aid the clinician in final reporting. The execution time of such DL models (<1 s), allows for 

routine application of what can be the first practical deployment of DL technology to nuclear 

medicine and cardiac imaging and one of the first examples for DL application in clinical practice.  
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This study has several limitations. First, visual stenosis on ICA was used as the gold 

standard, which is known to overestimate the prevalence of functionally significant disease when 

compared with fractional flow reserve. Fractional flow reserve measurements were not available 

in this population, as these are not commonly performed clinically. The accuracy of stenosis 

interpretation may also differ between centers. The established endpoint interval of 180 days 

between SPECT MPI and clinical indicated ICA may be considered long. We did employ a 70% 

diameter stenosis cutoff for the three major coronary arteries to indicate functionally significant 

lesions  (24).  Second, in this study, we used upright and supine polar maps acquired in D-SPECT 

cameras as this protocol is specific to this camera. Motion correction was not considered for these 

scanners as it was not available at any of the participant centers at the time when the images were 

collected and interpreted; however, the proposed simultaneous processing of two-position images 

would potentially overcome motion artifacts in one-position images. Third, rest scans and ischemia 

were not considered; however, in this work, we studied patients without known CAD where 

traditionally stress variables are used for detection of obstructive disease. It is possible that 

externally validated machine learning models, also incorporating clinical information into the 

scoring of obstructive disease (5), provide further enhancements in AUC performance, especially 

for the prediction of prognostic outcomes. 

CONCLUSION 

DL improves automatic prediction of obstructive coronary artery disease from MPI, as 

compared to the current standard quantitative method.  
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FIGURES:  

 

FIGURE 1. Deep learning prediction of obstructive CAD from upright and supine MPI. A 

deep convolutional neural network trained from obstructive stenosis correlations by invasive 

coronary angiography was used to simultaneously estimate the probability of obstructive CAD for 

LAD, LCx and RCA territories from upright and supine polar MPI maps. The maximum 

probability was retained as the probability of patient disease.  CAD: coronary artery disease, FC: 

fully connected layer, LAD: left anterior descending, LCx: left circumflex, Max-pooling: function 

that return the maximum value for an image patch, MPI: SPECT myocardial perfusion imaging, 

RCA: right coronary arteries, ReLU: rectified linear unit, TPD: total perfusion deficit. 
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FIGURE 2. Leave-one-center-out cross-validation. Input stress MPI datasets are divided by 

center (four in total). Four folds are built, each containing a training sample made up of the images 

from three centers and a validation sample with the images from the remaining center. This 

procedure allows to externally validate four deep learning models trained separately in each fold.   
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FIGURE 3. DL prediction of obstructive CAD from four externally validated models--with 

merged data for four centers. Per-patient (A) and per-vessel (B) DL predictions of obstructive 

CAD from upright and supine images (DL, red) are compared with the prediction of obstructive 

CAD by combined upright-supine TPD (cTPD, blue). AUC per center was externally validated by 

using CAD scores from four different DL models (one per center) with each model trained with 

data from the other three centers. Red dotted line (bottom) shows overall multicenter AUC. AUC: 

area under ROC curve, DL: deep learning, ROC: receiver operating characteristic, TPD: total 

perfusion deficit.  
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FIGURE 4. Sensitivity for prediction of obstructive CAD. Per-patient DL prediction of 

obstructive CAD by DL computed from upright and supine MPI (DL, red) had higher sensitivity 

than the prediction by combined TPD (cTPD, blue), and the same sensitivity as on-site clinical 

readers (Clinical read, green). DL cutoff was set to 0.29, and cTPD cutoff was set to 0.62% to 

exhibit the same specificity as normal or probably normal clinical read Acronyms as in Fig. 3. 
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FIGURE 5. Prediction of obstructive CAD per-subpopulation. REFINE-SPECT 

subpopulations were defined by sex (F, M), obesity (Non-obese:  BMI < 30 kg/m2, Obese: BMI ≥ 

30 kg/m2), stress imaging activity (Low: patients undergoing stress-first/stress-only MPI, 

Standard: patients undergoing rest-first/two-day MPI), and stress test type (Exercise, 

Pharmacological). The red dotted line shows overall multicenter AUC as reported in Fig. 3. cTPD: 

combined upright-supine TPD, BMI: body mass index. Other acronyms as in Fig. 3. 
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FIGURE 6. Prediction of obstructive CAD from upright and supine stress MPI. The 

short/long axis views, polar maps depicting normalized radiotracer count distribution and 

perfusion defects (top), and predictions by cTPD and DL (bottom) are shown for two patients with 

obstructive CAD. (A) In a 79-year-old male (85% proximal LAD stenosis) quantified with normal 

cTPD (per-patient cTPD < 3% and per-vessel cTPD < 1%), DL correctly identified the LAD 

disease. The patient had BMI = 30 kg/m2, diabetes, and underwent exercise stress MPI. (B) In a 

62-year-old female (70% mid LAD stenosis, 95% proximal LCX stenosis and 80% proximal RCA 

stenosis) with cTPD abnormal for one vessel only, DL correctly identified the triple-vessel disease. 

The patient had BMI = 25 kg/m2, dyslipidemia, family history of cardiac disease and underwent 

exercise stress MPI. BMI: body mass index. Other acronyms as in Fig. 1. 
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TABLES 

Table 1: Baseline characteristics of the studied population.  

Characteristic 

Overall 

n=1160 

Non-obstructive CAD 

n=442 (38.1%) 

Obstructive CAD 

n=718 (61.9%) 

P-value 

Age (years) 64.3±11.5 62.2±12 65.6±11.1 <0.0001 

Sex     

Male, n (%) 745 (64.2) 232 (52.5) 513 (71.5) <0.0001 

Female, n (%) 415 (35.8) 210 (47.5) 205 (28.5) <0.0001 

Weight (kg) 88.5±21.9 89.4±23.6 87.9±20.8 =0.278 

BMI (kg/m2) 30±6.5 30.8±7.5 29.5±5.7 <0.01 

Diabetes Mellitus, n (%) 351 (30.3) 121 (27.4) 230 (32) =0.09 

Hypertension, n (%) 841 (72.5) 304 (68.8) 537 (74.8) <0.05 

Dyslipidemia, n (%) 780 (67.2) 281 (63.6) 499 (69.5) <0.05 

Smoking, n (%) 221 (19.1) 83 (18.8) 138 (19.2) =0.85 

Stress test type     

Exercise, n (%) 522 (45) 196 (44.3) 326 (45.4) =0.73 

Exercise + Pharmacological, n (%) 164 (14.1) 48 (10.9) 116 (16.2) <0.05 

Pharmacological, n (%) 474 (40.9) 198 (44.8) 276 (38.4) <0.05 

Imaging Protocol     

Stress only, n (%) 48 (4.1) 19 (4.3) 29 (4) =0.83 

Same day stress and rest, n (%) 1073 (92.5) 403 (91.2) 670 (93.3) =0.18 

- Stress-first, n (%) 261 (22.5) 84 (19.0) 177 (24.7) <0.05 

- Rest-first, n (%) 812 (70.0) 319 (72.2) 493 (68.7) <0.05 

Two-day stress and rest, n (%) 39 (3.4) 20 (4.5) 19 (2.7) =0.09 

CAD: coronary artery disease, BMI: body mass index.  
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Table 2. Prevalence of obstructive CAD. 

 Prevalence  

Obstructive disease 

Overall 
multicenter 

n=1160 

Center 1 

n=362 

Center 2 

n=191 

Center 3 

n=275 

Center 4 

n=332 
P-value 

No disease, n (%) 442 (38.1) 139 (38.4) 72 (37.8) 96 (34.9) 135 (40.7) =0.54 

One-vessel disease, n (%)  321 (27.7) 100 (27.6) 62 (32.5) 79 (28.7) 80 (24.1) =0.22 

Double-vessel disease, n (%)  240 (20.7) 74 (20.4) 33 (17.3) 64 (23.3) 69 (20.8) =0.48 

Triple-vessel disease, n (%) 157 (13.5) 49 (13.6) 24 (11.0) 36 (13.1) 48 (14.5) =0.93 

Per-patient, n (%)  718 (61.9)  223 (61.6)  119 (62.3)  179 (65.1)  197 (59.3)  =0.54 

LAD, n (%) 509 (43.9) 163 (45.0)  84 (44.0)  124 (45.1)  138 (41.6)  =0.78 

LCx, n (%) 384 (33.1) 121 (33.4) 60 (31.4) 92 (33.5) 111 (33.4) =0.96 

RCA, n (%) 379 (32.7) 111 (30.7) 56 (29.3) 99 (36) 113 (34.0)  =0.35 

Per-vessel (LAD+LCx+RCA), n 
(%) 

1272/3480 
(36.6) 

395/1086 
(36.4) 

200/573 
(34.9) 

315/825 
(38.2) 

362/996 
(36.4) 

=0.65 

 

CAD: coronary artery disease, LAD: left anterior descending, LCx: left circumflex, RCA: right 
coronary arteries. 
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Table 3. Radiotracer activity for stress image acquisition. 

Image protocol Injected activity (MBq) 

Same-day protocols, n=1073 (92.5%)  

Stress-first protocol, n=261 (24.3%) 213.1 ± 87.3 

Rest-first protocol, n=812 (75.7%) 103 ± 384 

Two-day protocol, n=39 (3.4%) 682.3 ± 481.44 

Stress-only protocol, n=48 (4.1%) 260.2 ± 486.5 

Overall, n=1160 804 ± 494 

 

 


