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ABSTRACT 

We present a novel technique for accurate whole body attenuation correction (AC) in the 

presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MR 

imaging scanners. The proposed implant PET-based attenuation map completion (IPAC) 

method performs a joint reconstruction of radioactivity and attenuation from the emission 

data to determine the position, shape and linear attenuation coefficient (LAC) of metallic 

implants.  

Methods 

The initial estimate of the attenuation map is obtained using the MR Dixon-method 

currently available on the Siemens Biograph mMR scanner. The attenuation coefficients 

in the area of the MR image subjected to metal susceptibility artifacts are then 

reconstructed from the PET emission data using the IPAC algorithm. The method was 

tested on eleven subjects presenting thirteen different metallic implants, who underwent 

CT and PET/MR scans. Relative mean LACs and Dice Similarity Coefficients (DSCs) 

were calculated in order to determine the accuracy of the reconstructed attenuation values 

and the shape of the metal implant, respectively. The reconstructed PET images were 

compared to those obtained using the reference CT-based approach and the Dixon-based 

method. aRC images were generated in each case and voxel-based analyses were 

performed.   

Results 

The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7±7.8%, 

which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A 
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mean DSC of 73±9% was obtained when comparing the IPAC- to the CT-derived implant 

shape. The voxel-based analysis of the reconstructed PET images revealed quantification 

errors (aRC) of 13.2±22.1% for the IPAC- with respect to CT-corrected images.  The 

Dixon-based method performed substantially worse with a mean aRC of 23.1±38.4%.  

Conclusion: We have presented a non-TOF emission-based approach for estimating the 

attenuation map in the presence of metallic implants, to be used for whole body AC in 

integrated PET/MR scanners. The Graphics Processing Unit implementation of the 

algorithm will be included in the open-source reconstruction toolbox Occiput.io. 

 

Keywords: metal implant, integrated PET/MR, attenuation correction, MLAA. 
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INTRODUCTION 

 Accurate estimation of photon attenuation is one of the primary challenges in 

achieving unbiased measurements of the radiotracer concentration in hybrid positron 

emission tomography / magnetic resonance (PET/MR) imaging (1). Current PET/MR 

scanners are not equipped with a transmission source (2,3) or X-Ray Computed 

Tomography (CT) components. Thus, the 511 keV photon attenuation maps (µ-maps) need 

to be estimated directly from the MR and/or PET data. While substantial progress in 

generating accurate head MR-based µ-maps has been made (4-9), there are still many 

hurdles in estimating whole body µ-maps (e.g. bone tissue misclassification, arm truncation 

due to the limited transaxial MR field of view, susceptibility artifacts caused by foreign 

objects, etc.) (10). In this manuscript, we propose a method to correct for the errors in the 

PET images arising from MR susceptibility artifacts (e.g. image distortions and signal 

voids) around metallic objects (e.g. prosthetic devices) (11).  

In PET/CT imaging, metallic objects lead to streak artefacts in the reconstructed 

CT images, diminishing their quality and biasing the PET images reconstructed using CT-

based µ-maps. In PET/MR imaging, MR susceptibility artifacts that extend well beyond 

the implant, propagate as signal voids in the resulting MR-based µ-maps.  Additionally, 

the implant attenuation itself is completely ignored. These two effects lead to substantial 

bias in PET quantification both locally and globally, and can potentially compromise the 

clinical interpretability of the resulting PET images. We propose here a novel IPAC method 

to minimize the bias due to metallic objects in PET quantification. 
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AC strategies proposed for PET/MR can be grouped broadly into three categories: 

approaches based on MR segmentation, methods based on MR-CT atlases, and techniques 

aimed at jointly estimating activity and attenuation from PET emission data. While the first 

two categories have been shown to achieve promising results for attenuation estimation of 

human tissues, they cannot account for the presence of metallic implants. For example, the 

segmentation-based method available on the Biograph mMR (Siemens Healthcare, 

Erlangen, Germany) (12) classifies metal implants and the surrounding tissue as air. This, 

in turns, propagates a large bias into the emission image. In atlas-based methods, µ-map 

image estimates are generated through a propagation scheme by locally matching a 

subject’s MR-derived morphology to an MR-CT template set using local image similarity 

measurements (4-6). An MR-CT atlas-based attenuation synthesis method (13) has been 

adapted in (14) to include metal artifact correction. However, given the high degree of 

variability in the position and shape of metal implants, and the large deformations of the 

MR images in the adjacent areas, current methods based on atlases are of limited 

applicability. Creating databases large enough to account for the wide range (i.e. shape, 

dimension, composition) of metallic implants is problematic; incomplete MR data and 

deformations are complicating the required intra- and inter-subject registrations of the 

training datasets.  

 Methods to simultaneously reconstruct the radioactivity and attenuation have 

previously been proposed (15-22). A particularly influential approach is referred to as 

Maximum-Likelihood reconstruction of Attenuation and Activity (MLAA) (15). However, 

estimating the complete µ-map from the emission data is an ill-posed problem and the 
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resulting activity/attenuation pair often suffers from cross-talk artifacts, where bias in 

radioactivity features propagates into compensatory bias in the µ-map (and vice-versa), 

reflecting the non-uniqueness of the solution. The incorporation of time-of-flight (TOF) 

information has been demonstrated to reduce (but not to eliminate) the cross-talk effect 

(16-20) and the metal induced artifacts (21). TOF information is however currently 

unavailable on most of the installed hybrid PET/MR scanners. 

In the case of the µ-maps generated from the MR data in the presence of an implant, 

information about the LACs is available everywhere except in the signal void region. 

Estimating only the missing data in this scenario is a less ill-posed problem than 

simultaneously estimating the entire µ-map (and the activity distribution) from the 

attenuated emission data.  

Building on previous work published by Nuyts et al. (15), we describe a method for 

accurate determination of the position, shape and LAC of a metallic implant. In the 

standard Maximum-Likelihood reconstruction of Attenuation and Activity algorithm (15), 

the activity and µ-map update steps are alternatively performed using a gradient descent 

optimization method that does not directly enforce constraints. Moreover, in order to reach 

convergence, a different number of gradient ascent steps for the activity with respect to the 

µ-map must be used while iterating (or a relaxation coefficient must be added to the µ-map 

update formula). 

For our purpose, we implemented the joint reconstruction using a Limited-memory 

BFGS quasi-Newton optimizer (L-BFGS-B) that permits the direct imposition of 
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constraints on the µ-map during reconstruction and does not require the predetermination 

of a relaxation coefficient.  

 We have applied the IPAC algorithm to phantom and human data acquired on the 

Biograph mMR scanner at two different institutions. The performance of the method was 

compared to both the AC method provided by the manufacturer (the Dixon-based 

approach) and the gold standard CT-based AC.  

MATERIALS AND METHODS 

Data Acquisition 

 In a phantom experiment, a hip cobalt/chromium endoprosthesis (LAC = 0.72 cm-

1) was placed in the center of a polymethyl methacrylate 16×16×30 cm3 container 

(Supplemental Fig. 1). The phantom was filled with water mixed with ~54 MBq of 18F-

FDG and emission data were acquired for 5 minutes. 

  PET/MR datasets from 11 subjects presenting 13 different metal implants were 

included in the study. PET and MR data were acquired simultaneously using the Biograph 

mMR scanners installed at two of the authors’ institutions (Table 1) as part of larger 

prospective studies approved by the respective institutional review boards. The emission 

data were acquired 205±67 minutes (mean ± standard deviation) after administration of 

498±181 MBq (6.55 MBq/kg) of 18F-FDG. The metal implants included one hip chromium 

alloy replacement, six hip titanium replacements, one femur replacement, three sets of 

titanium spine screws and two sets of dental implants (Table 1). The LAC of the implants 

were 0.36 cm-1 for titanium and 0.72 cm-1 for cobalt/chromium alloy. The implant 

characteristics and their material properties were obtained from the manufacturer 
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specifications. Data acquisition parameters, implant material and dimension specifications 

for each patient are presented in (Table 1 and Supplemental Table 1). 

Emission data were acquired in 3D mode for 7.3±2.7 minutes per bed position and 

reconstructed using the standard 3D Ordinary Poisson Ordered-Subset Expectation 

Maximization Algorithm provided by the manufacturer with 3 iterations and 21 subsets 

(including corrections for random coincidences, variable detector sensitivity, dead-time, 

isotope decay, scatter and photon attenuation). Images were reconstructed into a 

344×344×127 matrix with voxel sizes of 2.086×2.086×2.031 mm3. MR data were acquired 

simultaneously with the PET data using a dual echo Dixon-VIBE sequence. All subjects 

underwent a low dose CT examination within one week of their PET-MR imaging scan 

using either a Siemens Biograph-64 or a Philips Gemini TF PET/CT scanner. 

 

Joint Reconstruction of Activity and Attenuation 

 Building on previous work for non-TOF emission data (22), the simultaneous 

estimation of the activity and attenuation coefficients was here studied in the framework 

of maximum a posteriori estimation. The algorithm presented jointly estimates the vector 

of emission rates (λ) and the vector of LACs (μ) by maximization of the Poisson log-

likelihood of emission data and regularization terms:  
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Equation 1 

λ, ̂ arg min . λ

ν log λ log λ 	 log , 

where the elements hid represent the geometric probability that photons emitted from voxel 

i are detected in line of response d; νd are the emission data;  ∑  are the 

attenuation factors; cd are the detector normalization factors; lid is the intersection length of 

the line of response d with voxel i; sd and rd are the expected contributions of scatter and 

random coincidences respectively. The space-invariant smoothing priors for λ and µ, used 

for regularization, are of the form: log 	 ∑ ∑ ; with wik=1 when 

pixels i, k are neighbors and wjk=0 otherwise. Each voxel i is connected to its 26 nearest 

neighbors. Variables α and β are the regularization parameters.  

The joint optimization was implemented using a L-BFGS-B algorithm (23). The 

BFGS is a quasi-Newton method, which uses an approximation of the inverse Hessian 

matrix to steer its search. The Hessian matrix is approximated from successive gradient 

values, so only the computation of the gradients is necessary for the optimization. The 

gradients of the cost function in Equation 1 with respect to λ and µ are given by the 

following equations: 
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Equation 2 

	
∑ ∑

	 log  

Equation 3 

1 	
∑

∑ ∑
log  

The gradients of the smoothing prior term is computed by applying the Laplace filter to λ 

and µ respectively. The “L” in L-BFGS stands for limited memory (23), since the algorithm 

maintains a history of the past m = 16 updates of the gradients to estimate the Hessian and 

its inverse. The step length in the minimization of the log-posterior is defined implicitly, 

therefore eliminating the need for the predetermination of a relaxation coefficient. Since 

the choice of the initial inverse Hessian approximation has demonstrated to be critical, the 

algorithm was here initialized with an estimation obtained after 2 iterations of the standard 

gradient ascent Maximum-Likelihood reconstruction of Attenuation and Activity 

algorithm. Finally, the L-BFGS-B is a box-constrained solver that permits the imposition 

of non-negativity constraints and explicit constraints in the estimation of the µ-map.  

The µ-maps used for the algorithm initialization were generated using the method 

currently available on the Biograph mMR scanner (12). The images acquired with the 

Dixon-VIBE sequence are segmented into 3 tissue classes: air, fat and soft tissue. LACs of 

0, 0.085 and 0.0968 cm-1 were then assigned to these tissue classes, respectively. A semi-

automatic inpainting method similar to (24) was used to segment the region of MR void 
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produced by metal susceptibility artifacts (MSA). A LAC of 0.0968 cm-1 was assigned to 

this region as an initialization value.  

During reconstruction, the Dixon µ-map values were held fixed in the region 

outside the MSA void; utilizing the box constraint feature of L-BFGS-B, the LACs inside 

the void were constrained between 0.08 and 1 cm-1, and non-negativity constraints were 

applied to the λ coefficients (λi ≥ 0). An isotropic quadratic prior with a small weight 

α=0.02, β = 0.01 was included in the radioactivity and attenuation update functions. 

Reconstructed µ-maps, obtained with the algorithm described above, will be denoted as 

IPAC µ-maps henceforth. 

Scatter distribution sinograms were calculated using a fully 3D implementation of 

the single scatter simulation method (25) with relative scaling, provided by the 

manufacturer. The whole scatter correction process went through two iterations (using the 

first µ-map estimation as the input for the second iteration) in order to refine the scatter 

estimate. 

CT-AC µ-Map Generation 

To compare the proposed IPAC method to CT-based AC, the CT images were 

converted from Hounsfield Units (HU) to LACs (µCT) at 511 KeV using the bilinear 

transformation method described in (26). Gaussian smoothing with a 4 mm kernel was 

applied to these µ-maps to match the PET spatial resolution. The resulting reference CT µ-

maps were rigidly registered to the corresponding IPAC µ-maps inside the MSA void and 

non-rigidly registered (using Elastix software (27)) outside the void. Non-rigid registration 
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outside the void is desirable since CT and MR images were acquired at different times with 

the patient’s hip in different positions with respect to the pelvis. 

Due to saturation of the HU dynamic range in clinical CT, an incorrect LAC of 0.24 

was assigned to the metal implant region when applying the standard transformation 

method described in (26). Additionally, CT µ-maps were reconstructed using the standard 

reconstruction algorithm implemented in the scanner and therefore presented metal 

induced artifacts (techniques for the suppression of beam-hardening artifacts (28) were not 

applied). In order to limit the effect of these artifacts, the CT µ-map values outside the void 

but within the body contour and with LAC < 0.085 were set to 0.085 to generate 

thresholded CT (thCT) µ-maps. 

Analysis of Image Quality 

The accuracy in estimating the shape of the implant was evaluated by calculation 

of the DSC of the segmented IPAC µ-map with respect to the segmented thCT reference 

µ-map. In both µ-maps, every voxel with LAC > 0.2 cm-1 was considered to be part of the 

implant class. The accuracy in estimating the LAC of the metal compound was evaluated 

by calculation of the relative mean of the implant LACs and comparing it to the value 

obtained based on the characteristics of the respective metal implant. 

AC factors in sinogram space generated from the IPAC, Dixon and thCT µ-maps 

were used to model attenuation during reconstruction with the Ordinary Poisson Ordered-

Subset Expectation Maximization algorithm and the corresponding PETIPAC, PETthCT, and 

PETDixon volumes for all subjects were generated. Voxel-based analysis was performed to 

assess the accuracy of the µ-maps and reconstructed PET images. Only voxels included in 
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the body contour mask were used in these comparisons. Bland-Altman plots, bias, standard 

deviation and Pearson’s coefficients were used to calculate the correlation of the PETIPAC 

images with respect to the PETthCT and PETDixon images. aRC were defined as follows: 

Equation 4 

	 /  

where IX corresponds to either the PET images (PETDixon or PETIPAC) , and Iref corresponds 

to the  reference image PETthCT. 

 

RESULTS 

In (Fig. 1) we present the CT µ-map and IPAC µ-map (Fig. 1) for the uniform 18F-

FDG phantom with a cobalt-chromium alloy implant (Supplemental Fig. 1). The shape of 

the implant was estimated in great detail using the IPAC algorithm (with conceivably better 

results than the CT). From (Fig. 1B) it can be also noted that saturation of the HU dynamic 

range leads to a truncation of the implant LACs in the CT image, whereas the correct 

implant LAC was obtained using the proposed method. The corresponding reconstructed 

PET images corrected with the CT- and IPAC-based AC methods are shown in 

(Supplemental Fig. 2). 

Representative Dixon, CT and IPAC µ-maps are shown in Figures 2 and 3 and 

Supplemental Figures 3 and 4 for patients with right hip cobalt-chromium alloy 

endoprosthesis (Fig. 2), a titanium spinal pedicle screw implant (Fig. 3), titanium 

endoprosthesis on both hips (Supplemental Fig. 3) and dental implants (Supplemental Fig. 

4). These images demonstrate excellent correspondence between the µIPAC and µCT maps, 

and the obvious misclassification of the tissues within the MSA void in the µDixon map.  
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The implant LAC means and the DSCs for all eleven test subjects are given in Table 

1.  The mean LAC percentage error obtained with the IPAC method was 15.7 ± 7.8 %, 

which was significantly smaller than the Dixon- (100 %) and CT- (39 %) derived values. 

A mean DSC of 73 ± 9 % was obtained when comparing the IPAC- to the CT-derived 

implant shape. These results suggest that the proposed IPAC algorithm is capable of 

accurately reconstructing the shape and LAC of a metallic implant.  

The reconstructed PET images corrected with the three AC methods for the subject 

shown in Figure 2 are presented in Figure 4. As expected, the largest errors occurred in the 

MSA void region. The results of the quantitative voxel-based analyses for all the subjects 

are summarized in Supplemental Table 1. The mean aRC was 13.2 ± 22.1% for the PETIPAC 

and 23.1 ± 38.4% for the PETDixon across the whole field of view. The mean aRC in the 

MSA region around the implant was 20.3 ± 23.1% for the PETIPAC and 80.1 ± 27.1% for 

the PETDixon. 

Figure 5 shows the Bland-Altman plots for the voxel-based analyses for all the validation 

subjects, comparing the PETDixon (Fig. 4A) and the PETIPAC (Fig. 4C) to the PETthCT (Fig. 

4B). Pearson’s correlation coefficients were RIPAC = 0.08 and RDixon = 0.33. The mean 

difference in all voxels, with respect to the PETthCT, was 0.055 ± 0.56 for the PETIPAC and 

0.087 ± 0.91 for the PETDixon, demonstrating that the presented method significantly 

improves PET quantification in the presence of metal implants. 

 

DISCUSSION 
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 We have presented a method to estimate the location, shape and LAC of a metallic 

implant from non-TOF PET emission data in order to substantially improve the accuracy 

of the MR-based whole body µ-map estimation on integrated PET/MR scanners.  

Our method relies on the assumptions that the metal implant have zero activity and 

a LAC higher than that of any body tissue. This establishes a special case where the 

estimation of the µ-map directly from the PET emission data is a less ill-posed problem. 

The proposed IPAC algorithm produces good results in patients presenting metal 

replacements in one or both hips (Supplemental Fig. 3) and composed of different 

materials. The method is also capable of reconstructing the shape of smaller metallic 

implants such as titanium pedicle screws and dental implants (Fig. 3 and Supplemental Fig. 

4).  

Overall, we would expect the performance of the proposed IPAC algorithm to 

depend on: the count statistics of the emission data; the spatial distribution of the 

radiotracer in the body to support µ-map estimation (which in turn depends on the type of 

radiotracer); the size of the MSA void, since sufficient information about the LACs is 

required to obtain a scaled solution (20); and the shape and dimensions of the metal 

implant. However, assessing the exact contribution of each of these factors was beyond the 

goal of this proof-of-concept study. Additionally, further investigation is required to assess 

the robustness of the method in other scenarios. In particular, the data used in this study 

were acquired approximately 3 hours after injection of 18F-FDG while clinical whole body 

scans are typically performed 1 hour after injection, when the count statistics and contrast-

to-noise ratios are different. Moreover, the performances of the IPAC method was not 
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evaluated for radiotracers other than 18F-FDG. Finally, distinguishing between bone and 

soft tissue in the MSA void region is not possible with the current implementation. 

The IPAC algorithm can be combined with other approaches for addressing the 

remaining issues in MR-based AC. The initial µ-map outside the void could be generated 

using an atlas-based method that properly accounts for bone tissue. Additionally, MR metal 

artifact reduction sequences (29,30) are expected to further improve the initial µ-map 

inside the void. For example, a slice encoding for metal artifact correction (SEMAC) 

sequence (29) has been proposed for reducing artifacts arising from hip arthroplasty. Using 

multiacquisition variable-resonance image combination (MAVRIC-SL), a similar 

sequence, the overall mean artifact area was reduced by 60% using 3-T MR in patients 

with hip arthroplasty (30). Although these sequences will not allow the estimation of the 

exact shape or LACs of the metal implants, they will further aid the joint-reconstruction, 

by minimizing the signal void and providing more accurate information about the tissue 

surrounding the implants. Alternatively, when the implant material is known so that its 

LAC can be obtained, the IPAC method could be used to precisely estimate the implant 

shape and location in the body. We also expect that TOF information, when available, 

could further improve the accuracy of the IPAC method in distinguishing between bone 

and soft tissue.   

A package containing the necessary software will be included in the Graphics 

Processing Unit-based Occiput reconstruction toolbox (occiput.io, (31)) and its specific 

implementation for the Biograph mMR will be provided to interested users upon request. 
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CONCLUSION 

We have presented an emission based approach for deriving the location, shape and 

LAC of metallic implants from non-TOF PET emission data. The IPAC algorithm can, in 

principle, be used in any PET/MR scanner. The results presented suggest that our method 

provides more accurate quantification than previously proposed MR-AC methods in the 

presence of metal implants, both in terms of the accuracy of the µ-maps and the PET 

quantification.  
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Figure 1 

Uniform 18F-FDG phantom with cobalt-chromium alloy implant. CT µ-map (A-left) and 

IPAC µ-map (A-right) are shown. The corresponding LAC profiles are shown in Figure B 

(CT µ-map in blue and IPAC µ-map in red). 
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Figure 2 

Patient presenting right hip cobalt-chromium alloy endoprosthesis (Patient 1). Dixon (A), 

CT (B) and IPAC (C) µ-maps are shown. The three columns show (from left to right) 

sagittal, coronal and axial planes. 
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Figure 3 

Patient presenting titanium spinal implant and pedicle screws (Patient 1B). Dixon (A), CT 

(B) and IPAC (C) µ-maps are shown. The three columns show (from left to right) sagittal, 

coronal and axial planes. 
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Figure 4 

The reconstructed PET images corrected with the three AC methods for the validation 

subject of Figure 2. Dixon (A), thCT (B) and IPAC (C) µ-maps were respectively used for 

AC during reconstruction. The corresponding radioactivity profiles are shown in Figure D 

(Dixon in blue, thCT in black and IPAC in red). 
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Figure 5 

Bland-Altman plots showing the voxel-based comparisons (for all validation subjects) 

between: (A) PETDixon / PETthCT and (B) PETIPAC / PETthCT. The continuous red lines show 

the mean and the dashed red lines show the standard deviation of the difference. 



 

26 

TABLES 

Table 1: Data acquisition parameters, implant material specifications and results for DSC 
and mean LAC analysis. 
 
 

Patient 
# Center Type of 

implant 
Material 

mean LAC 
Reconstructed 

mean LAC DSC 
Total 

prompts 
events 

1 Martinos Right hip 0.72 0.66 0.89 4.28E+08 

2 SDN Napoli Left 
Hip 0.36 0.32 0.80 8.55E+07 

3 SDN Napoli Both 
hips 0.36 0.30 0.75 4.84E+07 

4 SDN Napoli Both 
hips 0.36 0.31 0.75 2.70E+08 

5 SDN Napoli Right hip 0.36 0.31 0.69 2.48E+08 

6 SDN Napoli Both hips 0.36 0.28 0.69 7.50E+07 

7 SDN Napoli Both hips 0.36 0.28 0.79 3.54E+07 

8 SDN Napoli Left 
Femur 0.36 0.26 0.65 1.07E+08 

1B Martinos Back 
Screws 0.36 0.32 0.72 2.33E+08 

2B SDN Napoli Back 
Screws 0.36 0.33 0.66 1.21E+08 

9 Martinos Back 
Screws 0.36 0.27 0.65 2.40E+08 

10 Martinos Dental  - 0.29 0.64 1.80E+08 

11 Martinos Dental - 0.28 0.66 1.13E+08 

Phantom Martinos Hip 0.71 0.70 0.90 1.92E+08 

 
 
 
 
 
 
 
 
 



Supplemental figure 1 

 

A hip cobalt/chromium endoprosthesis placed in the center of a plastic phantom. The 

figure shows the phantom before it was completely filled with water mixed with ~54 

MBq of 18F-FDG. 
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Supplemental figure 2 

 

The reconstructed PET images corrected with the CT- and IPAC-based AC methods for 

the phantom experiment of Figure 1. CT (A) and IPAC (B) µ-maps were respectively 

used for AC during reconstruction. The corresponding radioactivity profiles are shown in 

Figure C (CT in blue and IPAC in red). 
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Supplemental figure 3 

 

 

Patient presenting titanium endoprosthesis on both hips (Patient 4). Dixon (A), CT (B) 

and IPAC (C) µ-maps are shown. The three columns show (from left to right) sagittal, 

coronal and axial planes. 
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Supplemental figure 4 
 

 

Patient presenting dental implants (Patient 10). Dixon (A), CT (B) and IPAC (C) µ-maps 

are shown. The three columns show (from left to right) sagittal, coronal and axial planes. 
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Supplemental table 1: Voxel-based analysis results on reconstructed PET images. 
 
 

Patien
t # 

Impl
ant 

Volu
me 

(cm3)  

Scan 
durat
ion 
(s) 

Radiotra
cer 

activity 
at time 

of 
injection 

(Bq) 

Delta 
Time 
after 

injection 
(minutes) 

Patient 
weight 

(Kg) 
 Mean 

Difference 
(IPAC) 

Mean 
Difference 

(Dixon) 
aRC 

(IPAC) 
aRC 

(Dixon) 
R 

(IPAC) 
R 

(Dixon) 

1 
57.86 600 7.85E+08 194 107 0.0448 (0.34) 0.2634 (1.59) 9.56 

(15.68) 
29.25 

(30.96) 
0.35 0.46 

2 
103.48 300 3.39E+08 182 60 -0.0056 

(0.18) 0.0321 (0.45) 6.32 
(8.47) 

13.23 
(18.64) 

-0.18 0.15 

3 
135.08 180 3.97E+08 146 50 -0.0091 

(0.12) 0.0601 (1.44) 7.33 
(8.88) 

49.66 
(16.97) 

-0.49 0.56 

4 
126.73 360 3.90E+08 196 75 -0.1412 

(0.57) 0.0322 (1.40) 21.62 
(42.40) 

23.80 
(32.23) 

-0.10 0.41 

5 
38.24 360 4.05E+08 110 58 0.0183 (0.19) 0.1276 (1.01) 8.87 

(9.14) 
24.83 

(28.42) 
-0.19 0.72 

6 
143.19 360 3.39E+08 162 60 0.0139 (0.17) 0.0385 (0.41) 9.76 

(13.18) 
22.12 

(28.98) 
0.41 0.68 

7 
209.02 300 3.93E+08 346 71 0.0054 (0.20) 0.1209 (0.73) 10.58 

(18.53) 
30.32 

(36.35) 
0.02 0.43 

8 
29.74 360 4.21E+08 218 48 0.1733 (0.68) 0.2076 (0.86) 7.95 

(7.58) 
9.84 

(11.41) 
0.16 0.39 

1B 
31.02 600 7.85E+08 242 107 0.1529 (0.68) 0.1563 (0.78) 10.05 

(12.19) 
11.01 

(12.62) 
0.68 0.72 

2B 
52.63 360 3.39E+08 171 60 0.0769 (0.28) 0.1506 (0.57) 9.48 

(10.23) 
20.85 

(25.62) 
0.59 0.69 

9 
32.08 600 5.25E+08 188 85 0.0624 (0.20) 0.1188 (0.44) 9.53 

(9.19) 
19.04 

(23.94) 
0.31 0.25 

10 
7.54 720 8.21E+08 327 122 0.2199 (0.89) 0.2337 (0.82) 10.44 

(13.15) 
11.46 

(15.61) 
0.20 0.41 

11 
3.12 600 5.47E+08 182 88 0.2150 (0.24) 0.0221 (0.23) 4.13 

(10.05) 
4.33 

(11.62) 
0.34 0.32 

Phant
om 99.04 300 5.45E+07 28 - - - - - - - 

 


