Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Corporate & Special Sales
    • Journal Claims
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Permissions
    • Advertisers
    • Continuing Education
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Corporate & Special Sales
    • Journal Claims
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Permissions
    • Advertisers
    • Continuing Education
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • Follow JNM on Twitter
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Subscribe to our RSS feeds
Research ArticleBasic Science Investigation

Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging

Laëtitia Lemoine, Guillaume Becker, Bernard Vacher, Thierry Billard, Sophie Lancelot, Adrian Newman-Tancredi and Luc Zimmer
Journal of Nuclear Medicine May 2012, jnumed.111.101212; DOI: https://doi.org/10.2967/jnumed.111.101212
Laëtitia Lemoine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guillaume Becker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernard Vacher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thierry Billard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sophie Lancelot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adrian Newman-Tancredi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luc Zimmer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

PET brain imaging of the serotonin 1A (5-hydroxytryptamine 1A [5-HT1A]) receptor has been widely used in clinical studies. Currently, only a few well-validated radiolabeled antagonist tracers are available for in vivo imaging of this central receptor. 5-HT1A receptors exist in high- and low-affinity states, depending on their coupling to G proteins. Agonists bind preferentially to receptors in the high-affinity state and thereby could provide a measure of functional 5-HT1A receptors. Therefore, it is of great interest to develop an 18F-labeled full agonist 5-HT1A receptor radiotracer. In this study, we radiolabeled the high-affinity 5-HT1A receptor agonist 18F-F13714 and investigated its potential as a PET tracer. Methods: F13714 nitro precursor was synthesized and radiolabeled via a fluoronucleophilic substitution. In vitro binding assays were performed using established protocols. Radiopharmacologic evaluations included in vitro autoradiography in rat brain and PET scans on anesthetized cats. Results: The chemical and radiochemical purities of 18F-F13714 were greater than 98%. F13714 has a high affinity (0.1 nM) and selectivity for 5-HT1A receptors. In vitro 18F-F13714 binding in rats was consistent with the known 5-HT1A receptors distribution (hippocampus and cortical areas) and was particularly high in the dorsal raphe. In vitro binding of 18F-F13714 was blocked in a dose-dependent fashion by WAY100635, the prototypical 5-HT1A antagonist, and by the endogenous agonist, serotonin (5-HT). Addition of Gpp(NH)p also inhibited in vitro 18F-F13714 binding, consistent with a preferential binding of the compound to G-protein–coupled receptors. Ex vivo tissue measurements in rat revealed an absence of brain radioactive metabolites. In vivo studies showed that the radiotracer entered the cat brain readily and displayed a preferential labeling of 5-HT1A receptors located in cingulate cortex. In vivo labeling was prevented by preinjection of WAY100635. Conclusion: 18F-F13714 is a radiofluorinated agonist that presents suitable characteristics for probing the high-affinity states of the 5-HT1A receptors in vitro and in vivo. Thus, it is a promising tool for investigation of 5-HT1A agonist binding in the living human brain.

  • serotonin 1A receptor
  • PET
  • agonist
  • rat
  • cat

Footnotes

  • Published online ▪▪▪▪▪▪▪.

  • © 2012 by the Society of Nuclear Medicine, Inc.
Next
Back to top

In this issue

Journal of Nuclear Medicine: 64 (2)
Journal of Nuclear Medicine
Vol. 64, Issue 2
February 1, 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging
Laëtitia Lemoine, Guillaume Becker, Bernard Vacher, Thierry Billard, Sophie Lancelot, Adrian Newman-Tancredi, Luc Zimmer
Journal of Nuclear Medicine May 2012, jnumed.111.101212; DOI: 10.2967/jnumed.111.101212

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging
Laëtitia Lemoine, Guillaume Becker, Bernard Vacher, Thierry Billard, Sophie Lancelot, Adrian Newman-Tancredi, Luc Zimmer
Journal of Nuclear Medicine May 2012, jnumed.111.101212; DOI: 10.2967/jnumed.111.101212
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • This Month in JNM
  • PubMed
  • Google Scholar

Cited By...

  • International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function
  • Google Scholar

More in this TOC Section

  • Lesion Quantification Accuracy of Digital 90Y PET Imaging in the Context of Dosimetry in Systemic Fibroblast Activation Protein Inhibitor Radionuclide Therapy
  • First-in-Humans Evaluation of Safety and Dosimetry of 64Cu-LLP2A for PET Imaging
  • Detection of Shortwave-Infrared Cerenkov Luminescence from Medical Isotopes
Show more Basic Science Investigation

Similar Articles

SNMMI

© 2023 Journal of Nuclear Medicine

Powered by HighWire