Energy Absorption in Cylinders Containing an Axial Source^{1,2}

J. C. Widman, M.A. and E. R. Powsner, M.D.³

Dearborn, Michigan

Calculation of energy absorption in tissue containing uniformly distributed isotopes requires knowledge of the emitted photon energy and the absorption fraction, ratio of energy absorbed to energy emitted. The energetics of most isotopes are known with greater precision than usually required. Although absorption coefficients are also known with more than enough precision (1, 2), calculation of the absorption fraction has long proven difficult because of the character of the integrations required for nonspherical volumes. For the sphere the problem is sufficiently tractable to have been the subject of several papers (3, 4, 5, 6, 7). In addition a limited number of other problems have been solved including: a few cubes, a series of two liter cylinders and one model patient, all for a uniformly distributed source in a medium with absorption coefficient $\mu = 0.028$ cm⁻¹ (3); a table of values for cylinders of 11 lengths and eight radii and $\mu = 0.028$, containing a line source uniformly distributed along the cylinder axis (3); and various solutions for spheres and cylinders containing point sources (8, 9, 10, 11).

¹Supported by American Cancer Society Institutional Grant #40, Wayne State University School of Medicine, and grant RI-1-62, Dearborn Veterans Administration Hospital.

²From the Radioisotope Service, Veterans Administration Hospital, Dearborn, Michigan. ³Chief, Radioisotope Service, Veterans Administration Hospital, Dearborn, Michigan, and Associate Professor of Pathology, Wayne State University School of Medicine, Detroit, Michigan.

WIDMAN, AND POWSNER

Because of the availability of better computers, we have undertaken the calculation of the absorption fraction for cylinders with uniform axial and volume source distributions. This paper presents the solution for the cylinder with an axial source.

ANALYSIS

Consider a cylinder of radius R and height H (Fig. 1) with a source uniformly distributed along the axis with strength λ expressed as energy emission per unit length.

Let:

U = photon energy absorbed

 Φ = absorption fraction (ratio of absorbed energy to emitted energy)

$$=\frac{U}{\lambda H}$$

 μ = linear absorption coefficient (exponential absorption assumed), and dU = energy absorbed in volume dV from energy emitted by source dz' = energy emitted by dz' × fraction absorbed by dV

$$= \lambda dz' e^{-\mu r} \frac{dA}{4\pi r^2} \mu dr = \frac{\mu \lambda}{4\pi} \frac{e^{-\mu r}}{r^2} dV dz'.$$

Then,

$$U = \frac{\mu\lambda}{4\pi} \int dV \int \frac{e^{-\mu r}}{r^2} dz'.$$

To integrate the dV use cylindrical coordinates with origin on the axis at the base of the cylinder (see Fig. 1). To integrate the dz', place the origin of the axial coordinate at point z:

$$U = \frac{\mu\lambda}{4\pi} \int_{0}^{R} \rho d\rho \int_{0}^{2\pi} d\phi \int_{0}^{H} dz \int_{0}^{H-z} \frac{e^{-\mu(\rho^{2} + z'^{2})^{\frac{1}{2}}}}{\rho^{2} + z'^{2}} dz'.$$

The value of the integral over ϕ is 2π . The absorption fraction

$$\Phi = \frac{U}{\lambda H}$$

$$= \frac{\mu}{2H} \int_{0}^{R} \rho d\rho \int_{0}^{H} dz \int_{0}^{H-z} \frac{e^{-\mu(\rho^{2} + z'^{2})^{\frac{1}{2}}}}{\rho^{2} + z'^{2}} dz'$$

408

Because the integrand is an even function of z' and does not depend on z

$$\Phi = \frac{\mu}{H} \begin{pmatrix} R \\ \rho d\rho \\ o \end{pmatrix} \begin{pmatrix} H \\ dz \\ o \end{pmatrix} \begin{pmatrix} z \\ e^{-\mu(\rho^{2} + z'^{2})^{\frac{1}{2}}} \\ \rho^{2} + z'^{2} \end{pmatrix} dz' .$$

Substituting the dimensionless variables $E = \frac{H}{R}$, $k = \mu R$, $t = \frac{z'}{R}$, $s = \frac{\rho}{R}$, $y = \frac{z}{R}$

$$\Phi = \frac{k}{E} \int_{0}^{E} dy \int_{0}^{y} dt \int_{0}^{1} \frac{e^{-k(s^{2}+t^{2})^{\frac{1}{2}}}}{s^{2}+t^{2}} sds.$$

409

To evaluate this, expand the exponential:

$$\Phi = \frac{k}{E} \int_{0}^{E} dy \int_{0}^{y} dt \int_{0}^{1} \frac{sds}{s^{2} + t^{2}} \sum_{n=0}^{\infty} \frac{(-k)^{n} (s^{2} + t^{2})^{\frac{n}{2}}}{n!}$$

$$= \frac{k}{E} \int_{0}^{E} dy \int_{0}^{y} dt \int_{0}^{1} \frac{sds}{s^{2} + t^{2}} \qquad (1)$$

$$+ \frac{k}{E} \sum_{n=0}^{\infty} \frac{(-k)^{n}}{n!} \int_{0}^{E} dy \int_{0}^{y} dt \int_{0}^{1} \frac{sds}{s^{2} + t^{2}} \qquad (2)$$

$$+\frac{\mathbf{k}}{\mathbf{E}}\sum_{n=1}^{\infty}\frac{(-\mathbf{k})^{n}}{n!} \quad dy \quad dt \quad s^{2}+t^{2} \quad sds \quad (z)$$

By reference to standard tables (e.g., 12) it may be shown that 1 + (1 + 1) = 1

(1) =
$$\frac{k}{2E} \left(2E \tan^{-1} E + E^2 \log \frac{D}{E} - \log D \right)$$

where $D = (E^2 + 1)^{1/2}$. Proceeding with (2),

$$(2) = \frac{k}{E} \sum_{n=1}^{\infty} \frac{(-k)^{n}}{n \cdot n!} \int_{0}^{E} dy \int_{0}^{y} dt \left[(t^{2} + 1)^{\frac{n}{2}} - t^{n} \right]$$
$$= \frac{k}{E} \sum_{n=1}^{\infty} \frac{(-k)^{n}}{n \cdot n!} \int_{0}^{E} dy \int_{0}^{y} dt (t^{2} + 1)^{\frac{n}{2}}$$
(2a)
$$+ \sum_{n=1}^{\infty} \frac{(-kE)^{n+1}}{n (n+2)!} .$$
 (2b)

To evaluate (2a) use the formula

$$\int (t^{2} + 1)^{\frac{n}{2}} dt = \frac{n!}{\left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} \sum_{j=0}^{\frac{n-1}{2}} \frac{(j!)^{2} t (t^{2} + 1)^{j+\frac{1}{2}}}{(2j+1)! 2^{n-2j}} + \frac{n!}{2^{n} \left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} \log \left(t + \sqrt{t^{2}+1}\right) \text{ for odd n, and} = \frac{\left[\left(\frac{n}{2}\right)!\right]^{2}}{(n+1)!} \sum_{j=0}^{\frac{n}{2}} \frac{(2j)! 2^{n-2j}}{(j!)^{2}} t (t^{2} + 1)^{j} \text{ for even n.}$$

410

Substituting and integrating over y

$$(2a) = \frac{k}{E} \sum_{n=2,4,6,...}^{\infty} \frac{k^{n} \left(\frac{n}{2}\right)! \left(\frac{n}{2}-1\right)!}{(n+1)! n!} \sum_{j=0}^{\frac{n}{2}} \frac{(2j)! 2^{n-2j-2}}{(j+1)! j!} (D^{2j+2}-1)$$
$$- \frac{k}{E} \sum_{n=1,3,5,...}^{\infty} \frac{k^{n}}{n\left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} \sum_{j=0}^{\frac{n-1}{2}} \frac{(j+1)! j!}{(2j+3)! 2^{n-2j-1}} (D^{2j+3}-1)$$
$$- \left[\log (D+E) - \frac{D-1}{E} \right] \sum_{n=1,3,5,...}^{\infty} \frac{k^{n+1}}{n2^{n} \left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} \cdot \frac{k^{n+1}}{n2^{n} \left(\frac{n-1}{2}\right)!} \cdot \frac{k^{n+1}}{n2^{n} \left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} \cdot \frac{k^{n+1}}{n2^{n} \left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} \cdot \frac{k^{n+1}}{n2^{n} \left(\frac{n+1}{2}\right)!} \cdot \frac{k^{n+1}}{n2^{n} \left($$

Combining (1), (2a) and (2b), and rewriting the summation indices over n,

$$\Phi = \frac{k}{2E} \left[2E \tan^{-1} E + E^{2} \log \frac{D}{E} - \log D \right] + \sum_{n=1}^{\infty} \frac{(-kE)^{n+1}}{n(n+2)!} + \frac{k}{4E} \sum_{n=1}^{\infty} \frac{(2k)^{2n} n! (n-1)!}{(2n+1)! (2n)!} \sum_{j=0}^{n} \frac{(2j)!}{4^{j} (j+1)! j!} (D^{2j+2} - 1) - \frac{k^{2}}{E} \sum_{n=0}^{\infty} \left(\frac{k}{2}\right)^{2n} \frac{1}{(2n+1) (n+1)! n!} \sum_{j=0}^{n} \frac{4^{j} (j+1)! j!}{(2j+3)!} (D^{2j+3} - 1) - \frac{k^{2}}{2} \left[\log (D+E) - \frac{D-1}{E} \right] \sum_{n=0}^{\infty} \left(\frac{k}{2}\right)^{2n} \frac{1}{(2n+1) (n+1)! n!} .$$
(3)

Values of the absorption fraction (eq. 3) are tabulated (Fig. 2, Table 1) for a wide range of the variables k and E.

As a byproduct of this work, the related problem of the absorption fraction for a cylinder with a point source at one end of the axis has been solved analytically. Using the same symbols as before,

$$\Phi = \frac{k}{2} \int_{0}^{E} dy \int_{0}^{1} \frac{e^{-k (s^{2} + y^{2})^{\frac{1}{2}}}}{s^{2} + y^{2}} sds$$

•

Integrating in a manner similar to that used above

$$\Phi = \frac{k}{2} \left[E \log \frac{D}{E} + \tan^{-1} E \right] + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-kE)^{n+1}}{n(n+1)!} + \frac{kE}{4} \sum_{n=1}^{\infty} \frac{(2k)^{2n} n! (n-1)!}{(2n+1)! (2n)!} \sum_{j=0}^{n} \frac{(2j)!}{(j!)^2} \left(\frac{D}{2} \right)^{2j} - DE \sum_{n=0}^{\infty} \left(\frac{k}{2} \right)^{2n+2} \frac{1}{(2n+1) (n+1)! n!} \sum_{j=0}^{n} \frac{(j!)^2}{(2j+1)!} (2D)^{2j} - \log (D+E) \sum_{n=0}^{\infty} \left(\frac{\kappa}{2} \right)^{2n+2} \frac{1}{(2n+1) (n+1)! n!} \cdot$$

WIDMAN, AND POWSNER

DISCUSSION

The absorption fractions presented here not only cover a wider range of cylinder sizes than have been previously published, but they also cover a range of values of the absorption coefficient. These data can easily be calculated by hand when k and kE are less than about three. For larger k or kE the calculation is lengthy and a digital computer is required. When a term was less than 3×10^{-3} the computation for a series was stopped. The estimated maximum error for the tabulated values of the absorption fraction is about 1×10^{-3} , a maximum which may be expected to occur infrequently. If required, additional or more accurate values may be computed without serious difficulty. The program written for an IBM 1620 can be made available if desired.

In dosimetric applications it is energy absorption which is important, in μ^{μ} en (12) The prior the μ^{μ} en (12) The prior the prior the μ^{μ} en (12) The prior the pri

which case the appropriate μ to use is $\frac{\mu}{\rho}$ (13). The parameter μR is then $\left(\frac{\mu}{\rho}\right)\rho R$,

where ρ here refers to the density of the absorbing medium.

The importance of these axial source data is somewhat greater than may be initially apparent. They provide an upper limit and estimate for the absorption fraction in the cylinder containing a source uniformly distributed throughout its volume. The estimate is particularly useful for the long, thin cylinder which may occur in limb or long-bone dose calculations, just the type of problem for which the spherical approximation is not useful. In addition the tabulated information can be used to obtain the energy absorbed by the cylindrical volume element along the axis of the cylinder when the source is uniformly distributed within the entire cylinder. What is commonly referred to as the reciprocity theorem (10, 14) states that the energy absorbed by one volume due to a radioactive

Fig. 2. Absorption fraction as a function of $k = \mu R$ and E = H/R (μ = absorption coefficient, R = cylinder radius, H = cylinder height)

100	030 044 072 098 194 194 248
50	044 044 058 058 097 135 135 246 193 339 419
07	029 044 057 057 057 135 135 192 192 192 488 488
30	029 043 057 057 057 057 043 134 191 191 191 191 598 598
50	029 042 056 056 095 095 095 095 095 095 013 095 05 041 05 041 05 05 041 05 05 042 05 05 05 05 05 05 05 05 05 05 05 05 05
15	028 042 055 068 068 068 068 068 068 068 068 068 068
10	027 040 053 066 091 126 126 128 233 234 402 581 581 702 581 825 895
7.0	026 039 051 051 051 051 051 051 051 051 051 051
5.0	025 037 049 061 049 061 117 117 117 117 116 117 169 117 169 117 169 117 169 117 169 117 169 169 169 169 169 169 169 169 170 169 170 169 170 169 170 170 170 170 170 170 170 170 170 170
4.0	. 024 . 026 . 036 . 036 . 047 . 036 . 047 . 036 . 047 . 036 . 047 . 036 . 047 . 036 . 081 . 081 . 081 . 081 . 024 . 024 . 024 . 024 . 036 . 036 . 036 . 036 . 036 . 036 . 036 . 036 . 037 . 036 . 037 . 036 . 037 . 037
3.0	022 033 044 055 045 046 046 046 046 046 046 052 052 052 052 052 052 052 052 052 052
0. 8	. 020 . 030 . 040 . 049 . 046 . 046
1.5	. 018 027 027 028 028 028 028 027 027 028 028 028 028 028 028 028 028 028 028
1.0	. 016 023 023 023 025 023 025 025 025 025 025 025 025 025 025 025
02.	013 026 026 026 026 026 026 026 026 026 026
.50	011 016 022 022 023 023 027 027 027 028 038 05 050 000 000 033
07.	010 014 014 013 024 024 024 024 024 025 033 025 069 091 0646 046 046 0537 0537 0537 0537 0590 0916 016
.30	008 012 016 020 028 028 028 028 028 028 028 028 028
.20	006 009 012 012 012 012 009 011 111 111 111 111 111 111 111 111
.15	005 008 010 010 013 013 013 013 013 013 013 013
01.	004 006 008 009 009 009 009 009 009 009 009 009
20.	.003 004 006 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 006
.05	002 004 006 006 006 006 006 006 006 006 006
н (E	0.02 0.04 0.05 0.04 0.10 0.10 0.28 0.28 0.28 0.20 0.20 0.20 0.20 0.2

TABLE I

WIDMAN, AND POWSNER

source uniformly distributed throughout a second volume would be equal to the energy absorbed in the second volume were the first to contain a source of the same uniform density. Under these circumstances it is also necessary that the absorption coefficients of the two volumes be equal. In our case, consider the axial line source within the cylinder to be a uniform volume distribution of density σ (energy emitted/unit volume) along a volume element of height H and area dA(dA < <A). The energy emitted is σ HdA and the absorbed energy in the cylinder is $\Phi\sigma$ HdA. Now consider the whole cylinder with the same source density so that the emitted energy is σ HA, where A = π R². Using the reciprocity theorem the absorbed energy in the axial volume element HdA is $\Phi\sigma$ HdA, and the absorption fraction for this axial volume element is

$$\Phi' = \Phi \frac{\mathrm{d}A}{\mathrm{A}} \; .$$

Using this formula the tabulated absorption fraction may be used to obtain the absorption fraction of the axial volume element.

SUMMARY

The absorbed photon energy is the total energy associated with the emitted photons times the absorption fraction. For a cylinder containing a radioactive isotope uniformly distributed along its axis, the absorption fraction is derived analytically assuming only that the linear absorption coefficient is constant throughout the cylinder. Values of the absorption fraction are tabulated as a function of the linear absorption coefficient and cylinder dimensions.

ACKNOWLEDGEMENT

Drawings were prepared by the Medical Illustration Service, Veterans Administration Hospital.

We are indebted to James Grisell, Ph.D. and Mr. Roger Gudobba of the Lafayette Clinic for programming and use of the IBM 1620.

REFERENCES

1. GRODSTEIN, G. W.: X-ray Attenuation Coefficients from 10 kev to 100 Mev. Nat. Bur. Std. (U.S.) Circ. 583:1, 1957.

2. McGINNIES, R. T.: X-ray Attenuation Coefficients from 10 kev to 100 Mev. Nat. Bur. Std. (U.S.) Circ. 583 Suppl:1, 1959.

3. BUSH, F.: The Integral Dose Received from a Uniformly Distributed Radioactive Isotope. Brit. J. Radiol. 22:96, 1949.

4. DIXON, W. R.: Self-Absorption Corrections for Large Gamma-Ray Sources. Nucleonics 8:68, 1951.

5. BARRETT, M. J.: Radiation of an Extended Source. Nucl. Sci. Eng. 14:186, 1962.

6. KELLERSHOHN, C. AND HERSZBERG, B.: Sur l'intensite du rayonnement γ emis par une source radioactive spherique, homogene et autoabsorbante. Compt. Rend. 254:4015, 1962.

7. TRUCCO, E.: Self-Absorption in Spheres and Cylinders of Radioactive Material. Bull. Math. Biophys. 26:303, 1964. 8. Bush, F.: Energy Absorption in Radium Therapy. Brit. J. Radiol. 19:14, 1946.

9. ODDIE, T. H.: Dosage from Radioisotopes Uniformly Distributed Within a Sphere. Brit. J. Radiol. 24:333, 1951.

10. MAYNEORD, W. V.: Energy Absorption. IV The Mathematical Theory of Integral Dose in Radium Therapy. Brit. J. Radiol. 18:12, 1945.

11. ELLET, W. H., CALLAHAN, A. B. AND BROWNELL, G. L.: Gamma-ray Dosimetry of Internal Emitters. Monte Carlo Calculations of Absorbed Dose from Point Sources. Brit. J. Radiol. 37:45, 1964.

12. DWIGHT, H. B.: Tables of Integrals and Other Mathematical Data. N. Y., The Macmillan Co., 1961.

13. BERCER, R. T.: The X- or Gamma-Ray Energy Absorption or Transfer Coefficient: Tabulations and Discussion. *Radiation Res.* 15:1, 1961.

14. MEYER, ST. AND SCHWEIDLER, E.: Radioaktivitat. Berlin, Teubner, 1927.

Announcement to Authors

Preliminary Notes

Space will be reserved in each issue of THE JOURNAL OF NUCLEAR MEDI-CINE for the publication of one preliminary note concerning new original work that is an important contribution in Nuclear Medicine.

Selection of the preliminary note shall be on a competitive basis for each issue. One will be selected after careful screening and review by the Editors. Those not selected will be returned immediately to the authors without criticism. Authors may resubmit a rejected or revised preliminary note for consideration for publication in a later issue. The subject material of all rejected manuscripts will be considered confidential.

The text of the manuscript should not exceed 1200 words. Either two illustrations, two tables, or one illustration and one table will be permitted. An additional 400 words of text may be submitted if no tables or illustrations are required. Only the minimum number of references should be cited.

Manuscripts should be mailed to the Editor, Dr. George E. Thoma, St. Louis University Medical Center, 1402 South Grand Blvd., St. Louis, Missouri 63104. They must be received before the first day of the month preceding the publication month of the next issue, *e.g.*, preliminary notes to be considered for the January 1967 issue must be in the hands of the Editor before December 1, 1966.