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Tumoral fibroblast activation protein expression is associated with
proliferation and angiogenesis and can be visualized by PET/CT. We
examined the prognostic value of [68Ga]Ga-fibroblast activation pro-
tein inhibitor (FAPI) (68Ga-FAPI)–46 PET/CT for different tumor entities
in patients enrolled in 2 prospective imaging studies (NCT05160051,
n5 30; NCT04571086, n5 115).Methods:Within 4 wk, 145 patients
underwent 68Ga-FAPI-46 and [18F]FDG (18F-FDG) PET/CT. The asso-
ciation between overall survival (OS) and sex, age, tumor entity, total
lesion number, highest SUVmax, and the presence of each nodal, vis-
ceral, and bone metastasis was tested using univariate Cox regres-
sion analysis. Multivariate analyses were performed for prognostic
factors with P values of less than 0.05. Results: In the univariate anal-
ysis, shorter OS was associated with total lesion number and the pres-
ence of nodal, visceral, and bone metastases on 68Ga-FAPI-46
PET/CT (hazard ratio [HR], 1.06, 2.18, 1.69, and 2.05; P, 0.01,, 0.01,
5 0.04, and5 0.02, respectively) and 18F-FDG PET/CT (HR, 1.05, 2.31,
1.76, and 2.30; P, 0.01,, 0.01,5 0.03, and, 0.01, respectively) and
with SUVmax on

68Ga-FAPI-46 PET/CT (HR, 1.03; P5 0.03). In the mul-
tivariate analysis, total lesion number on 68Ga-FAPI-46 PET/CT was an
independent risk factor for shorter OS (HR, 1.05; P 5 0.02). In patients
with pancreatic cancer, shorter OS was associated with total lesion
number on 68Ga-FAPI-46 PET/CT (HR, 1.09; P , 0.01) and bone
metastases on 18F-FDG PET/CT (HR, 31.39; P, 0.01) in the univariate
analysis and with total lesion number on 68Ga-FAPI-46 PET/CT (HR,
1.07; P5 0.04) in themultivariate analyses. In breast cancer, total lesion
number on 68Ga-FAPI-46 PET/CT (HR, 1.07; P5 0.02), as well as bone
metastases on 18F-FDG PET/CT (HR, 9.64; P 5 0.04), was associated
with shorter OS in the univariate analysis. The multivariate analysis did

not reveal significant prognostic factors. In thoracic cancer (lung cancer
and pleural mesothelioma), the univariate and multivariate analyses did
not reveal significant prognostic factors. Conclusion: Disease extent
on 68Ga-FAPI-46 PET/CT is a predictor of short OS and may aid
in future risk stratification by playing a supplemental role alongside
18F-FDG PET/CT.
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In vivo visualization of fibroblast activation protein (FAP) by
means of [68Ga]Ga-FAP inhibitor (FAPI) (68Ga-FAPI) PET/CT
imaging is characterized by high tumor uptake and low back-
ground accumulation of radioligands (1). This results in high
detection rates in a multitude of solid tumors in comparison with
[18F]FDG (18F-FDG) PET/CT (2–4).
FAP expression has been confirmed in many cancers (90% of

carcinomas), especially in the stroma in the tumor tissue, and thus
may become a universal marker of cancer-associated fibroblasts
(5). This expression has been associated with proliferation, inva-
sion, angiogenesis, and drug resistance (5), leading to a poor prog-
nosis in several malignancies, including gastric (5), colorectal (6),
pancreatic (7), and non–small cell lung (8) cancer. However, only
a few studies, mostly on small cohorts, have examined the prog-
nostic value of 68Ga-FAPI PET/CT in this context (9–11).
To address this gap in knowledge, we compared the prognostic

implications of 68Ga-FAPI-46 PET/CT and 18F-FDG PET/CT in a
large population of patients with various tumors.

Received Oct. 31, 2023; revision accepted May 7, 2024.
For correspondence or reprints, contact Masao Watanabe (d7he4ng@

gmail.com).
Published online May 23, 2024.
COPYRIGHT� 2024 by the Society of Nuclear Medicine andMolecular Imaging.

68GA-FAPI-46 AND
18F-FDG PET/CT FOR OS � Watanabe et al. 1027

https://doi.org/10.2967/jnumed.123.266981
mailto:d7he4ng@gmail.com
mailto:d7he4ng@gmail.com


MATERIALS AND METHODS

Patients
We screened our institutional database of prospective imaging stud-

ies for consecutive patients who underwent 68Ga-FAPI-46 PET/CT
and 18F-FDG PET/CT within 4 wk from April 2020 to September
2022 for imaging of tumors other than sarcoma (because of another
ongoing project focused on sarcoma). The patient selection process is
shown in Figure 1.

All patients gave written informed consent. Of these, 145 patients
were included in 2 prospective imaging studies (NCT05160051, 30
interventional; NCT04571086, 115 observational). Data analysis was
approved by the ethics committee of the University of Duisburg–Essen
(20-9485-BO and 19-8991-BO). The patient subgroups have previ-
ously been reported (12–16). We obtained the precursor of 68Ga-
FAPI-46 from SOFIE Biosciences.

Image Acquisition
At 23.36 20.2min (range, 9–102min) after the injection of 123.96

31.0 MBq (range, 60–199 MBq) of 68Ga-FAPI-46, PET/CT was per-
formed on a Siemens 128-slice Biograph mCT (26/145 patients, 17.9%),
Siemens Biograph Vision (115/145 patients,
79.3%), or Philips Vereos (4/145 patients,
2.8%). Acquisition times were based on a
prior publication by our group (13).

18F-FDG PET/CT was performed 71.86
18.2min (range, 43–147min) after the injec-
tion of 267.16 84.6 MBq (range, 94–458
MBq) of 18F-FDG. Images were acquired on a
Biograph mCT (27/145 patients, 18.6%), Bio-
graph Vision (109/145 patients, 75.2%), or
Vereos (9/145 patients, 6.2%). All PET images
were iteratively reconstructed with time of
flight (Biograph mCT: 3 iterations and 21 sub-
sets, gaussian filtering of 4mm; Biograph
Vision: 4 iterations and 5 subsets, gaussian fil-
tering of 2mm; Vereos: 2 iterations and 10
subsets, gaussian filtering of 4mm).

Image Interpretation and
Quantitative Analysis

Images were interpreted by a board-certified
nuclear medicine physician and radiologist

with 14y of experience, who had completed institutional reader train-
ing on 50 68Ga-FAPI-46 PET/CT datasets including common pitfalls.
The reader was not aware of the clinical information. Masked interpre-
tation was chosen to avoid biases due to knowledge of clinical informa-
tion and to measure the standalone impact of the imaging modalities,
even though lack of clinical information may trigger faulty image inter-
pretation at times.

Lesions were classified as malignant if they exhibited focal tracer
accumulation incongruent with physiologic or nonneoplastic uptake (17)
and were categorized into the following anatomic regions: primary, cer-
vicothoracic nodal metastases, abdominopelvic nodal metastases, pulmo-
nary metastases, hepatic metastases, other visceral metastases, and bone
metastases. Lesion number (#10 per region to avoid individual bias,
from larger to smaller lesions), and SUVmax was assessed visually on
Syngo.via software (Siemens Healthineers). Representative diagnosis
cases are shown in Figures 2 and 3.

Statistical Analysis
Overall survival (OS) was defined as the interval from the day of

the PET/CT scans (68Ga-FAPI-46 PET/CT and 18F-FDG PET/CT)
until death or the end of the study (censored in June 2023). For OS,
we performed univariate Cox proportional hazards regression analysis
using the following variables: sex, age, restaging (vs. initial staging),
tumor entity, total lesion number, the presence of nodal metastases,
the presence of visceral metastases, the presence of bone metastases,
and the highest SUVmax of all lesions. Prognostic factors with a
P value of less than 0.05 in the univariate analysis, as well as the
tumor entity as a categoric parameter (considering the heterogeneity of
tumor characteristics), were considered statistically significant and
tested in multivariate analyses. We also performed subanalyses for the
patients with pancreatic cancer, breast cancer, and thoracic cancer
(lung cancer and pleural mesothelioma). Separate Cox analyses for
each tumor entity (pancreatic cancer, breast cancer, and thoracic can-
cer) are susceptible to multiple-comparison problems due to small
sample sizes. To resolve this issue, we entered into the multivariate
Cox analysis only the prognostic parameters that were significant pre-
dictors of OS in the multivariate analysis on the entire cohort. We per-
formed Kaplan–Meier analysis using log-rank testing to determine the
statistical association between OS and findings on 18F-FDG PET/CT
and 68Ga-FAPI-46 PET/CT. For statistical analysis, we used MedCalc
version 22.007, 32-bit (MedCalc Software), and Prism 8 (GraphPad
Software). Numeric values are provided as mean 6 SD.

FIGURE 1. Consolidated Standards of Reporting Trials (CONSORT)
diagram illustrating enrollment process. CECT5 contrast-enhanced CT.

FIGURE 2. Intraindividual comparison between 68Ga-FAPI-46 PET/CT and 18F-FDG PET/CT for
restaging in patient with postoperative pancreatic head cancer (73-y-old woman with extensive nodal
metastases). Bilateral nodal metastases in supraclavicular region were detectable only on 68Ga-
FAPI-46 PET/CT (SUVmax, 5.74 on right side and 10.19 on left side; arrows); findings on 18F-FDG
PET/CT were nonspecific (SUVmax, 2.93 on right side and 3.58 on left side; arrows). At level of bilat-
eral renal pelvis, there were 3 and only 1 detectable paraaortic nodal metastases on 68Ga-FAPI-46
PET/CT (SUVmax, 6.75, 11.37, and 11.75 from right to left) and 18F-FDG PET/CT (SUVmax, 7.94; other
2 lymph nodes not measurable), respectively (arrows). SUVbw 5 SUV based on body weight.
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RESULTS

Patient Cohort
The final cohort included 145 patients, of whom 85 were male

and 60 were female (mean 6 SD, 61.66 11.8 y old; range, 30–
85 y old). We enrolled 53 patients (36.6%) for staging and 92
patients (63.4%) for restaging. The most common tumor entities
were pancreatic cancer (n 5 40), mesothelioma (pleural, n 5 18;
peritoneal, n 5 2), and breast cancer (n 5 17). Sixty-four of 145
(44.1%) patients died during the mean follow-up period of 13.8mo
(range, 1–30mo). Patient characteristics are provided in Table 1.
Because we enrolled patients requiring either staging or restaging,
we classified only the patients with T(positive)/N0/M0, T(any)/
N(positive)/M0, and T(any)/N(any)/M(positive), by referring to the
68Ga-FAPI-46 PET/CT, 18F-FDG PET/CT, and contrast-enhanced
CT, all of which were performed within 4 wk. The median total
lesion number was 4 on 68Ga-FAPI-46 PET/CT (range, 0–53; 1
with no lesions; 44 with 1 lesion; 27 with 2 or 3 lesions; 8 with 4

or 5 lesions; 20 with 6–10 lesions; 45 with .10 lesions) and 3 on
18F-FDG PET/CT (range, 0–57; 8 with no lesions; 47 with 1 lesion;
26 with 2 or 3 lesions; 7 with 4 or 5 lesions; 20 with 6–10 lesions;
37 with .10 lesions).
The treatment records were available for 133 of 145 patients

(91.7%). Ninety-four of 145 patients (64.8%) underwent surgery.
In 93 cases (93/145, 64.1%), the primary was resected, and in 22
cases (22/145, 15.2%), metastases were resected; in 21 of those,
both the primary and metastases were resected (21/145, 14.5%).
Of the 94 patients who underwent surgery, 79 (79/145, 54.5%)

received systemic therapy (chemotherapy or immunotherapy). Of the
remaining 39 recorded patients without surgery (39/145, 26.9%), 31
(31/145, 21.4%) received systemic therapy. Systemic therapy was
used in 110 of 145 (75.9%) patients, of whom 14 had breast cancer, 5
had lung cancer, 14 had pleural mesothelioma, 2 had peritoneal meso-
thelioma, 13 had cholangiocellular cancer, 33 had pancreatic cancer,
13 had colorectal cancer, 9 had renal cell cancer, and 7 had

TABLE 1
Patient Characteristics (n 5 145)

Clinical variable Value

Mean age (y) 61.6 (range, 30–85)

Male/female 85 (58.6%)/60 (41.4%)

Staging/restaging 53 (36.6%)/92 (63.4%)

Primary tumor

Breast cancer 17 (11.7%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 5 (3.4%)/4 (2.8%)/8 (5.5%)

Lung cancer 12 (8.3%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 6 (4.1%)/1 (0.7%)/5 (3.4%)

Mesothelioma (pleural/peritoneal) 18 (12.4%)/2 (1.4%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 6 (4.1%)/7 (4.8%)/7 (4.8%)

Cholangiocellular cancer 15 (10.3%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 3 (2.1%)/2 (1.4%)/10 (6.9%)

Pancreatic cancer 40 (27.6%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 11 (7.6%)/7 (4.8%)/22 (15.2%)

Colorectal cancer 15 (10.3%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 3 (2.1%)/0 (0%)/12 (8.3%)

Renal cell cancer 15 (10.3%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 5 (3.4%)/1 (0.7%)/9 (6.2%)

Prostate cancer 11 (7.6%)

T1N0M0/T(any)N1M0/T(any)N(any)M1 4 (2.8%)/0 (0%)/7 (4.8%)

Treatment data, available/not available 133 (91.7%)/12 (8.3%)

Surgery for primary site/metastases 93 (64.1%)/22 (15.2%)

Chemo- or immunotherapy, surgical cases 79 (54.5%)

Neoadjuvant/adjuvant/salvage/unspecified 21 (14.5%)/46 (31.7%)/53 (36.6%)/5 (3.4%)

Chemo- or immunotherapy, no surgery 31 (21.4%)

Other therapy

RPT/radioembolization/223Ra 4 (2.8%)/3 (2.1%)/1 (0.7%)

Hormone/RFA/radiation therapy 11 (7.6%)/2 (1.4%)/38 (26.2%)

RPT 5 radiopharmaceutical therapy; RFA 5 radiofrequency ablation.
Values are number and percentage, except for age.
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prostate cancer. Other therapies consisted of radiopharmaceutical
therapy with [177Lu]Lu-PSMA-617 (n 5 4), radioembolization
(n 5 3), [223Ra]Ra-chloride (n 5 1), hormone therapy (for breast
cancer and prostate cancer, n5 11), radiofrequency ablation (n 5 2),
and external-beam radiotherapy (n 5 38). Information on the treat-
ment is summarized in Table 1.

Prognostic Analysis
In the univariate analysis for 68Ga-FAPI-46 PET/CT, total

lesion number; the presence of nodal, visceral, and bone metasta-
ses; and the highest SUVmax of all lesions were significant predic-
tors of short OS (hazard ratio [HR], 1.06, 2.18, 1.69, 2.05, and
1.03, respectively; 95% CI, 1.03–1.08, 1.32–3.60, 1.03–2.77,
1.12–3.77, and 1.00–1.07, respectively; P , 0.01, , 0.01, 5 0.04,
5 0.02, and 5 0.03, respectively; Table 2). In the multivariate
analysis (Table 2), total lesion number was significantly associated
with OS (HR, 1.05; 95% CI, 1.01–1.10; P 5 0.02), whereas the
presence of nodal, visceral, and bone metastases and the highest
SUVmax of all lesions were not (HR, 1.12, 1.10, 2.21, and 1.02,
respectively; 95% CI, 0.57–2.19, 0.56–2.16, 0.93–5.26, and 0.98–
1.07, respectively; P 5 0.75, 0.78, 0.07, and 0.29, respectively).
Kaplan–Meier curves for OS based on the total lesion number are

shown in Figure 4 using the median total
lesion number (n 5 4) as the cutoff. The
median survival of patients with at least 4
lesions (73 patients) versus less than 4
lesions (72 patients) was 17 and 25mo,
respectively (P , 0.001).
Regarding 18F-FDG PET/CT (Table 2),

total lesion number and the presence of
nodal, visceral, and bone metastases were
significantly associated with shorter OS
(HR, 1.05, 2.31, 1.76, and 2.30, respec-
tively; 95% CI, 1.03–1.08, 1.41–3.80,
1.07–2.92, and 1.27–4.17, respectively;
P , 0.01, , 0.01, 5 0.03, and , 0.01,
respectively). In the multivariate analysis
(Table 2), the presence of bone metastases
was a predictor of shorter OS (HR, 3.46;
95% CI, 1.49–8.03; P , 0.01), whereas
total lesion number and the presence of
nodal and visceral metastases were not
(HR, 1.04, 1.53, and 1.20, respectively;
95% CI, 0.999–1.08, 0.81–2.88, and 0.60–

2.39, respectively; P 5 0.055, 0.19, and 0.61, respectively).
Kaplan–Meier curves for OS in the group with positive bone
metastases (25 patients) and those with negative bone metastases
(120 patients) are shown in Figure 4. The median survival was 13
and 23mo, respectively (P , 0.005).
Regarding 68Ga-FAPI-46 PET/CT in the patients with pancre-

atic cancer, total lesion number was significantly associated with
shorter OS in the univariate analysis (HR, 1.09; 95% CI, 1.03–
1.15; P , 0.01) and in the multivariate analysis (HR, 1.07; 95%
CI, 1.004–1.13; P 5 0.04). For 18F-FDG PET/CT, bone metasta-
ses were a significant prognostic indicator for shorter OS in the
univariate analysis (HR, 31.39; 95% CI, 4.33–227.36; P , 0.01).
In the multivariate analysis, bone metastases were borderline-
significant (HR, 8.67; 95% CI, 0.91–82.78; P 5 0.06). These
results are summarized in Table 3.
As for the patients with breast cancer using 68Ga-FAPI-46

PET/CT, total lesion number was significantly associated with
shorter OS in the univariate analysis (HR, 1.07; 95% CI, 1.01–
1.13; P 5 0.02) but was not significant in the multivariate analy-
sis (HR, 1.03; 95% CI, 0.95–1.11; P 5 0.47). For 18F-FDG
PET/CT, bone metastases were a significant prognostic indicator
for OS in the univariate analysis (HR, 9.64; 95% CI, 1.12–
83.30; P 5 0.04) but was not significant in the multivariate anal-
ysis (HR, 5.58; 95% CI, 0.38–81.50; P 5 0.21). These results
are summarized in Table 4.
Concerning the subanalysis for patients with thoracic cancer,

including lung cancer and pleural mesothelioma, no PET-derived
prognostic factors were not associated with OS in the uni- and
multivariate analyses. These results are summarized in Table 5.

DISCUSSION

The results of our study reveal that 68Ga-FAPI-46 PET/CT–
based parameters have prognostic value in a mixed population of
cancer patients. The presence of bone metastases on 18F-FDG
PET/CT, and lesion number on 68Ga-FAPI-46 PET/CT (HR,
1.05), were independent risk factors for shorter OS in the multivar-
iate analysis. Although the HR of the latter may appear small, con-
tinuous variables with a wide range (0–53) often display lower

FIGURE 3. Intraindividual comparison between 68Ga-FAPI-46 PET/CT and 18F-FDG PET/CT for
restaging in patient with postoperative left breast cancer (36-y-old woman with large number of
metastases). Several metastases to muscles were detectable only on 18F-FDG PET/CT (red arrows).
At same axillary level (right side of body), there were 1 and 3 detectable nodal metastases on 68Ga-
FAPI-46 PET/CT (SUVmax, 3.47; other 2 distal lymph nodes not measurable) and on 18F-FDG PET/CT
(SUVmax, 26.28, 18.54, and 29.60 from proximal to distal lymph nodes), respectively (blue arrows). In
liver region (lower part of images), 2 liver metastases were detectable on 18F-FDG PET/CT (SUVmax,
6.65 in segment 4 and 4.50 in segment 5); however, no liver metastases were detectable on 68Ga-
FAPI-46 PET/CT (blue arrows). SUVbw 5 SUV based on body weight.

FIGURE 4. Kaplan–Meier analyses for OS regarding total lesion number
on 68Ga-FAPI-46 PET/CT (A) and presence of bone metastases on 18F-
FDG PET/CT (B). Blue and red lines are groups with $4 total lesions
(median value of all patients) and those with #3 total lesions in A (P ,

0.001) and group with positive bone metastases and those with negative
bone metastases in B (P, 0.005), respectively.
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HRs. Yet the effect of lesion number on the extreme ends of the
spectrum is not negligible, as shown in the context of Ki-67, an
established prognostic parameter in a multitude of malignancies,
where HRs in the similar range are commonly observed (e.g., 1.05
in patients with adrenocortical carcinoma regarding OS (18)). In
addition, the univariate analysis identified metastases to nodes, vis-
ceral organs, and bone and the highest SUVmax of all lesions on
68Ga-FAPI-46 PET/CT as significant prognostic indicators for
shorter OS. 68Ga-FAPI-46 PET/CT–based parameters such as total
lesion number, and 18F-FDG PET/CT–based parameters such as
the presence of hypermetabolic bone metastases, may aide risk

stratification alongside other, already-established, prognostic mar-
kers (19). 18F-FDG PET/CT as a prognostic marker is well estab-
lished in a multitude of malignancies, underpinned by an extensive
body of research, and is well understood, especially with regard to
its associations with dedifferentiation and proliferation. 18F-FDG
PET/CT–derived markers that have been well studied in their asso-
ciation with OS are, among others, metabolic tumor volume and
total lesion glycolysis, such as in patients with lung, pancreatic,
and breast cancer (19–21).
On the basis of our results, it appears unlikely that 68Ga-FAPI-46

PET/CT–derived markers will generally replace 18F-FDG PET/CT,

TABLE 2
Uni- and Multivariate Analyses of OS Using Cox Proportional Hazards Regression Analysis

(Death Events, n 5 64; Censored, n 5 81)

Parameter

Univariate Multivariate

HR P HR P

68Ga-FAPI-46 PET/CT

Sex 1.25 (0.75–2.08) 0.40

Age 1.01 (0.99–1.03) 0.31

Restaging vs. initial staging 1.70 (0.98–2.93) 0.06

Tumor entity*

Mesothelioma (n 5 20) 0.77 (0.37–1.59) 0.48 0.62 (0.28–1.34) 0.22

Breast cancer (n 5 17) 0.67 (0.27–1.64) 0.38 0.30 (0.10–0.90) 0.03

Cholangiocarcinoma (n 5 15) 0.56 (0.23–1.36) 0.20 0.43 (0.17–1.06) 0.07

Renal cell carcinoma (n 5 15) 0.33 (0.10–1.10) 0.07 0.22 (0.06–0.84) 0.03

Colorectal cancer (n 5 15) 0.44 (0.15–1.26) 0.13 0.39 (0.13–1.18) 0.10

Lung cancer (n 5 12) 0.27 (0.06–1.14) 0.08 0.19 (0.04–0.85) 0.03

Prostate cancer (n 5 11) 0.53 (0.20–1.38) 0.19 0.27 (0.08–0.91) 0.03

Total lesion number 1.06 (1.03–1.08) ,0.01 1.05 (1.01–1.10) 0.02

Nodal metastases 2.18 (1.32–3.60) ,0.01 1.12 (0.57–2.19) 0.75

Visceral metastases 1.69 (1.03–2.77) 0.04 1.10 (0.56–2.16) 0.78

Bone metastases 2.05 (1.12–3.77) 0.02 2.21 (0.93–5.26) 0.07

Highest SUVmax 1.03 (1.00–1.07) 0.03 1.02 (0.98–1.07) 0.29
18F-FDG PET/CT

Tumor entity*

Mesothelioma (n 5 20) 0.77 (0.37–1.59) 0.48 0.50 (0.23–1.06) 0.07

Breast cancer (n 5 17) 0.67 (0.27–1.64) 0.38 0.20 (0.06–0.62) ,0.01

Cholangiocarcinoma (n 5 15) 0.56 (0.23–1.36) 0.20 0.39 (0.16–0.97) 0.04

Renal cell carcinoma (n 5 15) 0.33 (0.10–1.10) 0.07 0.16 (0.04–0.60) ,0.01

Colorectal cancer (n 5 15) 0.44 (0.15–1.26) 0.13 0.30 (0.10–0.92) 0.03

Lung cancer (n 5 12) 0.27 (0.06–1.14) 0.08 0.17 (0.04–0.75) 0.02

Prostate cancer (n 5 11) 0.53 (0.20–1.38) 0.19 0.20 (0.06–0.69) 0.01

Total lesion number 1.05 (1.03–1.08) ,0.01 1.04 (0.999–1.08) 0.055

Nodal metastases 2.31 (1.41–3.80) ,0.01 1.53 (0.81–2.88) 0.19

Visceral metastases 1.76 (1.07–2.92) 0.03 1.20 (0.60–2.39) 0.61

Bone metastases 2.30 (1.27–4.17) ,0.01 3.46 (1.49–8.03) ,0.01

Highest SUVmax 1.02 (0.995–1.05) 0.11

*Compared with pancreatic cancer.
Data are mean followed by 95% CI in parentheses.
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yet they may serve as complementary markers, with lesion number
being particularly promising. The latter may be the consequence of a
better diagnostic performance in some tumor entities (2,4,11). Addi-
tionally, the identification of PET biomarkers derived from 68Ga-
FAPI-46 PET/CT can be of particular interest in tumor entities, where
it could eventually become the gold standard for PET imaging (22).

68Ga-FAPI-46 PET/CT may therefore aid treatment decisions
not just by providing accurate staging but also by providing prog-
nostic information. The impact on patient prognosis has previously
been shown in the context of patients with colorectal cancer,
where FAP expression on 68Ga-FAPI-46 PET/CT was associated
with a significantly shorter relapse-free survival (9).
In our subanalysis of patients with pancreatic cancer, bone

metastases (HR, 31.39; 95% CI, 4.33–227.36; P , 0.01) in 18F-
FDG PET/CT were significantly associated with shorter OS in the
univariate analysis and showed borderline significance (HR, 8.67;
95% CI, 0.91–82.78; P 5 0.06) in the multivariate analysis. On
the other hand, with regard to 68Ga-FAPI-46 PET/CT–derived
parameters, only total lesion number reached statistical signifi-
cance in the univariate analysis (HR, 1.09; 95% CI, 1.03–1.15;
P , 0.01) and multivariate analysis (HR, 1.07; 95% CI, 1.004–
1.13; P 5 0.04).
A prior study on pancreatic cancer has shown that SUVmax in

68Ga-FAPI-04 PET/CT had a significant independent prognostic
value for recurrence-free survival and that total pancreatic FAP
expression (the sum of the multiplication of SUVmean and total

FAPI-avid volume) was a significant prognostic indicator for OS
(10). Similarly, in a published metaanalysis, tumor SUVmax on
18F-FDG PET/CT has been shown to be a significant prognostic
factor for OS (19). Furthermore, a high glycolytic activity in pan-
creatic cancer has been linked with subtypes that commonly
exhibit a poor prognosis (e.g., basal subtype) and is associated
with metastatic spread (23). In our study, we additionally found
that total lesion number on 68Ga-FAPI-46 PET/CT could be a use-
ful prognostic factor for OS in patients with pancreatic cancer.
Importantly, the presence of bone metastases on PET/CT corre-
lated more strongly with OS for 18F-FDG than for 68Ga-FAPI-46
in our study. This may be partly attributable to the fact that of the
4 of 39 patients with bone metastases secondary to pancreatic can-
cer, bone metastases were detected by 18F-FDG PET/CT, by 68Ga-
FAPI-46 PET/CT, and by both modalities in 2, 3, and 1 cases,
respectively. The large discrepancy in HR between the 2 modali-
ties may therefore be caused by the low number of positive cases
in the subgroup with pancreatic cancer.
To our knowledge, this was the first study to report on the prog-

nostic implications of FAPI PET/CT in patients with breast
cancer:
In our cohort, total lesion number on 68Ga-FAPI-46 PET/CT,

and bone metastases on 18F-FDG PET/CT, were significant prog-
nostic indicators for shorter OS in the univariate analysis; how-
ever, total lesion number on 68Ga-FAPI-46 PET/CT and bone
metastases on 18F-FDG PET/CT were not significant in the

TABLE 3
Uni- and Multivariate Subanalyses of OS for Patients with Pancreatic Cancer Using Cox Proportional Hazards Regression

Analysis (Death Events, n 5 28; Censored, n 5 12)

Parameter

Univariate Multivariate

HR P HR P

68Ga-FAPI-46 PET/CT

Total lesion number 1.09 (1.03–1.15) ,0.01 1.07 (1.004–1.13) 0.04
18F-FDG PET/CT

Bone metastases 31.39 (4.33–227.36) ,0.01 8.67 (0.91–82.78) 0.06

Data are mean followed by 95% CI in parentheses.

TABLE 4
Uni- and Multivariate Subanalyses of OS for Patients with Breast Cancer Using Cox Proportional Hazards Regression

Analysis (Death Events, n 5 6; Censored, n 5 11)

Parameter

Univariate Multivariate

HR P HR P

68Ga-FAPI-46 PET/CT

Total lesion number 1.07 (1.01–1.13) 0.02 1.03 (0.95–1.11) 0.47
18F-FDG PET/CT

Bone metastases 9.64 (1.12–83.30) 0.04 5.58 (0.38–81.50) 0.21

Data are mean followed by 95% CI in parentheses.
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multivariate analysis. The prognostic value of 18F-FDG PET/CT
has been shown by an expansive body of evidence, for which a
correlation between glycolytic activity on the one hand and tumor
aggressiveness and poor prognosis on the other hand could be
established (20,24). The lack of statistically significant results in
the multivariate analysis may at least partially be attributable to
insufficient statistical power due to the sample size.
A central limitation of this study is the low number of patients

for each tumor entity, potentially affecting statistical power and
calling for further prospective analyses on larger cohorts. Espe-
cially for the Cox subanalysis, there are few total events and few
events per variable (25). Also, it has yet to be determined which
PET-derived parameters can most accurately predict OS. Future
multicenter prospective analyses with a larger sample size may be
warranted to confirm the results. In addition, the 50 cases used to
train the reader may be a limitation, since interobserver agreement
has been shown to be moderate at this experience level; an experi-
ence level of at least 300 cases may be needed for substantial
agreement (26). The prognostic parameters we assessed could
complement risk stratification alongside already-established risk
factors, such as resection status and neural invasion in the context
of pancreatic cancer (27,28). Also, the absence of segmentation of
PET-derived whole-body tumor volume and whole-body SUVmean

may be a major limitation.

CONCLUSION

Here, we demonstrate an association of disease extent (parame-
trized by total lesion number on 68Ga-FAPI-46 PET/CT) on the
one hand and OS on the other hand in various malignancies, such
as pancreatic cancer. In line with prior publications, 18F-FDG
PET/CT allowed for stratification of prognosis, especially in the
presence of bone metastases. Improved risk stratification may aid
patient management in the future.
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TABLE 5
Uni- and Multivariate Subanalyses of OS for Patients

with Thoracic Cancer Using Cox Proportional
Hazards Regression Analysis (Death Events, n 5 11;

Censored, n 5 19)

Parameter

Univariate

HR P

68Ga-FAPI-46 PET/CT

Total lesion number 1.01 (0.93–1.10) 0.78
18F-FDG PET/CT

Bone metastases 1.62 (0.20–13.01) 0.65

Data are mean followed by 95% CI in parentheses.
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KEY POINTS

QUESTION: Do findings from 68Ga-FAPI-46 PET/CT have
prognostic implications regarding OS?

PERTINENT FINDINGS: Disease extent derived from 68Ga-FAPI-46
PET/CT is a predictor of OS and may enhance risk stratification in
various solid tumors.

IMPLICATIONS FOR PATIENT CARE: Improved tumor detection
and risk stratification may aide clinical decisions and the pursuit of
personalized medicine.
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