Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Corporate & Special Sales
    • Journal Claims
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Permissions
    • Advertisers
    • Continuing Education
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Corporate & Special Sales
    • Journal Claims
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Permissions
    • Advertisers
    • Continuing Education
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • Follow JNM on Twitter
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Subscribe to our RSS feeds
Research ArticleFEATURED BASIC SCIENCE ARTICLE

Development of a Lensless Radiomicroscope for Cellular-Resolution Radionuclide Imaging

Justin S. Klein, Tae Jin Kim and Guillem Pratx
Journal of Nuclear Medicine March 2023, 64 (3) 479-484; DOI: https://doi.org/10.2967/jnumed.122.264021
Justin S. Klein
Department of Radiation Oncology, Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tae Jin Kim
Department of Radiation Oncology, Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guillem Pratx
Department of Radiation Oncology, Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • PDF
Loading

Visual Abstract

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

The action of radiopharmaceuticals takes place at the level of cells. However, existing radionuclide assays can only measure uptake in bulk or in small populations of single cells. This potentially hinders the development of effective radiopharmaceuticals for disease detection, staging, and treatment. Methods: We have developed a new imaging modality, the lensless radiomicroscope (LRM), for in vitro, cellular-resolution imaging of β- and α-emitting radionuclides. The palm-sized instrument is constructed from off-the-shelf parts for a total cost of less than $100, about 500 times less than the radioluminescence microscope, its closest equivalent. The instrument images radiopharmaceuticals by direct detection of ionizing charged particles via a consumer-grade complementary metal-oxide semiconductor detector. Results: The LRM can simultaneously image more than 5,000 cells within its 1 cm2 field of view, a 100-times increase over state-of-the-art technology. It has spatial resolution of 5 μm for brightfield imaging and 30 μm for 18F positron imaging. We used the LRM to quantify 18F-FDG uptake in MDA-MB-231 breast cancer cells 72 h after radiation treatment. Cells receiving 3 Gy were 3 times larger (mean = 3,116 μm2) than their untreated counterparts (mean = 940 μm2) but had 2 times less 18F-FDG per area (mean = 217 Bq/mm2), a finding in agreement with the clinical use of this tracer to monitor response. Additionally, the LRM was used to dynamically image the uptake of 18F-FDG by live cancer cells, and thus measure their avidity for glucose. Conclusion: The LRM is a high-resolution, large-field-of-view, and cost-effective approach to image radiotracer uptake with single-cell resolution in vitro.

  • radionuclide imaging
  • in vitro assays
  • 18F-FDG
  • CMOS detector

Footnotes

  • Published online Sep. 15, 2022.

  • © 2023 by the Society of Nuclear Medicine and Molecular Imaging.
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

SNMMI members

SNMMI Member Login

Login to the site using your SNMMI member credentials

Individuals

Non-Member Login

Login as an individual user

PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 64 (3)
Journal of Nuclear Medicine
Vol. 64, Issue 3
March 1, 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development of a Lensless Radiomicroscope for Cellular-Resolution Radionuclide Imaging
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Development of a Lensless Radiomicroscope for Cellular-Resolution Radionuclide Imaging
Justin S. Klein, Tae Jin Kim, Guillem Pratx
Journal of Nuclear Medicine Mar 2023, 64 (3) 479-484; DOI: 10.2967/jnumed.122.264021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Development of a Lensless Radiomicroscope for Cellular-Resolution Radionuclide Imaging
Justin S. Klein, Tae Jin Kim, Guillem Pratx
Journal of Nuclear Medicine Mar 2023, 64 (3) 479-484; DOI: 10.2967/jnumed.122.264021
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • DISCLOSURE
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Antigen-Dependent Inducible T-Cell Reporter System for PET Imaging of Breast Cancer and Glioblastoma
  • Substitution of l-Tryptophan by α-Methyl-l-Tryptophan in 177Lu-RM2 Results in 177Lu-AMTG, a High-Affinity Gastrin-Releasing Peptide Receptor Ligand with Improved In Vivo Stability
Show more FEATURED BASIC SCIENCE ARTICLE

Similar Articles

Keywords

  • radionuclide imaging
  • in vitro assays
  • 18F-FDG
  • CMOS detector
SNMMI

© 2023 Journal of Nuclear Medicine

Powered by HighWire