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Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to
efficiently combine antitumor antibodies and medicinal radioisotopes
for high-contrast imaging and high–therapeutic-index (TI) tumor tar-
geting, respectively. As opposed to conventional radioimmunoconju-
gates, pretargeted approaches separate the tumor-targeting step
from the payload step, thereby amplifying tumor uptake while reduc-
ing normal-tissue exposure. Alongside contrast and TI, critical param-
eters include antibody immunogenicity and specificity, availability of
radioisotopes, and ease of use in the clinic. Each of the steps can be
optimized separately; as modular systems, they can find broad appli-
cations irrespective of tumor target, tumor type, or radioisotopes.
Although this versatility presents enormous opportunity, pretargeting
is complex and presents unique challenges for clinical translation and
optimal use in patients. The purpose of this article is to provide a brief
historical perspective on the origins and development of pretargeting
strategies in nuclear medicine, emphasizing 2 protein delivery sys-
tems that have been extensively evaluated (i.e., biotin–streptavidin
and hapten-bispecific monoclonal antibodies), as well as radiohapt-
ens and radioisotopes. We also highlight recent innovations, including
pretargeting with bioorthogonal chemistry and novel protein vectors
(such as self-assembling and disassembling proteins and Affibody
molecules). We caution the reader that this is by no means a compre-
hensive review of the past 3 decades of pretargeted radioimmuno-
diagnosis and pretargeted radioimmunotherapy. But we do aim to
highlight major developmental milestones and to identify benchmarks
for success with regard to TI and toxicity in preclinical models and
clinically. We believe this approach will lead to the identification of
key obstacles to clinical success, revive interest in the utility of radio-
theranostics applications, and guide development of the next genera-
tion of pretargeted theranostics.
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Monoclonal antibodies (mAbs) are attractive vehicles for deliv-
ering cytotoxic payloads to tumors using cell-surface targets as ZIP
codes. However, the complexity of the tumor microenvironment and
the pharmacokinetics of mAbs in vivo have created major hurdles in
radioimmunodiagnosis and radioimmunotherapy (1). Radioimmuno-
conjugates have been approved by the U.S. Food and Drug Adminis-
tration for clinical oncology use (4 imaging agents, beginning with
OncoScint [Cytogen Corp.] for imaging of tumor-associated glyco-
protein 72 [TAG-72] in 1992 and Zevalin [Acrotech Biopharma] and
Bexxar [GlaxoSmithKline] for therapy targeting CD20 in the early
2000s). However, clinical use (and hence, commercial success) has
been hampered by unanticipated physician preferences (2) and
numerous challenges universal to radiopharmaceutical therapies (3).
Despite the success in treating radiosensitive hematologic malig-

nancies, radioimmunotherapy in the treatment of solid tumors has
been clinically unsuccessful (1). Nevertheless, a recent revision of
the radiobiologic paradigms of targeted a-therapy has revealed a
highly complex response cascade comprising direct, bystander, and
systemic effects (4), proving remarkably effective against b-refrac-
tive and bulky disease (5). Coupled with an enhanced development
and application of theranostics in nuclear medicine, this response
cascade has fueled development of a new generation of mAb thera-
nostics against solid-tumor antigens, particularly with a-emitting
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isotopes (e.g., City of Hope’s anti–carcinoembryonic antigen
[CEA] 225Ac-DOTA-5MA NCT05204147; Bayer’s suite of 227Th-
IgG drugs targeting mesothelin, prostate-specific membrane anti-
gen, or human epidermal growth factor receptor 2 [HER2] antigens
NCT03507452, NCT03724747, and NCT04147819; Janssen’s
225Ac-DOTA-h11B6 targeting human kallikrein 2 NCT04644770;
and Fusion’s 225Ac-FPI-1434 targeting insulinlike growth factor
type 1 receptor). More details can be found in several excellent
reviews (6–9).
The field waits with great interest to see the outcome of these

radioimmunotherapy clinical trials of directly labeled mAbs. None-
theless, based on prior experience with other radioimmunothera-
peutics, there is concern that hematopoietic toxicity will prove to
be dose-limiting, a common hurdle for molecularly targeted radio-
pharmaceuticals (3,10). Fundamentally, the necessary therapeutic
indices (TIs, or tumor–to–normal-tissue absorbed dose ratios) for
meaningful radioimmunotherapy of solid-tumor masses were not
achieved, partly because of inadequate mAb uptake (subtherapeutic
radiation dose for solid tumors), dose-limiting toxicities (DLTs)
because of poor TIs (causing myelotoxicity and renal toxicity), and
antidrug antibodies (ADAs) (1). The radiopharmacology of radio-
immunoconjugates has so far permitted mostly suboptimal TIs,
especially for critical radiosensitive tissues such as bone marrow
and kidney. Current and future advances in protein engineering and
radioligand chemistry are necessary to overcome these barriers.
Pretargeted radioimmunodiagnosis (PRID) and pretargeted radio-

immunotherapy (PRIT) separate the tumor targeting and the radiocar-
rier (e.g., a radiohapten) delivery steps, vastly improving the contrast
and TIs while creating modular systems with individual optimization
ease (Fig. 1). The tumor-targeting bispecific protein can be engi-
neered to improve tumor uptake and TI; a chase molecule or clearing
agent (CA) can be designed to sequester unbound proteins from
blood to liver for metabolism. After an optimal pretargeting interval
of hours or days, an intravenous payload with high affinity for the
second specificity in the protein seeks out the bispecific protein tar-
geted to the tumor or clears from the body in minutes to hours.
Current PRID and PRIT approaches harness advances in protein

engineering and bioorthogonal chemistry to overcome the limita-
tions of previous PRID and PRIT systems. However, PRID and
PRIT present additional complexity in terms of drug manufacture

(developing at least 2 products, and perhaps a CA) and dosing pro-
tocol optimization (both dose and pretargeting interval). Here, we
provide a historical perspective of PRID and PRIT and explore
potential ways by which PRID and PRIT can be further optimized
to deliver a high radiation dose to tumor while improving TIs sub-
stantially for critical radiosensitive tissues.

HISTORICAL PERSPECTIVE

Concept of PRID and PRIT
Building on initial investigations of in vivo tumor targeting with

radiolabeled polyclonal antibodies (11,12) and fueled by the discov-
ery of mAbs by K€ohler and Milstein (13), radioimmunodiagnosis
using mAbs surged in the late 1970s, and radioimmunotherapy soon
followed (14,15). However, despite the antigen specificity of mAbs,
most did not translate into high-contrast tumor imaging (15). The
critical hurdle—that is, disappointingly low overall tumor uptake
and high normal-tissue background with radiolabeled IgG mAbs—
was realized early on, requiring 99mTc blood-pool agents for com-
puter subtraction from 131I-mAb images (16).
In themid 1980s, Goodwin et al. pioneered one of the first examples

of pretargeting of radioisotopes by engineering metal chelate–specific
mAbs (17). This example was predicated on the physicochemical
properties of metal chelate complexes (often low-molecular-weight
and hydrophilic combined with net negative charge and high kinetic
stability under physiologic conditions) possessing extremely favorable
in vivo pharmacokinetics and biodistribution. The antichelate mAb
CHA255 passively entered tumors and, after a pretargeting interval of
24 h, was chased with a metal chelate hapten, indium (III)-4-[N9-
(2-hydroxyethyl)thioureido]-L-benzyl-ethylenediaminetetraacetic acid
(18). The concept of chelate chase—that is, using pharmacologic
doses of an empty nonradioactive chelate hapten to force rapid renal
excretion—significantly enhanced contrast, thereby reducing normal-
organ radiation exposure by as much as 95% (18,19). Soon after,
Stickney et al. conducted the first clinical trial of PRID in patients with
CEA-expressing colorectal cancer (CRC) using a bispecific antibody
(BsAb) anti-CEA/anti–metal chelate hapten system (20). Besides
establishing the feasibility of the approach in this study of 14 patients,
20 of 21 known lesions were detected, for an overall sensitivity of
95%; 8 of 9 new lesions were confirmed; and high contrast was
observed at as early as 4 h (Fig. 2A) (20).

A Surge in PRID—Especially Driven by
Biotin–Streptavidin Approaches—and
the Potential of PRIT
Although PRID with BsAb showed con-

siderable promise, issues related to TIs as a
consequence of insufficient affinity or avidity
for the hapten (e.g., low-nanomolar range)
prompted the development of alternatives.
Streptavidin (53 kDa protein from the bacte-
rium Streptomyces avidinii) and avidin
(66 kDa protein found in egg whites) are
both tetrameric proteins, with each individual
subunit able to bind a single molecule of bio-
tin (244 Da) with similar affinities (femtomo-
lar). With these significantly higher affinities,
the biotin–streptavidin system was an attrac-
tive candidate for pretargeting.
One of the first pretargeting applications

of the biotin–streptavidin system was devised
by Hnatowich et al. in 1987, consisting of an

FIGURE 1. Comparison of conventional radioimmunotherapy and PRID/PRIT and compatible vector
survey. (A) Injection of radioimmunoconjugate (left) leads to low TIs, especially in hematopoietic and
highly perfused tissues. With 3-step BsAb pretargeting (middle), BsAb is administered, followed 1 d
later by CA to quickly reduce circulating BsAb. During final step, administered radiocarrier (e.g., radio-
hapten) is captured by intratumoral BsAb or rapidly cleared. A 2-step approach (right) is feasible with
SADA BsAb innovation. (Adapted from (153)). (B) Select bispecific antitumor/antiradiocarrier vectors.
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antitumor mAb–streptavidin conjugate, a chase molecule, and radiola-
beled biotin (21). Afterward (1987–1988), multiple research groups
explored various biotin–streptavidin reagents, establishing the immu-
noreactivity and in vivo fate of biotinylated or mAb–streptavidin
pharmacokinetics, clearance of radiolabeled forms of biotin and strep-
tavidin, and safety in animals (22,23). Notably, Pimm et al. docu-
mented that radioiodinated avidin and streptavidin were cleared from
the circulation via the kidneys, but with prolonged renal retention
(22). In addition to issues of immunogenicity, this renal retention of
streptavidin (and hence low TI for the kidney) became problematic
and dose-limiting, prompting efforts at alleviation via chemical modi-
fication (e.g., with succinic anhydride or 1,2-cyclohexanedione) or
engineering of recombinant streptavidin (24,25). In 1990, Kalofonos
et al. reported the clinical feasibility of biotin–streptavidin PRID (26).
In 10 patients with squamous cell carcinoma of the lung, the investi-
gators infused antihuman milk fat globule antigen 1 mAb–streptavidin
for tumor targeting, followed 2–3 d later with 111In-biotin (26). Posi-
tive imaging was observed in 8 of 10 lung tumors (Fig. 2B) (26).
In 1991, Paganelli et al. conducted their first biotin–streptavidin

PRID clinical study on 19 patients with a confirmed histologic
diagnosis of tumors using an optimized 3-step regimen consisting
of biotinylated anti-CEA mAb, an avidin chase, and 111In-biotin
(27). Tumors and metastases were detected in 18 of 19 patients
(the remaining patient was a true-negative) less than 3 h after
administration of 111In-biotin by g-scintigraphy, with no evidence
of toxicity and with favorable contrast (27).
Although PRID showed promise, its development was soon

blunted by the advent of oncologic 18F-FDG PET/CT (28). Also, for
diagnosis, sufficient image contrast and a single-day imaging proce-
dure was achievable with rapidly clearing antibody-based probes.
Unlike radioimmunodiagnosis, for which high tumor–to–normal-
tissue contrast is necessary at only 1 specific time point, radioimmu-
notherapy requires high contrast at all time points in order to achieve
high TIs. PRIT soon became the major platform to further the sci-
ence and its clinical translation. The primary consideration for PRID
is its theranostic potential: directing the surgical procedure to sites
of the body with a high likelihood of finding antigen-bearing tumor,
and performing dosimetry using quantifiable radioisotopes, a critical
predictor of tumor response to PRIT. Tables 1 and 2 summarize the
clinical and preclinical PRIT studies, respectively, with an emphasis
on dosimetry and TIs described here.
Published in 1997, pilot clinical PRIT studies by Paganelli et al.,

using 111In/90Y-biotin targeting against various tumor types with

anti-CEA, anti-TAG-72, and antitenascin
mAbs (29), demonstrated that favorable TIs
could be achieved. Mean absorbed doses (as
cGy/37MBq) to tumor,marrow, kidney, and
liver were 15.2 6 8.7, 1.1 6 0.6 (TI, 13.8),
4.56 2.1 (TI, 3.4), and 1.56 1.0 (TI, 10.1),
respectively. Eleven patients with various
tumors (breast, brain, colon) were adminis-
tered 90Y-biotin doses ranging from 1.85
to 5.55 GBq; the treatment was well toler-
ated, and no acute toxicity was observed.
However, ADA to streptavidin was ob-
served in all patients.
Over the next decade, Paganelli et al.

studied multiple biotin–streptavidin PRIT
dosing protocols and injection routes (revi-
ewed by Papi et al. (30)). Remarkably,
from 1994 to 2005, over 500 glioblastoma

patients were treated with biotin–streptavidin PRIT. For example,
during a phase I/II study (31), they treated 48 patients (possessing
histologically confirmed grade III and IV gliomas) using 5-step
intravenous antitenascin PRIT with 111In/90Y-biotin (90Y-biotin
dose range, 2.22–2.96 GBq/m2). The DLT was hematologic, and
the maximum tolerated dose (MTD) was 2.96 GBq/m2. They
reported tumor, brain, kidney, liver, and marrow mean absorbed
doses (as cGy/37 MBq) of 15.20 6 8.70, 0.6 6 0.3 (TI, 25.3),
2.7 6 1.6 (TI, 5.63), 1.5 6 1.0 (TI, 10.1), and 0.8 6 0.5 (TI, 19.0),
respectively. ADA to streptavidin was observed in all patients.
These early clinical PRIT studies inspired many groups to

explore biotin–streptavidin PRIT in the mid to late 1990s (32,33).
Much effort was devoted to improving BsAb design and alternative
second specificities (besides biotin or metal chelator haptens),
including complementary oligomeric pretargeting systems (34–36).
Using morpholino complementary oligomers, Liu et al. and Hnato-
wich et al. have shown success for in vivo applications (reviewed
by Liu (37)), although they have not been investigated clinically.
NeoRx Corporation exploited mAb–streptavidin fusion proteins to

pretarget tumors before administration of radiobiotin. During the
early to mid 1990s, they developed a mAb–streptavidin chemical
conjugate (mAb NR-LU-10 specific for epithelial cell adhesion mol-
ecule) to target multiple solid-tumor types (38). In 2000, they showed
how a single treatment with pretargeted 90Y-biotin was curative in
nude mice bearing human tumor xenografts (CRC, lung, and breast)
without significant toxicity (39). Although TIs were not reported, an
approximately 20-fold improvement in the tumor-to-blood area under
the curve (AUC) ratio (calculated from 0 to 120 h after injection) for
PRIT versus conventional radioimmunotherapy was demonstrated
(tumor-to-blood AUC ratio: 28.3 and 1.22, respectively). At doses of
up to 29.6 MBq (MTD not reached) of pretargeted 90Y-biotin per
mouse, 28 of 30 cures were achieved with transient myelosuppres-
sion and no apparent sequelae. Moreover, kidney uptake and reten-
tion were relatively low, at approximately 2% of the injected dose
per gram from 2 to 120 h after injection. During a phase I dose esca-
lation study (40), the MTD was determined to be 4.07 GBq/m2, the
DLT at 5.18 GBq/m2 was gastrointestinal toxicity, and the recom-
mended phase 2 dose was 4.44 GBq/m2. These findings were consid-
ered highly remarkable because DLT was not hematologic and 90Y
doses approximately 5 times higher than radioimmunotherapy could
be administered without marrow DLT or use of stem cell support
(41). Imaging and dosimetry studies (42) revealed tumor, small-intes-
tine, large-intestine, kidney, liver, and marrow mean absorbed doses

FIGURE 2. Initial PRID studies of tumors in patients. (A) BsAb pretargeting system. Planar poste-
rior pelvic scan (coronal view) of patient with recurrent CRC invading right sacral area was obtained
3 d after injection of 111In-hapten. a 5tumor; b 5kidneys; c 5spine; d 5 iliac crest. (Reprinted with
permission of (20).) (B) Biotin–streptavidin pretargeting system. Anterior chest and upper abdomen
image (coronal view) of patient with recurrent squamous cell carcinoma of right lung was obtained
2 h after injection of 111In-biotin. a5 tumor; b5 kidneys; c5 bladder. (Reprinted from (26).)
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(as cGy/37 MBq) of 16.4 6 13.2, 49.2 6 25.3 (TI, 0.33), 34.8 6

17.9 (TI, 0.47), 11.56 5.6 (TI, 1.43), 3.06 1.8 (TI, 5.47), and 0.346
0.08 (TI, 48.2), respectively. High doses of 90Y-biotin in the gas-
trointestinal tract resulted from cross-reactivity of the mAb NR-LU-
10 with the bowel epithelium. Moreover, tumor response was seen in
the 2 patients with the highest estimated dose to tumor (4,000–6,000
cGy); grade IV diarrhea was observed in patients estimated to have
received 6,850–14,000 cGy to the large-intestine wall; and delayed
renal toxicity was observed in patients estimated to have received
2,170 or 3,072 cGy. In the same year, Knox et al. reported disap-
pointing results from a phase II clinical study on 25 patients with
metastatic CRC after a single dose of mAb–streptavidin pretargeted
90Y-biotin, 4.07 GBq/m2 (mean administered dose, 3.941 6 0.381
GBq/m2) (43). The overall response rate was modest (8%), and both
hematologic and nonhematologic toxicities were observed (severe
diarrhea in 30% of patients and delayed renal toxicity in 2 patients).
NeoRx moved on to an alternative pan-carcinoma mAb/antigen sys-

tem, in which a mAb–streptavidin chemical conjugate (mAb CC49
specific for TAG-72) was used to deliver radiobiotin (44). Anti-TAG-
72 radioimmunotherapy was studied clinically in the mid 1990s; for
example, 111In/90Y-CC49 was evaluated in 12 patients with metastatic
gastrointestinal tract carcinomas (45). Preclinical pretargeting studies
on nude mice bearing human tumor xenografts were promising, as the
tumor-to-blood AUC ratios were 179, 170, and 371 for 149Pm-, 166Ho-,
and 177Lu-biotin, respectively (no TIs were reported), and kidney
uptake was minimal, at approximately 1%–2% of the injected dose
per gram from 1 to 168 h after injection (44). In 2005, a phase I 3-step
PRIT trial was performed using a CC49-(single-chain variable frag-
ment [scFv])4–streptavidin fusion (46). A total of 9 advanced-CRC
patients received CC49-(scFv)4–streptavidin, CA, and

111In/90Y-biotin

(90Y-biotin dose of 0.37 GBq/m2). Imaging and dosimetry studies
revealed a patient-specific mean 90Y radiation dose (as cGy/37 MBq)
of 7.02 (range, 3.36–11.2) to kidneys, 3.75 (range, 0.63–6.89) to liver,
0.22 (range, 0.12–0.34) to marrow, and 28.9 (range, 4.18–121.6) to
tumors, corresponding to TIs of 4.12, 7.71, and 131 for kidney, liver,
and marrow, respectively (46). MTD, DLT, and recommended phase
2 dose were not defined; however, the low TI for kidney was projected
to be dose-limiting. F€orster et al. demonstrated that succinylation of
the CC49-(scFv)4–streptavidin construct could reduce kidney uptake
(47), but this was never tested clinically.
Additional solid-tumor mAb/antigen systems studied by NeoRx

for PRIT included Lewis Y antigen (with 213Bi-biotin (48) or 90Y-bio-
tin (49)) and mesothelin (with 177Lu-biotin or 90Y-biotin (50)). Also,
using a novel antidisialoganglioside (GD2)-(scFv)4–streptavidin
fusion protein, highly efficient GD2 targeting was demonstrated with
111In-biotin in nude mice bearing human tumor xenografts (51).
Tumor-absorbed radiation doses (as cGy/37 MBq) were 8,784 6

1,495 and 5,665 6 307 for conventional radioimmunotherapy and
PRIT with 90Y-biotin, respectively (51). For radioimmunotherapy,
TIs of 3, 13, and 19 were determined for blood, kidney, and liver,
respectively. In comparison, for PRIT with 90Y-biotin, TI was
improved for blood (TI, 170) but diminished for kidney (TI, 3) and
similar for liver (TI, 21). Although highly promising in terms of
reducing myelotoxicity, the poor TI for kidney limited its translational
potential.
NeoRx also developed reagents for PRIT of hematologic cancers.

In the mid 1990s, remarkably, anti-CD20 radioimmunotherapy was
shown to be curative in patients with relapsed B-cell lymphomas;
however, highly aggressive myeloablative treatments with bone
marrow rescue were needed (52). In 2002, the results from the anti-

TABLE 2
Select Preclinical PRIT and Targeted Radiotherapy Studies with Emphasis on Dosimetry

Vehicle TRT type
RIT/PRIT

radiocarrier
cGy/MBq
to tumor

cGy/37 MBq
to tumor

TI

ReferenceBlood Kidney Liver

IgG RIT 131I-3F8
(131I-naxitamab)

237.4 6 40.4 8,784 6 1,495 3 13 19 (51)

F(ab9)2 RIT 131I-F6 F(ab9)2 184 6,800 5 10 17 (157)

Peptide PRRT 177Lu-DOTATATE
(Lutathera*)

34 6 0.4 1,258 6 14.8 ND 3 46 (158)

IgG–streptavidin PRIT 177Lu-biotin or
90Y-biotin

177Lu: 62 177Lu: 2,294 177Lu: 9 177Lu: 2 177Lu: 9 (103)

90Y: 134 90Y: 4,958 90Y: 12 90Y: 4 90Y: 8

scFv–streptavidin PRIT 90Y-biotin 153.1 6 8.3 5,665 6 307 170 3 21 (51)

Antitumor F(ab9)2 3
anti-HSG Fab

PRIT 177Lu-IMP241 or
90Y-IMP241

177Lu: 151 177Lu: 5,587 177Lu: 45 177Lu: 9 177Lu: 35 (84)

90Y: 388 90Y: 14,356 90Y: 35 90Y: 8 90Y: 26

DNL PRIT 177Lu-IMP325 or
90Y-IMP325

177Lu: 72.8 177Lu: 2,695 177Lu: 169 177Lu: 7 ND (91)

90Y: 135 90Y: 5,011 90Y: 158 90Y: 7

IEDDA click PRIT 177Lu-Tz 556 20,572 11 21 26 (140)

DOTA-PRIT PRIT 177Lu-DOTA 85 3,145 142 23 40 (120)

Affibody-PNA PRIT 177Lu-HP2 108 3,996 269 5 81 (132)

SADA-PRIT PRIT 177Lu-DOTA 320 11,840 109 25 32 (127)

*Advanced Accelerator Applications.
TRT 5 targeted radiotherapy; RIT 5 radioimmunotherapy; ND 5 not determined; IEDDA 5 inverse electron-demand Diels–Alder.
All therapies were given intravenously to immunocompromised mice bearing subcutaneous human cancer xenografts.
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CD20 radioimmunotherapy phase 3 study of 90Y-ibritumomab were
reported, showing that treatment was well tolerated and superior to rit-
uximab in terms of overall response rate and complete response rate
(53). NeoRx collaborated with Press et al. at the Fred Hutchinson
Cancer Research Center and the University of Washington to develop
anti-CD20 biotin–streptavidin PRIT to improve the safety profile
of anti-CD20 radioimmunotherapy (54). They prepared an anti-
CD20–streptavidin chemical conjugate for PRIT with 90Y-biotin and
performed preclinical studies on nude mice bearing human Ramos
xenografts, making direct comparisons with radioimmunotherapy
(54). Although no TIs were reported, tumor-to-blood ratios at 24 h
were markedly improved with PRIT (3 and 0.4 for PRIT and radioim-
munotherapy, respectively). Notably, superior tumor uptake was also
shown with PRIT, establishing the potential advantage of PRIT par-
ticularly for noninternalizing antibodies. A lethal dose of 14.8 MBq
was reported for radioimmunotherapy, with all treated animals dying
of marrow suppression and infection on day 10. In contrast, 9 of 9
mice receiving pretargeted 90Y-biotin (29.6 MBq) achieved CRs by
day 12, leading to 8 of 9 cures (no recurrences during observation
period of.140 d) and minimal toxicity.
These highly promising preclinical PRIT studies led to a phase

I/II study on non-Hodgkin lymphoma patients (41). Seven patients
with relapsed or refractory non-Hodgkin lymphoma received
111In/90Y-biotin (90Y-biotin dose of 1.11 or 1.85 GBq/m2). Tumor,
kidney, liver, and marrow mean absorbed doses (as cGy/37 MBq)
were 29 6 23, 5.0 6 1.7 (TI, 5.8), 1.6 6 0.5 (TI, 18), and 0.16 6
0.1 (TI, 181), respectively; also, the estimate of tumor–to–whole-
body dose ratio (38:1) achieved with PRIT was higher than has
been achieved using conventional radioimmunotherapy. Further-
more, doses of 90Y 3 times the MTD of radioimmunotherapy
could be given without significant myelosuppression. As a result,
6 of 7 achieved objective tumor regression, including 3 complete
response and 1 partial response (41). Only grade I/II nonhemato-
logic toxicity was observed, and grade III hematologic toxicity
was transient in 5 of 7 patients. Six of 10 patients developed mea-
surable ADA. MTD was not defined but was noted to be “likely
more than 1.85 GBq/m2” on the basis of dose-limiting hematologic
toxicity, and kidneys showed the highest uptake (5.0 6 1.7 cGy/
37 MBq vs. 1.3 cGy/37 MBq for unbound radiobiotin (55)).
To generate well-defined and homogeneous fusion proteins and

greatly simplify manufacturing, the group developed a second-gen-
eration, genetically engineered anti-CD20–streptavidin fusion pro-
tein (as a (scFv)4–streptavidin fusion, B9E9FP (56)), documented a
tumor-to-blood AUC ratio of more than 60 in nude mice bearing
Ramos xenografts, and performed a phase I pilot trial in B-cell
non-Hodgkin lymphoma (57). Fifteen non-Hodgkin lymphoma
patients received B9E9FP, CA, and 111In/90Y-biotin (90Y-biotin
dose, 0.555 GBq/m2). Mean absorbed doses to tumor, kidney, liver,
and marrow (as cGy/37 MBq) were 26 6 4, 7.7 6 1.7 (TI, 3.4),
1.2 6 0.2 (TI, 22), and 0.25 6 0.04 (TI, 104), respectively. MTD,
DLT, and recommended phase 2 dose were not defined. ADA was
substantial 3 patients, and 5 patients had transient low antibody
responses.
Additional hematologic tumor mAb/antigen systems studied by

NeoRx for PRIT included CD25 (with 90Y-biotin or 213Bi-biotin
(58)) and CD45 (with 90Y-biotin (59)). In a notable study, Pantelias
et al. (60) evaluated multiantigen PRID with mAb–streptavidin (anti-
CD20, anti-human leukocyte antigen DR, anti-CD22) and 111In-
biotin. Interestingly, the most favorable tumor–to–normal-organ ratios
of absorbed radioactivity were obtained using single conjugates opti-
mized for target tumor antigen expression rather than the combination

therapy (60). Of these additional PRIT systems, CD45 has been eval-
uated clinically.

Second-Generation BsAb PRIT with Multivalent Haptens
Alongside biotin–streptavidin PRIT development in the late 1980s,

groups were also looking to optimize contrast by improving hapten
selectivity for intratumoral BsAb over circulating BsAb. In 1989, Le
Doussal et al. (Immunotech) evaluated PRID with bivalent hapten
tracers to image CEA-expressing CRC (61). Coined “affinity enha-
ncement,” they showed greater affinity to cell-bound than to unbound
BsAb via cooperative cross-linking of intratumoral BsAb, resulting in
additional tumor-absorbed dose (61). Also, a chase or CA was not
required for high contrast, greatly simplifying the pretargeting regi-
men. Around the same time, Goodwin et al. reported a bivalent Janus
hapten for pretargeting with their antichelate mAbs (62).
Between 1993 and 1998, Immunotech performed clinical PRID

studies with an anti-CEA mAb/metal chelate–specific mAb BsAb.
The metal chelate-specific mAb was against indium-diethylenetriami-
nepentaacetic acid (indium-DTPA). With a bivalent 111In-diDPTA-
tyrosyl-lysine hapten for PRID, they demonstrated that high-contrast
images could be obtained in patients with CRC (63), medullary thyroid
cancer (MTC) (64,65), and small-cell lung cancer (66). Although the
images were impressive, the use of murine BsAb led to ADA in most
patients (e.g.,�60% (63)). Furthermore, for PRIT with 131I, instead of
developing a new metal chelate–specific mAb, they used stable
indium-DTPA as an affinity handle to generate 131I-labeled diDT-
PA(In)-tyrosyl-lysine radiohapten (131I-diDTPA(indium)-hapten) and
analogs for chelation of 99mTc and 188Re (67–69). In nude mice bear-
ing human MTC xenografts, pretargeting of 92.5 MBq of 131I-diDT-
PA(indium)-hapten was demonstrated to be more efficient (leading to
significantly longer growth delays) and less toxic than radioimmuno-
therapy (70). Soon after, this approachwas evaluated in patients.
Initially, 2 phase I/II clinical trials assessing PRIT with 131I-

diDTPA(indium)-hapten were performed on patients with either
MTC (71) or small-cell lung cancer (72). The BsAb was a F(ab)9 3
F(ab)9 chemical conjugate. Twenty-six MTC patients received 1–3
treatments at 131I-diDTPA(indium)-hapten doses ranging from 0.888
to 2.22 GBq/m2 (71). Tumor, kidney, liver, and marrow mean ab-
sorbed doses (as cGy/37 MBq) were 44.33 6 53.39, 5.61 6 2.02
(TI, 8.36 6 10.02), 5.19 6 2.23 (TI, 10.86 6 13.55), and 1.60 6
0.82 (TI, 29.62 6 35.32), respectively (71). Myelosuppression was
the crucial factor for DLT, and MTD (and recommended phase
2 dose) was 1.78 GBq/m2 (71). Among the 17 evaluable patients,
5 minor tumor responses were observed in patients with mainly a
small tumor burden (71). ADA was observed in 9 of 17 (53%)
patients (71). During the second clinical trial, 14 patients with small-
cell lung cancer were treated with 131I-diDTPA(indium)-hapten
ranging from 1.48 to 6.66 GBq (72). Tumor, kidney, liver, and mar-
row absorbed doses (as cGy/37 MBq) were 1.8–32.2, 3.9–5.0,
1.6–5.0, and 0.4–1.7, respectively. MTD without hematologic rescue
was 5.55 GBq (72). Of the 12 patients, 2 partial response and 1 sta-
bilization of more than 24 mo was observed (72). Although no rec-
ommended phase 2 dose was specified, dose escalation was reported
to be continuing to reach 11.1 GBq (72). Among 5 evaluable pa-
tients for ADA, 1 patient showed significant ADA after 2 mo, which
persisted at 12 mo (72).
A subsequent clinical trial was performed to optimize reagent

dosing and timing of administration with humanized BsAb in 35
patients with CEA-expressing tumors (73). BsAb doses ranged
from 10 to 100 mg/m2, 131I-diDTPA(indium)-hapten doses ranged
from 1.9 to 5.5 GBq, and a pretargeting interval of 5 or 7 d was
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studied (73). With optimized PRIT (e.g., with 40 mg/m2 of BsAb
and a 5-d pretargeting interval), 131I-diDTPA(indium)-hapten
doses of up to 5.5 GBq were well tolerated in the absence of bone
marrow involvement (73).
In a follow-up trial on 22 patients with CEA-expressing tumors,

the humanized BsAb dose (40–75 mg/m2) and 131I-diDTPA(in-
dium)-hapten dose (1.8–2.9 GBq/m2; 1.9–5.5 GBq) were varied to
evaluate antitumor efficacy and toxicity (74). Myelosuppression
was BsAb dose–dependent, with 75 mg/m2 leading to high hema-
tologic toxicity, and nonhematologic toxicity was hepatic (tran-
sient grade I or II) (74). With a BsAb dose of 75 mg/m2, higher
whole-body and liver mean radiation doses were observed (0.38 and
1.9 Gy for whole body and liver, respectively) than for 40 mg/m2

(0.33 and 1.4 Gy for whole body and liver, respectively), and mean
tumor doses did not differ significantly with BsAb dose (75 mg/m2,
10.7 Gy [range, 1.7–53.5 Gy]; 40 mg/m2, 18.5 Gy [range, 2.4–49.3
Gy]) (74). Modest therapeutic efficacy was reported, with no CRs or
PRs (74). The MTD was determined to be 3 GBq of 131I-diDTPA(in-
dium)-hapten in MTC patients and was not defined in non-MTC
patients (escalated beyond 5.5 GBq) (74). Human antimouse antibody
elevation was observed in 1 patient (8%), and human antihuman anti-
body was observed in 4 patients (33%) (74).
In 2006, Chatal et al. reviewed their clinical experience and com-

pared the survival of advanced-MTC patients who underwent PRIT
(131I-diDTPA(indium)-hapten doses ranging from 1.9 to 5.5 GBq)
with that of contemporaneous untreated patients for whom data
were collected by the French Endocrine Tumor Group (75). Nota-
bly, they showed a survival benefit for those treated with PRIT,
underscoring its clinical promise (75).
Besides CEA-expressing tumors, a PRID approach to imaging

renal cell carcinoma was developed with bivalent haptens. Use of an
anti–renal cell carcinoma/anti–indium-DTPA hapten BsAb and a
refined tetrapeptide bivalent hapten, 111In-diDTPA-Phe-Lys-Tyr-
Lys (111In-diDTPA-FKYK), showed highly efficient tumor targeting
(76,77). During comparative studies with monovalent 111In-DTPA
and 111In-diDTPA-FKYK, they achieved dramatic improvements in
tumor uptake with the bivalent hapten (in nude mice bearing human
renal cell carcinoma xenografts: �78% vs. �2% of the injected dose
per gram at 4 h after injection for the bivalent and monovalent hapt-
ens, respectively) without sacrificing promising tumor-to-blood ratios
(76). The 111In-diDTPA-FKYK was also prepared with D-amino
acids to make it more resistant to in vivo peptidases and improve the
residualization of 125I during PRIT (78). Efficient targeting of CEA
was also demonstrated via this approach (with 111In, 99mTc, nonresi-
dualizing 125I, or residualizing 125I) (79); however, antichelate mAbs
were falling out of favor compared with alternative antihapten mAbs.

Third-Generation BsAb PRIT with Anti–Histidine-Succinyl-
Glycine (HSG) mAb and BsAb Prepared via Dock-and-
Lock (DNL)
The anti–111In-DTPA hapten approach was limited by mAb

specificity and could not be used to target 90Y or 177Lu (80). Although
additional antichelate mAbs were prepared (e.g., anti–copper-triethyle-
netetramine and anti–yttrium-1,4,7,10-tetraazacyclododecane-1,4,7,10-
tetraacetic acid (yttrium-DOTA) (81)), alternative antihapten mAbs
were evaluated for PRIT, including anti-2,4-dinitrophenyl (61) and
anti-HSG pseudopeptide (82). Also, around this time, novel BsAb
formats with divalent tumor-antigen binding (e.g., anti-CEA IgG
or anti-CEA F(ab9)2 chemically conjugated to anti–indium-DTPA
Fab9) were studied (83). Notably, pretargeting with anti-CEA IgG 3

anti–indium-DTPA Fab9 led to the most favorable tumor uptake and

retention in the tumor, but use of a CA was necessary to achieve
acceptable tumor-to-blood ratios (83). Therefore, a F(ab9)2–Fab9
BsAb (�80 kDa) was considered optimum in terms of balancing
tumor uptake and clearance without the need for a CA step (83).
In 2003, Sharkey et al. significantly advanced the HSG system

for PRIT by developing a novel BsAb (e.g., anti-CEA F(ab9)2 or
anticolon-specific antigen-p F(ab9)2 chemically conjugated to anti-
HSG Fab) and a suite of HSG peptides suitable for targeting a
variety of clinically relevant radionuclides (IMP241 for 90Y, 111In,
and 177Lu, and IMP245 for 99mTc and 188Re) (84). Dosimetry pro-
jections for pretargeting anticolon-specific antigen-p with 90Y- or
177Lu-IMP241 in nude mice bearing human xenografts were
5,587–14,356 cGy/37 MBq for tumor, with corresponding TIs of
35–45, 8–9, and 26–35 for blood, kidney, and liver, respectively
(84). In 2005, they clearly demonstrated the advantage of this
pretargeting approach over a clinically used 99mTc-labeled CEA-
specific F(ab9) for CRC imaging in mice bearing human xeno-
grafts (85). In 2006, an alternative peptide scaffold to IMP241
with less kidney retention was developed. IMP288 and PRID with
124I was reported (86).
As was done for mAb–streptavidin fusions for biotin–streptavi-

din pretargeting, recombinant antitumor/antihapten BsAbs were
replacing chemical conjugates. In 2003, Rossi et al. described a tri-
valent BsAb (hBS14: bivalent CEA and monovalent HSG); how-
ever, the engineering approach using transgenic myeloma cells led
to low expression yield (87). Soon after, they described the DNL
approach to assemble a multivalent tri-Fab antitumor/anti-HSG
hapten BsAb with a molecular weight of approximately 157 kDa
by exploiting regulatory protein kinase A dimerization and dock-
ing domains, and the anchoring domain of an interactive A-kinase
anchoring protein, to form a stably tethered complex (Fig. 3A)
(88,89). Interestingly, the blood clearance of the DNL BsAb was
much faster than that of IgG (�150 kDa) since the BsAb lacks the
CH2 domain to enable neonatal Fc receptor recycling. DNL BsAbs
have been generated against a variety of tumor antigens, including
CEA (TF2), CD20 (TF4), and trophoblast cell surface antigen 2
(TF12); detailed reviews have been published (28,90). Dosimetry
results for IMP325 (i.e., IMP288 saturated with nonradioactive
indium) pretargeted to CEA-expressing LS-174T human CRC sub-
cutaneous tumors were quite favorable; for example, for pretarget-
ing of 177Lu-IMP325, the authors reported TIs of 169 and 7 for
blood and kidney, respectively, with an estimated tumor-absorbed
dose of 2,695 cGy/37 MBq (91).
In one notable DNL PRIT preclinical study, they prepared anti-

PAM4-antigen BsAb TF10 for targeting of 90Y-IMP288 (92). They
demonstrated in nude mice bearing established Capan-1 human
pancreatic cancer xenografts that PRIT could be safely combined
with gemcitabine and CRs could be achieved (92). Furthermore,
they showed that doses of up to 33.3 MBq of pretargeted 90Y-
IMP288 were well tolerated over 9 mo with no evidence of chronic
nephrotoxicity (MTD not reached), a marked improvement from
initial 90Y-IMP288 PRIT studies (93).
Initial clinical experience with the DNL BsAb platform included

a phase 0 clinical study of 131I-TF2 in 2 patients with suspected
CRCs to characterize the clearance kinetics of the BsAb, and a first-
in-patients PRID study with 111In-IMP288 in a metastatic CRC
patient (94). Although optimization of the TF2 dose was necessary,
highly promising dosimetry projections of PRIT with 90Y-IMP288
were reported (kidney, 1.4 cGy/37 MBq; marrow, 0.1 cGy/37 MBq)
(94). Soon afterward, PRIT clinical trials with 111In/177Lu-IMP288
commenced.
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SELECTED PRETARGETING ADVANCES OF THE
PAST DECADE

PRIT with Biotin–Streptavidin System
In 2013, Mawad et al. reported clinical PRIT with 111In/90Y-biotin

in high-risk acute myeloid leukemia/myelodysplastic syndrome patients
undergoing allogenic hematopoietic cell transplantation (95). Five
patients received a 0.7 mg/kg dose of anti-CD45 mAb–streptavidin fol-
lowed 48 h later by a 1.3 mg/m2 dose of 90Y-biotin (median, 2.775
GBq; range, 2.294–4.144 GBq) based on 111In-biotin pretreatment
dosimetry (95). No participants were withdrawn from the study because
of toxicities; 2 grade 3 gastrointestinal adverse events (enterocolitis,
typhlitis) were identified as unexpected and considered possibly related
to PRIT, with the only grade 4 event being expected hematopoietic cell
transplantation–related cytopenia (95). A single patient was in complete
remission a year after protocol treatment, and the other 4 patients died
of progressive disease, with a median time to relapse of 28 d (range,
12–155 d) (95).
More recently, in 2015, a trial was initiated with anti-CD20

B9E9 with 111In/90Y-biotin in patients with high-risk B-cell malig-
nancies to evaluate the safety of combining PRIT with carmustine,
etoposide, cytarabine, and melphalan chemotherapy and autolo-
gous stem cell transplantation (NCT02483000).
Paganelli et al. performed a locoregional PRIT clinical trial on

11 breast cancer patients (96). Avidin was injected around the tumor,
followed by intravenous administration of 111 MBq of 90Y-biotin.
Remarkably, ADA to avidin has been shown to not limit therapy (97).
De Santis et al. described AvidinOX (Alfasigma S.p.A.), an avidin
variant designed to prolong the tissue half-life (2 wk compared with
2 h for native avidin) and to demonstrate cellular and interstitial pro-
tein tropism for enhanced PRIT (98). In addition to showing therapeu-
tic promise in preclinical studies (98–101), AvidinOX PRIT has been
studied in clinical investigations (NCT02053324 and NCT03188328,
both of which were terminated because of low recruitment).

Preclinically, PRIT development continued
(e.g., with 211At-biotin-succinylated poly-L-
lysine (102), and comparative efficacy of
177Lu and 90Y for anti-CD20 PRIT of B-cell
lymphomas (103)). However, a head-to-head
study comparing the efficacy and toxicity
of anti-CD20 biotin–streptavidin PRIT and a
novel BsAb PRIT platform with an ultra-
high-affinity anti-yttrium-DOTA scFv anti-
body (C825) revealed preferred use of BsAb
PRIT in future clinical trials (104,105).

BsAb Pretargeting
The DNL system has been extensively stud-

ied both preclinically (primarily in the devel-
opment of additional haptens) and clinically,
with multiple trials featuring DNL anti-CEA
TF2 and radiolabeled IMP288. Two notable
hapten developments included a novel radio-
labeled/near-infrared multimodal DNL hap-
ten, RDC018, for image-guided surgery of
various carcinomas (106) and 213Bi-IMP288
for a-PRIT (107).
In 2013, a landmark phase I PRIT study

was reported with 111In/177Lu-IMP288 in 20
patients with CEA-expressing CRC (108).
The 177Lu-IMP288 dose was designed to

deliver no more than 1.25 Gy to marrow or 15 Gy to kidneys
(3.7–7.4 GBq) based on pretreatment dosimetry with 111In-IMP288.
Absorbed doses were less than 1.85 cGy/37 MBq for kidney, and
mean marrow dose ranged from 0.0296 to 0.222 cGy/37 MBq based
on the dosing cohort (109). Tumor doses were 0.46–4.52 Gy, and
red marrow doses ranged from 0.12 to 0.97 Gy (mean TI, 4.68)
(110). Furthermore, they projected an approximately 25% higher
marrow TI for treatment with 90Y-IMP288 instead of 177Lu-IMP288
(mean TI simulated for 90Y-IMP288, 5.41). DLT was hematologic,
and no recommended phase 2 dose was indicated. Since TF2 is
humanized and lacked Fc, ADAs were unexpected but observed in
about 50% of the patients on repeated injection. However, a reduced
infusion rate and preadministration of prophylactics were effective
at reducing associated adverse events. A PRIT trial with 90Y-
IMP288 in metastatic CRC patients is ongoing (NCT02300922).
Soon after the phase I PRIT study in CRC patients, a phase I

PRIT study with 111In/177Lu-IMP288 on 9 patients with CEA-
expressing small-cell lung cancer was reported in 2015 (111), and
first-in-humans PRID with TF2/68Ga-IMP288 in MTC patients
was reported in 2016 (112). In the last 2 y, additional clinical stud-
ies with TF2/68Ga-IMP288 were performed on CRC (113) and
HER2-negative/CEA-positive metastatic breast cancer patients
(114). In 2021, Bodet-Milin et al. reported clinical data using
TF2/68Ga-IMP288 in MTC patients, demonstrating improved sen-
sitivity for metastatic lesion detection over 18F-L-dihydroxypheny-
lalanine PET/CT (115). Select examples of recent clinical PRID
studies with TF2/IMP288 are shown in Figure 4.
Alongside the DNL BsAb pretargeting system, 2 additional BsAb

pretargeting approaches using ultra-high-affinity (picomolar to fem-
tomolar) antichelate mAbs have made significant progress in the
last decade. Orcutt et al. affinity-matured the anti-DOTA chelate
mAb 2D12.5 (62) and reformatted it as an scFv called C825 (116).
C825 was shown to bind DOTA complexes of lutetium, yttrium,
and gadolinium with similar affinity (low-picomolar range) (116).

FIGURE 3. BsAb pretargeting with DNL BsAb or with SADA BsAb platform. (A) Structure of tri-Fab
TF4 made by DNL method and associated HSG hapten, IMP-288. DNL BsAb has single binding site
for hapten and 2 binding sites for tumor antigen. (Reprinted with permission of (154).) (B) Structure of
anti-GD2/anti-DOTA SADA BsAb and 225Ac-DOTA-hapten (reprinted from (123)) and 177Lu-aminoben-
zyl-DOTA (reprinted with permission of (127)). SADA BsAb has 4 binding sites for both DOTA hapten
and tumor antigen. hA20 5 humanized anti-CD20 IgG hA20 (veltuzumab); VH 5 heavy chain variable
domain; VK 5 light chain variable domain; CH1 5 heavy-chain constant domain 1; CK 5 light-chain
constant domain; DDD2 5 dimerization and docking domain with SEQ ID NO: 2; AD2 5 anchoring
domain with SEQ ID NO: 4.
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Also, Orcutt reported a highly modular tetravalent IgG-scFv BsAb
format (117) and carefully screened candidate DOTA-radiohaptens
to determine which had the most favorable in vivo properties for
PRIT, reporting estimated human liver, kidney, and red marrow
doses for 90Y-labeled haptens of 0.130–0.192, 0.703–0.999, and
0.029–0.048 cGy/37 MBq respectively (118). Also, in combination
with a dextran-hapten CA, highly efficient anti-CEA mAb/C825
pretargeting with 177Lu- or 111In-haptens in nude mice bearing
LS174T human CRC xenografts was demonstrated (119). These
studies led to the antichelate BsAb platform called DOTA-based
PRIT, or DOTA-PRIT. Between 2014 and 2018, Cheal et al. dem-
onstrated DOTA-PRIT with 177Lu-DOTA-hapten targeting a wide
variety of solid tumors (antigen targets: GD2 (120), glycoprotein
A33 (121), HER2 (122)). More recently, that team developed a
225Ac-DOTA-hapten for a-PRIT (123). When DOTA-PRIT was
used to pretarget 177Lu-DOTA-hapten in nude mice bearing human
xenografts, TIs of 28–142 for blood, 7–23 for kidney, and 12–47 for
liver were achieved, with estimated tumor-absorbed doses ranging
from 1,476 to 8,473 cGy/37 MBq (120,122,124). Notably, the low-
est TIs (blood, 28; kidney, 7; and liver, 12) and estimated tumor
dose (1,476 cGy/37 MBq) were observed for the anti-HER2 DOTA-
PRIT system, which is known to internalize (122). Green et al. also
used C825 BsAb for pretargeting 90Y-DOTA-hapten to a variety of
hematologic cancer targets (e.g., CD20 (104), CD45 (125), and
CD38 (126)), reporting TIs of 6.75–21.4 for blood, 15.9–24.9 for
kidney, and 5.52–7.24 for liver, with estimated tumor-absorbed dose
ranging from 3,981 to 7,781 cGy/37 MBq.
Santich et al. reported a novel BsAb platform designed as a fusion

of a self-assembling-and-disassembling (SADA) domain to a tan-
dem single-chain BsAb for highly efficient 2-step radiohapten
pretargeting (Fig. 3B) (127). With anti-GD2 SADA-PRIT plus

177Lu-DOTA-hapten in nude mice bearing human cancer xeno-
grafts, an exceptional balance of high tumor targeting and high TIs
was achieved: TIs were 100 for blood, 25 for kidney, and 32 for
liver, with estimated tumor-absorbed dose of 11,840 cGy/37 MBq.
Also, safe and tumoricidal anti-GD2 SADA-PRIT plus 177Lu-
DOTA-hapten or 225Ac-DOTA-hapten was established (127). Initial
clinical trials of anti-GD2 SADA-PRIT plus 177Lu-DOTA-hapten
are planned for this year on patients with recurrent or refractory met-
astatic GD2-expressing solid tumors, including small-cell lung can-
cer, sarcoma, and malignant melanoma (NCT05130255).
In 2018–2019, the team of Hoffmann-La Roche, Inc., and Orano

Med LLC described a novel BsAb antitumor/antichelate hapten pre-
targeting system (antigen targets: CD20, HER2, and CEA) based on
an anti-1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclo-
dodecane (DOTAM) antibody with femtomolar affinity for lead-
DOTAM complexes (128). Specifically, for the anti-CEA/DOTAM
BsAb PRIT-0213, they reported dissociation constants of 0.84 pM
and 5.7 pM for lead-DOTAM and bismuth-DOTAM, respectively
(128). In nude mice bearing human cancer xenografts, they reported
dosimetry for 3-step pretargeting (i.e., with CA) of 0.74 MBq of
212Pb-DOTAM. On the basis of relative biologic effectiveness equal
to 5, they estimated an absorbed dose of 99.55 Gy to BxPC3 tumor
and TIs of 28, 14, and 91 for blood, kidney, and liver, respectively
(128). Also, they highlighted preclinical anti-CEA PRIT therapy
results, detailing strong tumor growth inhibition and significantly
prolonged survival with 3 cycles of 1.11 MBq (129).

Harnessing Affibody (Affibody AB) Molecules as PRIT Vectors
Although IgG-based mAbs and BsAb have traditionally been

used as PRIT vectors, their prolonged circulation can make timing
of complete clearance difficult, leading to unintended bystander
toxicity. Advances in protein engineering have given rise to alterna-
tive protein constructs such as minibodies (80 kDa), diabodies
(50 kDa), and engineered scaffold proteins (4–20 kDa) (6). These
smaller constructs have proven to be especially favorable as radio-
nuclide imaging vectors (6). Affibody molecules are a highly prom-
ising class of engineered scaffold proteins that can be optimized to
have high affinity and slow internalization kinetics. The anti-HER2
Affibody radiolabeled with 111In (111In-ABY-025) has been investi-
gated clinically for imaging of disseminated HER2-expressing
breast cancer (130). However, as vectors for radioimmunotherapy,
Affibody molecules have been shown to be suboptimal for residual-
izing radiometal labels, leading to significant renal uptake (131).
Between 2016 and 2021, numerous studies describing Affibody

PRID and PRIT were reported (132,133). Figure 5 illustrates and
contrasts the pretargeting systems: first is an approach using
synthetic DNA-analog peptide nucleic acids (PNAs) originally
described by Hnatowich et al. in 1997 for PRID with 99mTc (35),
and further work applying a bioorthogonal approach using click
chemistry (described in the following section). A PNA strand is
covalently conjugated to a targeting vector, in this case, an Affi-
body, and the radionuclide payload is delivered on a complemen-
tary PNA strand, injected after an optimized pretargeting interval
of 16 h (132). The hybridization of complementary PNAs as a pre-
targeting technique supplies several advantages, including high
affinity (picomolar dissociation constant), low immunogenicity,
and resistance to in vivo degradation (132). For the Affibody-PNA
approach, they reported for PRIT with 177Lu-PNA (177Lu-HP2) in
nude mice bearing human cancer xenografts an estimated absorbed
dose of 3,996 cGy/37 MBq to tumor and TIs of 269, 5, and 81 for
blood, kidney, and liver, respectively (132). These results were

FIGURE 4. Select examples of recent clinical BsAb PRID with DNL TF2
and radiolabeled IMP288 (TF2/IMP288). (A) Scintigraphic images (axial
views) of CRC patient imaged with TF2/111In-IMP288, with highly specific
targeting of primary colon tumor, confirmed by CT and 18F-FDG PET/CT
(B and C, respectively). (Reprinted from (108).) (D) PET image (coronal
view) of MTC patient imaged with TF2/68Ga-IMP288, with maximum-
intensity-projection (MIP) image showing several pathologic lesions.
(Reprinted from (115).)
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achieved using a 2-step approach, that is, without using CA. PRIT
treatment efficacy was established using a fractionated PRIT
approach (total administered 177Lu-HP2, 96 MBq/mouse) in nude
mice bearing subcutaneous SKOV-3 xenografts. Median survival
was significantly prolonged in PRIT-treated mice in comparison to
controls, and treatment was well tolerated, with no nephrotoxicity
(132). Interestingly, they reported less efficient Affibody-PRIT
using the bioorthogonal chemistry approach; although mouse
dosimetry was not reported, the tumor-to-kidney AUC ratio was
only 1.4 (133). However, this was a marked improvement from
conventional Affibody-radioimmunotherapy, which results in a
tumor-to-kidney AUC ratio of less than 1 and shows the promise
of PRIT to substantially reduce radiometal accumulation in the
kidneys with engineered scaffold proteins (132).

Bioorthogonal Pretargeting
Meares’ elegant affinity capture pretargeting strategy, consisting

of an antibody/ligand pair with complementary reactive groups
that become covalently linked when they are near the antibody/
ligand complex, was applied to antichelate mAb-based reporter
gene imaging for noninvasive tracking of chimeric antigen recep-
tor T cells by Krebs et al. (134). In contrast to affinity capture,
with the very rapid kinetics of the bioorthogonal inverse electron-
demand Diels–Alder click reaction (k2 . 103 M21s21), probe
attachment can occur by direct reaction with a chemically modi-
fied antibody (135,136). In 2010, initial in vivo PRID studies with
the inverse electron-demand Diels–Alder reaction were reported
(137). Soon after, many groups took an interest. Early develop-
ment efforts included novel tetrazine-based radioprecursors for
numerous radioisotopes, second-generation radiolabeled tetrazine
molecules with improved pharmacokinetic and biodistribution
properties, and incorporation of a chase step or CA (reviewed
recently by Rondon and Degoul (138)).
Significant progress has also been made for PRIT using transcy-

clooctene-modified mAbs and radiolabeled tetrazine for inverse elec-
tron-demand Diels–Alder. In 2017, PRIT was demonstrated using
212Pb-tetrazine in mice bearing TAG-72–expressing human CRC
xenografts (139). Between 2017 and 2018, PRIT using 177Lu-
tetrazine (140,141) and 225Ac-tetrazine (142), respectively, was dem-
onstrated in multiple human tumor xenografts (CRC and pancreatic).
For PRIT with 177Lu-tetrazine in nude mice bearing human xenografts,
TIs of blood (10.4–17.7), kidney (12.0–19.9), and liver (19.0–40.1)

were achieved, with estimated tumor-absorbed
doses ranging from 9,472 to 30,821 cGy/37
MBq (140,143). Moreover, PRIT with the
highly promising 64Cu/67Cu pair was recently
reported (144), with the authors nicely demon-
strating efficient sequential radiolabeled tetra-
zine administration and safe and effective
theranostic treatment. For PRIT with 67Cu-tet-
razine, the authors reported TIs of 6.5–9.7 for
blood, 7.2–9.1 for kidney, and 4.0–4.2 for
liver, with estimated tumor-absorbed doses
ranging from 2,116 to 2,331 cGy/37 MBq
depending on the pretargeting interval (144).
Recent efforts at bioorthogonal pretargeting

development have focused on a combination
of new chemistries (e.g., adamantane/cucurbi-
turil (145)), new vectors (e.g., with nanopar-
ticles (146); also, more details are provided
in a recent review (147)), and continued

optimization of radiolabeled tetrazine (148). Clinical bioorthogonal
pretargeting chemotherapy trials are ongoing (NCT04106492), and
bioorthogonal PRID trials are planned for the near future (149).

A ROAD MAP FOR DEVELOPMENT: RADIOBIOLOGIC
GOALS OF PRIT

Our goal for PRIT should be to cure the tumor while safeguarding
against excessive toxicity to normal tissues. To achieve this, we
need better methods for dosimetry of internal radioemitters. We sug-
gest that Primer 2020, the Medical Internal Radiation Dosimetry
Committee publication soon to be released by the Society of Nuclear
Medicine and Molecular Imaging, has provided us with the compu-
tational basis for tumor and normal-tissue dosimetry measurement
to meet the goal of safe and efficacious targeted radiotherapy of
advanced human tumors. Supplemental Figure 1 and the other sup-
plemental information provide a more detailed rationale (supple-
mental materials are available at http://jnm.snmjournals.org).
As a starting point for radiation doses needed for curing while

avoiding catastrophic damage to normal tissue, we propose the fol-
lowing. In a prior publication, we suggested quantitative radiobio-
logic targets to be met to achieve a high probability of cure for
solid human tumors (1). The reasoning is that a sufficient radiation
dose (cGy) must be absorbed by all cells in the tumor while mini-
mizing the dose absorbed by normal tissues (i.e., the maximizing of
TI). A series of reasonable benchmarks for effective treatment can
be provided on the basis of laboratory and clinical experience, even
though the response to radioimmunotherapy varies depending on
several factors, including tumor size, target density, tumor structure
(e.g., liquid or solid, tumor microenvironment), the type of radia-
tion administered, the heterogeneity of targeting at the microscopic
level, and the ability to repair radiation damage.
A curative watershed for PRIT of solid tumors is the set of bench-

marks that achieves a cumulative total of 8,000–10,000 cGy of
absorbed radiation dose to individual tumor lesions while at the same
time minimizing the dose to radiosensitive tissues, such as bone mar-
row (,150 cGy; TI, 40–100), small intestine (,250 cGy; TI, 40–60),
and kidney (,1,500 cGy; TI, 6–10) (1). Two critical parameters to
control for are tumor size and target density, because these directly
influence tumor dose and TIs. We have called this collective of PRIT
achievable properties the sweet spot. As shown in Tables 1 and 2, var-
ious forms of PRIT have the chance to achieve the sweet-spot high

FIGURE 5. Affibody pretargeting with PNAs (A) or bioorthogonal inverse electron-demand Diels–
Alder click chemistry (B). (Portions reprinted from (133,155).)
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tumor radiation dose and high TIs. Real-life examples from living
systems support these ideas. These include the effectiveness of 131I-
NaI, a medium-energy b-emitter in certain thyroid cancers (150), and
the cures achieved without histopathologic evidence of radiotoxicity
in animal tumor models of human xenografts.

CONCLUSIONS AND OUTLOOK

PRIT is a form of targeted radiotherapy with internally adminis-
tered radioemitters (radionuclide endotherapy, or unsealed radionu-
clides). As we have used the term here, an antitumor vector (e.g.,
Affibody, mAb, or nanoparticle) is the basis for tumor targeting and
is modified to achieve desired properties of radionuclide capture dur-
ing the targeting procedure. PRIT is a groundbreaking achievement
because its components can be delivered in a time sequence that
maximizes radiation to tumor while minimizing radiation to normal
tissues. In this review, we have illustrated the current status of PRIT,
with an emphasis on radiohapten capture (e.g., reversible binding
using antihapten BsAb or biotin–streptavidin binding), bioorthogonal
techniques (irreversible binding), and Affibody-PNA pretargeting
that have shown high TIs in animal tumor models of human xeno-
grafts. In all 3 approaches, modified antitumor proteins provide the
targeting specificity to tumor. As shown in Figure 1, other antitumor
vectors and radionuclide forms for complementary radioligand cap-
ture, are proliferating.
During PRIT, the targeting vector and the radiohapten/carrier

radiopharmacology are key parameters for high TI. Building on
advances in protein engineering and mAb humanization, previous
obstacles such as insufficient mAb/hapten affinity and immunoge-
nicity can be overcome. Furthermore, we can more precisely bal-
ance the attributes of affinity, molecular size, and physicochemical
properties of antibody-based carriers to improve tumor localization
and penetration while limiting retention in normal tissues via rapid
renal clearance. Also, with innovation in BsAb design, sufficient
contrast and TI can be achieved without the aid of chase or CA,
which would greatly simplify dosing to 2 steps and reagents.
Another exciting new frontier is high–linear-energy-transfer

radiation, in which fewer quantitative guideposts for PRIT exist.
There is an unmet need to define the dosimetry more completely,
with a-emitters such as 225Ac showing great promise (151). Work
to estimate relative biologic effectiveness during PRIT with
a-emitting radioisotopes is beginning (152).
In summary, pretargeting in nuclear medicine has achieved many

milestones (Supplemental Table 1), including early-phase clinical
testing (Supplemental Table 2). Pioneering clinical PRIT studies
have demonstrated safety and that meaningful tumor doses can be
achieved in select patients, but dosing is typically limited by insuffi-
cient TI, ADA, and the complexity of the approach. Still, clinical
investigation of PRIT and radiotheranostics demonstrates increasing
value for patient selection and treatment planning, permitting opti-
mized reagent dosing during PRIT (Table 1). It is likely that individ-
ualized dosimetry will predict an optimized dose that will reduce the
risk of underdosing tumors (leading to treatment failure) and over-
dosing normal tissues (leading to radiation toxicity).
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