First In Vivo and Phantom Imaging of Cyclotron-Produced ¹³³La as a Theranostic Radionuclide for ²²⁵Ac and ¹³⁵La

Bryce J.B. Nelson¹, Simon Ferguson¹, Melinda Wuest^{1,2}, John Wilson¹, M. John M. Duke¹, Susan Richter^{1,2}, Hans Soenke-Jans^{1,2}, Jan D. Andersson^{1,3}, Freimut Juengling¹, and Frank Wuest^{1,2}

¹Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; ²Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada; and ³Edmonton Radiopharmaceutical Center, Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada

Theranostic isotope pairs have gained recent clinical interest because they can be labeled to the same tracer and applied for diagnostic and therapeutic purposes. The goals of this study were to investigate cyclotron production of clinically relevant ¹³³La activities using natural and isotopically enriched barium target material, compare fundamental PET phantom imaging characteristics of ¹³³La with those of common PET radionuclides, and demonstrate in vivo preclinical PET tumor imaging using ¹³³La-PSMA-I&T. Methods: ¹³³La was produced on a 24-MeV cyclotron using an aluminum-indium sealed target with 150-200 mg of isotopically enriched ¹³⁵BaCO₃, ^{nat}BaCO₃, and ^{nat}Ba metal. A synthesis unit performed barium/lanthanum separation. DOTA, PSMA-I&T, and macropa were radiolabeled with ¹³³La. Derenzo and National Electrical Manufacturers Association phantom imaging was performed with ¹³³La, ¹³²La, and ⁸⁹Zr and compared with ¹⁸F, ⁶⁸Ga, ⁴⁴Sc, and ⁶⁴Cu. In vivo preclinical imaging was performed with ¹³³La-PSMA-I&T on LNCaP tumor-bearing mice. Results: Proton irradiations for 100 μ A·min at 23.3 MeV yielded 214 \pm 7 MBg of ¹³³La and $28 \pm 1 \text{ MBq}$ of ^{135}La using $^{nat}\text{BaCO}_3$, $59 \pm 2 \text{ MBq}$ of ^{133}La and $35 \pm 1 \text{ MBq}$ of ^{135}La using $^{nat}\text{BaCO}_3$, and $81 \pm 3 \text{ MBq}$ of ^{133}La and $48 \pm 1 \text{ MBq}$ of 135 La using nat Ba metal. At 11.9 MeV, 135 La yields were $81\pm2\,\text{MBq},~~6.8\pm0.4\,\text{MBq},~~\text{and}~~9.9\pm0.5\,\text{MBq}~~\text{for}~~^{135}\text{BaCO}_3,$ ^{nat}BaCO₃, and ^{nat}Ba metal. BaCO₃ target material recovery was $95.4\% \pm 1.7\%$. National Electrical Manufacturers Association and Derenzo phantom imaging demonstrated that ¹³³La PET spatial resolution and scanner recovery coefficients were superior to those of ⁶⁸Ga and ¹³²La and comparable to those of ⁸⁹Zr. The apparent molar activity was 130 \pm 15 GBq/µmol with DOTA, 73 \pm 18 GBq/µmol with PSMA-I&T, and 206 \pm 31 GBq/µmol with macropa. Preclinical PET imaging with ¹³³La-PSMA-I&T provided high-resolution tumor visualization with an SUV of 0.97 \pm 0.17 at 60 min. Conclusion: With high-yield ^{133}La cyclotron production, recovery of BaCO3 target material, and fundamental imaging characteristics superior to those of ⁶⁸Ga and ¹³²La, ¹³³La represents a promising radiometal candidate to provide highresolution PET imaging as a PET/ α -therapy theranostic pair with ²²⁵Ac or as a PET/Auger electron therapy theranostic pair with ¹³⁵La.

Key Words: PET; radiolanthanum; ²²⁵Ac; theranostics; cyclotron

J Nucl Med 2022; 63:584–590 DOI: 10.2967/jnumed.121.262459

For correspondence or reprints, contact Frank Wuest (wuest@ualberta.ca). Published online Aug. 12, 2021.

heranostic pairs in nuclear medicine involve labeling molecular target vectors first with a diagnostic radionuclide, followed by a therapeutic particle-emitting radionuclide (1). Both radionuclides should have similar chemical properties, ideally being isotopes of the same element. Theranostics has strong potential in targeted radionuclide therapy, with a diagnostic positron or γ -emitting radionuclide used in PET or SPECT being paired with a therapeutic radionuclide emitting α -particles, β^- -electrons, or Auger electrons (2). Recently introduced ¹³³La (half-life $[t_{1/2}]$, 3.9 h), ¹³²La ($t_{1/2}$, 4.8 h), and ¹³⁴Ce ($t_{1/2}$, 3.2 d)/¹³⁴La ($t_{1/2}$, 6.5 min) PET radionuclides are uniquely suited as theranostic imaging partners for ²²⁵Ac ($t_{1/2}$, 9.9 d) in targeted α -therapy or with ¹³⁵La ($t_{1/2}$, 19.5 h) in Auger electron therapy (AET) because of their chemical similarity to, and longer half-lives than, the ubiquitous PET radiometal 68 Ga (t_{1/2}, 68 min) (2–7). 225 Ac has shown considerable efficacy in clinical trials for treating metastatic cancers (2,8). ¹³²La has been proposed as a theranostic PET imaging surrogate for ²²⁵Ac therapy and has displayed in vivo uptake characteristics similar to those of ²²⁵Ac (6). However, there are fundamental imaging limitations inherent in ¹³²La because of its high maximum positron emission energy (Emax) and mean positron emission energy (E_{mean}) (E_{max}/E_{mean}, 3.67/1.29 MeV), which significantly reduces image spatial resolution and contrast compared with other PET radionuclides (e.g., ¹⁸F E_{max}/E_{mean}, 0.634/0.250 MeV; ⁶⁸Ga E_{max}/E_{mean}, 1.90/0.829 MeV; ⁶⁴Cu E_{max}/E_{mean}, 0.653/0.278 MeV; ⁴⁴Sc E_{max}/E_{mean}, 1.47/0.632 MeV), and its high-energy and highintensity γ -emissions, which are problematic from a dosimetric perspective (3,9). ¹³³La has a lower positron emission energy $(E_{max}/$ E_{mean} , 1.02/0.461 MeV) than ¹³²La, ⁶⁸Ga, or ⁴⁴Sc; energy comparable to ^{89}Zr (E_max/E_mean, 0.902/0.396 MeV), and lower energy and lower-intensity γ -emissions than ⁸⁹Zr, ⁴⁴Sc, or ¹³²La (3). Here, as outlined in Figure 1, we describe a high-yield cyclotron production method for ¹³³La using natural and isotopically enriched ¹³⁵BaCO₃; phantom measurements comparing fundamental imaging properties of ¹³³La with other PET radionuclides, including 18 F, 68 Ga, 64 Cu, 89 Zr, 44 Sc, and 132 La; and the first (to our knowledge) preclinical PET imaging with ¹³³La. We have chosen to radiolabel PSMA-I&T for imaging prostate cancers.

MATERIALS AND METHODS

Chemicals

Table 1 displays the isotopic compositions of ¹³⁵BaCO₃, ^{nat}BaCO₃, and ^{nat}Ba metal. Isotopically enriched ¹³⁵BaCO₃ was obtained from Trace Sciences International. Barium carbonate (99.999% trace metals

Received Apr. 18, 2021; revision accepted Jul. 16, 2021.

Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications. License: https://creativecommons.org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.xhtml.

COPYRIGHT © 2022 by the Society of Nuclear Medicine and Molecular Imaging.

FIGURE 1. Experimental overview.

basis), barium metal (99.99% trace metals basis), American Chemical Society reagent-grade concentrated hydrochloric acid (37%), nitric acid (70%), ammonium hydroxide (28%), and periodic table mix inductively coupled plasma optical emission spectrometry (ICP-OES) elemental standards were obtained from Sigma-Aldrich. Oxalic acid dihydrate (99.5%) was purchased from Fisher Scientific. Aluminum disks were obtained from Michaels, and aluminum foil was purchased from Goodfellow Cambridge. Indium wire was purchased from AIM Specialty Materials. Branched diglycolamide resin was purchased from Eichrom. Eckert and Ziegler Isotopes National Institute of Standards and Technology-traceable γ -ray sources were used for highpurity germanium (HPGe) detector energy and efficiency calibration. Thin-layer chromatography silica gel sheets were purchased from Merck. Water (18 M Ω ·cm) was obtained from a MilliporeSigma Direct-O 3 ultraviolet system. ⁸⁹Zr was provided by the Washington University Cyclotron Facility. DOTA was purchased from Macrocyclics. Macropa was purchased from MedChemExpress. PSMA-I&T was obtained from ABX Advanced Biochemical Compounds. DCFPyL was synthesized in-house.

Instrumentation

Activity and radionuclidic purity were assessed using an Ortec GEM35P4-70-SMP HPGe detector running GammaVision software, with dead times below 25%. Elemental purity was assessed using an Agilent Technologies 720 Series ICP-OES. A NEPTIS Mosaic-LC synthesis unit (Optimized Radiochemical Applications) separated ¹³³La from the Ba target solution.

An Eckert and Ziegler AR-2000 radio-thinlayer chromatography imaging scanner quantified the fraction of chelator-bound ¹³³La after reaction. Solid targets were manufactured using a Carver model 6318 hydraulic press and an MTI Corp. 10-mm (internal diameter) EQ-Die-10D-B hardened steel die. A Carbolite 16/610-tube 3-zone furnace was used for ¹³⁵BaCO₃ recovery. X-ray powder diffraction (XRD) patterns were acquired on starting and recovered BaCO₃ and intermediate BaC₂O₄ using a Rigaku Ultima IV x-ray diffractometer to confirm phase identity and purity.

Cyclotron Targeting and Irradiation

Figure 2 depicts nuclear reaction crosssections for the 13x Ba(p,xn) 13x La reactions of interest for $^{132/133/135}$ La production from the TENDL 2019 library, weighted for nat Ba and isotopically enriched 135 BaCO₃ target material (*10*). Cyclotron targets were prepared with 150–200 mg of nat Ba metal, nat BaCO₃, or enriched 135 BaCO₃, a roughened aluminum disk (24 mm in diameter, 1.35 mm thick), indium wire (1 mm in diameter), and alumi-

num foil (125 µm thick) in a manner similar to that previously described (3,11). Aluminum was shown to be an adequate substitute for silver, presenting a lower cost and activation. Target components are shown in Supplemental Figure 1 (supplemental materials are available at http://jnm.snmjournals.org). Targets were irradiated for 5-263 min at 11.9 and 23.3 MeV using an Advanced Cyclotron Systems Inc. TR-24 cyclotron, at proton beam currents of 10 µA incident on the target assembly. Higher energy runs (beam-extracted at 24 MeV, 23.3 MeV incident on target pellets, 20.2 MeV exiting Ba metal, and 19.4 MeV exiting BaCO₃) were performed with 200 mg of barium material with the aluminum target cover facing the beam, to maximize ¹³³La production based on TENDL 2019 cross-section simulation data (10). During higher-energy runs, a silver disk was placed behind the target to avoid ^{13}N production from the $^{16}O(p,\alpha)^{13}N$ reaction. For lower-energy runs (18.2-MeV extraction, 11.9 MeV incident on target pellets, 7.8 MeV exiting Ba metal, and 6.4 MeV exiting BaCO₃), performed to maximize ¹³⁵La production, 150 mg of barium material were used, and the target was installed in reverse with the aluminum disk acting as a degrader to reduce beam energy from 18.2 to 11.9 MeV, as calculated using SRIM (12).

Automated ¹³³La Separation and Radiochemical Purity Analysis

 133 La and BaCO₃ were separated using a process with aspects derived from previous studies (3,4). The target was opened by peeling back the aluminum cover and placed in a Teflon (DuPont) dissolution vessel. The vessel was filled with 10 mL of 18 MΩ·cm water and

Target material	¹³⁸ Ba	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	¹³² Ba	¹³⁰ Ba
^{nat} BaCO ₃ / ^{nat} Ba metal	71.7	11.2	7.9	6.6	2.4	0.1	0.1
¹³⁵ BaCO ₃	2.6	0.8	3.6	92.7	0.3	<0.05	<0.05
Data are percentages.							

 TABLE 1

 Isotopic Composition of Natural and Isotopically Enriched Barium Target Materials

FIGURE 2. Nuclear reaction cross-section simulation data of protoninduced nuclear reactions on ^{132/134/135/136/137}Ba for ^{132/133/135}La production weighted for ^{nat}Ba isotopic abundance (A) and isotopically enriched ¹³⁵BaCO₃ abundance (B) (*10*).

sonicated in an ultrasonic bath for 3 min to dislodge the BaCO₃ from the target backing. Target components were removed and rinsed with 5 mL of 18 M Ω ·cm water into the vessel, and 5 mL of 3 M HNO₃ were added, resulting in a 0.75 M HNO₃ reaction mixture that dissolved the BaCO₃ in 5 min. This solution was passed through a solid-phase extraction cartridge containing 0.50 g of branched diglycolamide resin (conditioned with 10 mL of 3 M HNO₃) and washed with 50 mL of 3 M HNO3 to remove residual barium and other metal impurities, followed by column deacidification with 5 mL of 0.5 M HNO₃. Flow rates were kept below 2 mL·min⁻¹ to avoid ¹³³La loss from the resin. ¹³³LaCl₃ was eluted using 1 mL of 0.05 M HCl. After passing through the resin, the first 30 mL of process solution were diverted to a collection vial for subsequent BaCO3 recovery. After separation, target components were sonicated in $18 \text{ M}\Omega$ ·cm water for reuse. Radionuclidic and elemental purity of ¹³³LaCl₃ was determined by HPGe y-ray spectroscopy and ICP-OES.

BaCO₃ Target Material Recovery

The 30 mL of barium recovery solution were neutralized to pH 6–8 with NH₄OH. Ten milliliters of 0.8 M C₂H₂O₄ were added to the recovery solution to precipitate BaC₂O₄. The solution was passed through a fritted column to trap BaC₂O₄ and washed with 50 mL of 18 MΩ·cm water. BaC₂O₄ was removed from the column and then heated to 550°C for 2 h in a sealed tube furnace with an airflow of 20 mL/min to decompose BaC₂O₄ to BaCO₃ while avoiding conversion to BaO (*13*). Waste gases from decomposition were vented to a fume hood. Recovery was quantified by gravimetric analysis of dried samples and tracked by HPGe γ -spectroscopy using γ -emissions from ^{135m}Ba (268 keV; t_{1/2}, 28.7 h). Samples of purchased BaCO₃, precipitated BaC₂O₄, and recovered BaCO₃ were analyzed by XRD to identify the product and evaluate its quality.

Phantom Imaging

Phantom imaging was performed using Derenzo and National Electrical Manufacturers Association (NEMA) image-quality phantoms on an Inveon PET/CT scanner (Siemens Preclinical Solutions), as described by Ferguson et al. (14). The Derenzo phantom, used to investigate image contrast and spatial resolution, consists of sections with rods of varying diameters (0.8, 1.0, 1.25, 1.5, 2.0, and 2.5 mm) that are filled with the radionuclide of interest diluted in 20-30 mL of water. The NEMA phantom, used to investigate image noise, spillover ratio, and recovery coefficient, consists of several fillable sections including two 7.5-mm-diameter cold-air and water cylindric volumes. NEMA and Derenzo phantom scans for ¹³³La, ¹³²La, and ⁸⁹Zr were acquired in list mode, binned into sinograms, and reconstructed with the default filtered backprojection, ordered-subset expectation maximization, and maximum a posteriori estimation algorithms. Acquisition, data processing, and evaluation followed the same procedure as used by Ferguson et al. (14) for ¹⁸F, ⁶⁴Cu, ⁶⁸Ga, and ⁴⁴Sc to enable direct comparison of the different radionuclides' imaging performance.

Radiolabeling of DOTA, PSMA-I&T, and Macropa with ¹³³La

Similar to techniques in previous studies (3,4), the activity of a 500- μ L ¹³³LaCl₃ aliquot was measured, and the solution pH was adjusted to 4.5 with 50 μ L of NaOAc buffer (pH 9.0). A 100- μ L volume of this ¹³³La solution (5–150 MBq) was reacted with 0.1–20 μ g of DOTA, PSMA-I&T, and macropa dissolved in 50 μ L of 18 M Ω ·cm water at 90°C for 30 min. Each solution was analyzed using radio–thin-layer chromatography on silica plates to determine radiochemical purity and incorporation with 0.1 M citric acid buffer as the mobile phase.

Preclinical PET Imaging

Animal studies using LNCaP tumor-bearing male nu/nu nude mice (Charles River Laboratories) were performed according to the guidelines of the Canadian Council on Animal Care and approved by the local Cross Cancer Institute Animal Care Committee. Static PET image scans (20-min duration) of ¹³³La-PSMA-I&T at 60 min after injection were performed on an Inveon PET/CT scanner (Siemens Preclinical Solutions). Blocking experiments were performed using the PSMA-targeting agent DCFPyL. Radiotracer (33-50 MBq of ¹³³La-PSMA-I&T in 80-120 µL of NaOAc/saline) and blocking compound (300 µg of DCFPyL, dosed 5 min beforehand) were injected into the tail vein of isoflurane-anesthetized mice (100% oxygen; gas flow, 1.5 L/min), the mice were placed in a prone position into the center of the field of view, and body temperature was kept constant at 37°C. A transmission scan for attenuation correction was not acquired. The frames were reconstructed using ordered-subset expectation maximization and maximum a posteriori algorithms. No correction for partialvolume effects was applied. The image files were processed using ROVER software (version 2.0.51; ABX GmbH).

Statistical Analysis

All data are given as mean \pm SD ($n \ge 3$).

RESULTS

Cyclotron Targeting and Irradiation

Average end-of-bombardment activities (n = 3) of ¹³³La and coproduced ¹³⁵La for 100 µA·min runs (10 µA for 10 min) at 11.9and 23.3-MeV beam energies with different barium target materials are summarized in Table 2. Irradiating enriched ¹³⁵BaCO₃ at 23.3 MeV resulted in a significant increase in ¹³³La production compared with ^{nat}BaCO₃ and ^{nat}Ba metal. Irradiating recovered ^{nat}BaCO₃ at 23.3 MeV for 100 µA·min yielded 57 ± 1 MBq of ¹³³La and 36 ± 1 MBq of ¹³⁵La, similar to yields for fresh ^{nat}BaCO₃.

TABLE 2

Average Experimental (n = 3) End-of-Bombardment Activities (MBq) and Saturated Yields (MBq/ μ A) of ^{133/135}La for 100- μ A·Min Runs at 11.9- and 23.3-MeV Incident Energies for Different Barium Target Materials

	¹³⁵ BaCO ₃ t	¹³⁵ BaCO ₃ target yields		^{nat} BaCO ₃ target yields		^{nat} Ba metal target yields	
energy (MeV)	¹³⁵ La	¹³³ La	¹³⁵ La	¹³³ La	¹³⁵ La	¹³³ La	
11.9	81 ± 2 (79); y = 1,377 ± 31	0	$\begin{array}{c} \text{6.8} \pm \text{0.4} \; (\text{5.9}); \\ \text{y} = 115 \pm 6 \end{array}$	0	9.9 ± 0.5 (10); y = 167 ± 8	0	
23.3	28 ± 1 (31); y = 475 ± 11	214 \pm 7 (279); y = 736 \pm 25	35 ± 1 (41); y = 598 ± 9	59 ± 2 (61); y = 204 ± 8	$\begin{array}{c} 48 \pm 1 \; (61); \\ y = 809 \pm 17 \end{array}$	81 \pm 3 (94); y = 277 \pm 9	

y = saturated yield in MBq/µA. Theoretic end-of-bombardment activities calculated with TENDL are in parentheses.

TABLE 3ICP-OES Analysis (n = 3) of 133 LaCl $_3$ Produced with
Different Barium Target Materials

	Elemental concentration (ppb)				
Metal	Fresh BaCO ₃	Recovered BaCO ₃	Barium metal		
Zinc	7.4 ± 1.7	5.5 ± 2.4	76 ± 55		
Iron	$\textbf{3.2}\pm\textbf{0.4}$	$\textbf{2.1}\pm\textbf{0.8}$	$\textbf{16.8} \pm \textbf{11.7}$		
Aluminum	18 ± 2	16 ± 1	37 ± 19		
Barium	240 ± 179	128 ± 108	$\textbf{1,}\textbf{150}\pm\textbf{360}$		
Indium	$\textbf{2.5} \pm \textbf{1.2}$	$\textbf{3.9} \pm \textbf{1.5}$	$\textbf{3.1}\pm\textbf{0.9}$		
Copper	5.5 ± 0.3	5.3 ± 0.1	5.3 ± 0.4		

Data for barium metal are from Nelson et al. (3).

¹³³La Separation and Radiochemical Purity Analysis

Table 3 contains ICP-OES elemental purity results for the ¹³³LaCl₃ product. After removal from the reactor after sonification, the aluminum target backing and cover contained no detectable ¹³³La activity. The entire separation took approximately 50 min. Over 92% of decay-corrected ¹³³La was recovered in

FIGURE 3. Decay-corrected fraction of initial ^{135m}Ba and ¹³⁵La target activity in solid-phase extraction cartridge eluate as function of process volume.

1 mL of 0.05 M HCl, and HPGe analysis of the ¹³³LaCl₃ product produced with ^{nat}BaCO₃ showed small activities of ¹³¹La ($t_{1/2}$, 59 min) and ¹³²La ($t_{1/2}$, 4.8 h) with no other observed radionuclidic impurities, similar to previous findings (3). ¹³¹La and ¹³²La were not observed in ¹³³LaCl₃ produced with isotopically enriched ¹³⁵BaCO₃. Elemental purity determined by ICP-OES of ¹³³LaCl₃ produced with fresh and recovered BaCO₃ target material was superior to ¹³³LaCl₃ previously produced with barium metal as described in a previous publication (3).

Enriched ¹³⁵BaCO₃ Recovery

Figure 3 depicts the decay-corrected fraction of total ^{135m}Ba and ¹³⁵La activity as a function of process volume. The solution was collected in fractions (5 mL for 0–75 mL, 0.5 mL for 75–80 mL) after flowing through the resin, and each fraction was analyzed on the HPGe to quantify ^{135m}Ba and ¹³⁵La activity via their respective 268- and 481-keV γ -emissions. Over 99.7% of decay-corrected ^{135m}Ba activity was recovered in the first 6 fractions, with no detectable contributions from additional fractions; therefore, only the first 30 mL of process solution were collected for recovery.

BaC₂O₄ formed a white precipitate and was collected by the fritted column. After BaC₂O₄ thermal decomposition to BaCO₃ from heating at 550°C, gravimetric analysis indicated a recovery of 191.1 \pm 3.2 mg, which for a 200.3 \pm 0.3 mg initial target pellet mass corresponds to a BaCO₃ recovery of 95.4% \pm 1.7% (*n* = 3).

Figure 4 depicts the XRD diffractograms acquired for fresh BaCO₃, intermediate BaC₂O₄, and recovered BaCO₃ material. Complete XRD diffractogram data are in Supplemental Tables 1–3 and Supplemental Figures 2–4. The absence of unexplained reflections in all 3 patterns, compared with standard reference lines, confirmed the high phase purity of the compounds and the complete conversion of BaC₂O₄ to BaCO₃ (*15*).

Phantom Imaging

Figure 5 depicts Derenzo phantom scans with the mean and maximum positron energies of ¹³³La, ¹³²La, and other commonly used PET radionuclides. Derenzo phantom scans acquired with ¹⁸F, ⁶⁴Cu, ⁸⁹Zr, ¹³³La, ⁴⁴Sc, ⁶⁸Ga, and ¹³²La clearly show that lower mean and maximum positron energies improve PET image spatial resolution and

FIGURE 4. Background-stripped XRD diffractograms of fresh BaCO₃, intermediate BaC₂O₄, and recovered BaCO₃.

contrast. ¹³³La exhibits spatial resolution similar to that of ⁸⁹Zr, is an improvement over ⁴⁴Sc and ⁶⁸Ga, and is superior to ¹³²La.

Figure 6 plots the contrast between the rods and background for each of the 6 triangular segments in the Derenzo phantom and the recovery coefficients as a function of rod size in the NEMA image-quality phantom. Additional comparisons of imaging performance metrics between radionuclides for different reconstruction algorithms are included in Supplemental Figure 5. ¹³³La exhibits contrast similar to that of ⁸⁹Zr and is superior to ⁶⁸Ga and ⁴⁴Sc for larger rod diameters. ¹³²La was not included in the contrast comparison because of the low contrast for each rod diameter. The rods could not be distinguished below 1.25 mm in diameter for the higher-energy positron emitters ⁴⁴Sc and ⁶⁸Ga and 1 mm for the lower-energy positron emitters ¹⁸F and ⁶⁴Cu. This blurring is due to the extrinsic scanner resolution, which is significantly impacted by the positron energy and therefore range. The recovery coefficient comparison demonstrates that ¹³³La exhibits favorable performance compared with ⁶⁸Ga and ¹³²La.

Radiolabeling

Radiolabeling was performed at 90°C for 30 min and analyzed with radio-thin-layer chromatography using 0.1 M citric acid buffer as the mobile phase. The ¹³³La-DOTA, ¹³³La-PSMA-I&T, and ¹³³La-macropa complexes remained close to the thin-layer

Preclinical PET Imaging

Figure 7 depicts static PET images of LNCaP tumor-bearing mice 60 min after injection of 33-50 MBq of ¹³³La-PSMA-I&T (n = 4). Tumor uptake was significant, reaching an SUV_{mean} of 0.97 ± 0.17 after 60 min. The SUV_{mean} for muscle was $0.05\pm$ 0.01, resulting in a tumor-to-muscle ratio of 22.4 ± 4.5 . Mice predosed with 300 µg of DCFPyL 5 min before ¹³³La-PSMA-I&T injection exhibited significant tumor blocking, with a tumor SUV_{mean} of 0.11 ± 0.01 after 60 min. Most other radioactivity was excreted into the kidneys and urinary bladder.

DISCUSSION

This study presents cyclotron production of ¹³³La using natural and isotopically enriched barium target material, favorable fundamental PET phantom imaging characteristics of ¹³³La, and the first (to our knowledge) in vivo preclinical PET tumor imaging using ¹³³La-PSMA-I&T.

The new target assembly is well suited to the irradiation and processing of barium metal and BaCO₃ target material. Using aluminum instead of silver target backings as used in previous studies (3,11) avoids production of long-lived ¹⁰⁷Cd, ¹⁰⁹Cd, and ^{106m}Ag, thereby strongly reducing overall activation of the target, lowering operator exposure, and enabling rapid reuse. Using the target backing as an intrinsic degrader simplifies and enhances the available range of irradiation energies. The indium wire seal stayed 1-2 mm outside the target beam spot, avoiding activation and formation of radiotin isotopes. Sonicating used target disks in $18 \text{ M}\Omega$ ·cm water allowed repeated reuse to make additional targets, with the same seal and target backing reused over 5 times.

Irradiating enriched ¹³⁵BaCO₃ at 23.3 MeV produced far more ¹³³La than did other target materials, allowing production of clinically relevant ¹³³La activities with significantly shorter irradiation times than using ^{nat}Ba target material. Target separation gave a high ¹³³LaCl₃ yield in a 1-mL product volume, ready for radiolabeling.

Recovery of BaCO3 target material demonstrated feasibility for cost-effective recovery of expensive isotopically enriched ¹³⁵BaCO₃. XRD analysis of recovered BaCO₃ showed complete conversion of the BaC₂O₄ intermediate and a pure recovered product, validating target material recovery and highlighting the potential for substantially improved economics with a simple and inexpensive recovery process. Radiolabeling DOTA, PSMA-I&T, and macropa with ¹³³La achieved high apparent molar activities for fresh and recovered BaCO₃ target material, similar to radiolanthanum chelation in previous studies (3-5,16).

Using isotopically enriched ¹³⁵BaCO₃ target material permits selective production of ¹³³La and ¹³⁵La compared with ^{nat}Ba target material. Performing irradiations at energies of 23.3 MeV or higher

FIGURE 5. Derenzo phantom images reconstructed with maximum a posteriori estimation for different PET radionuclides, presented in order of increasing positron emission energy. ¹⁸F, ⁶⁴Cu, ⁴⁴Sc, and ⁶⁸Ga data were taken from Ferguson et al. (14).

FIGURE 6. (A) Normalized contrast as function of rod size for different radionuclides in Derenzo phantom. (B) Impact of radionuclide and reconstruction method on measured recovery coefficients in NEMA image-quality phantom. ¹⁸F, ⁶⁴Cu, ⁴⁴Sc, and ⁶⁸Ga data were taken from Ferguson et al. (*14*). 2D = 2-dimensional; 3D = 3-dimensional; FBP = filtered backprojection; MAP = maximum a posterior; OSEM = ordered-subsets expectation maximization.

significantly increases ¹³³La production via the ¹³⁵Ba(p,3n)¹³³La reaction and reduces ¹³⁵La production from the ¹³⁵Ba(p,n)¹³⁵La reaction, which is ideal for PET imaging applications. Irradiating at 11.9 MeV with enriched ¹³⁵BaCO₃ is ideal for producing large activities of pure ¹³⁵La for AET. Using these 2 distinct reactions permits production of a variety of ^{133/135}La isotopic blends on a variable-energy cyclotron.

Another production route could use isotopically enriched $^{134}BaCO_3$ target material to produce ^{133}La via the $^{134}Ba(p,2n)^{133}La$ reaction. This would enable ^{133}La production on lower-energy cyclotrons because of the $^{134}Ba(p,2n)^{133}La$ cross-section threshold at 12 MeV as opposed to the 20 MeV threshold for the $^{135}Ba(p,3n)^{133}La$ reaction. The lower natural isotopic abundance of $^{134}Ba(2.4\%)$ than of ^{135}Ba (6.6%) would result in a higher isotopic enrichment cost. However, this is a compelling option for PET centers with lower-energy cyclotrons because of the 95.4% recovery yield of BaCO₃ target material demonstrated in this study.

PET phantom imaging clearly showed that ¹³³La exhibits spatial resolution and contrast superior to those of ⁴⁴Sc, ⁶⁸Ga, ¹³²La but similar to those of ⁸⁹Zr. As expected, lower positron emission energy leads to improved spatial resolution (17) and results in superior image quality for ¹³³La versus ¹³²La, ⁶⁸Ga, and ⁴⁴Sc. This superiority is clearly translated to preclinical imaging, as evidenced by high spatial resolution. Even with the lower positron branching ratio of ¹³³La (7.2%) versus other PET radionuclides (96.7% 18F, 88.9% ⁶⁸Ga, and 41.2% ¹³²La), the LNCaP tumor was clearly defined, reaching an SUV_{mean} of 0.97 ± 0.17 or 3.94 ± 0.68 %ID/g at 60 min after injection. For 68 Ga-PSMA-I&T, 4.95 \pm 1.47 %ID/g uptake into LNCaP tumors was reported in an ex vivo biodistribution study (18). As discussed previously (3), in vivo studies involving retention and dosing of ¹³³La decay daughter ¹³³Ba would be useful to address this potential limitation; however, as shown by Newton et al. (19), most ¹³³Ba activity could be expected to be excreted

within 10 d after injection.

Since lanthanum and actinium are group 3 elements with similar chemical properties, ¹³³La is highlighted as a strong candidate to become a clinical PET imaging surrogate for ²²⁵Ac α -therapy, with PET imaging characteristics superior to those of ¹³²La. As established in this study and previously (*3*), compared with ¹³²La, ¹³³La has superior inherent cyclotron production characteristics, a lower positron energy that translates to a higher spatial resolution, and lower-energy and lower-abundance γ -emissions that would translate to a lower patient and operator dose. These characteristics suggest that ¹³³La represents an attractive candidate for diagnostic PET imaging and treatment monitoring of clinical ²²⁵Ac targeted α -therapy and research involving ¹³⁵La AET.

CONCLUSION

This work demonstrates the strong potential of ¹³³La to serve as a

theranostic PET imaging agent with ²²⁵Ac targeted α -therapy or ¹³⁵La AET. The first preclinical in vivo PET imaging studies on LNCaP tumors resulted in high spatial resolution and contrast. Phantom imaging of ¹³³La demonstrated that fundamental PET imaging properties, including spatial resolution, contrast, and recovery coefficient, were superior to those of other PET radiometals such as ⁶⁸Ga, ⁴⁴Sc, and ¹³²La and similar to those of ⁸⁹Zr. With cyclotron production routes capable of generating clinically relevant ¹³³La activities, and with demonstrated feasibility for performing high-yield recovery of expensive isotopically enriched ¹³⁵BaCO₃ target material, ¹³³La appears to be a promising radiometal candidate for high-resolution PET imaging as a PET/targeted α -therapy therapostic pair with ²²⁵Ac or a PET/AET theranostic pair with ¹³⁵La.

FIGURE 7. Representative PET maximum-intensity-projection images at 60 min of 133 La-PSMA-&T with and without predose of DCFPyL in LNCaP tumor-bearing mice. ID = injected dose; MIP = maximum-intensity projection; p.i. = after injection.

DISCLOSURE

The Dianne and Irving Kipnes Foundation supported this work. Bryce Nelson received graduate scholarship funding from Alberta Advanced Education and the Natural Sciences and Engineering Research Council of Canada. No other potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank Jonathan Doupe (Alberta Health Services) for guidance throughout cyclotron production, Samantha Leier (Department of Oncology) for preparing ⁸⁹Zr for phantom imaging, and Rebecca Funk (Department of Earth and Atmospheric Sciences) for performing XRD data collection.

KEY POINTS

QUESTION: Is the positron emitter ¹³³La suitable for in vivo tumor imaging, and how do its production techniques and fundamental imaging characteristics compare with those of other PET radionuclides?

PERTINENT FINDINGS: Phantom imaging showed the PET spatial resolution of ¹³³La to be superior to that of ⁶⁸Ga, ⁴⁴Sc, and ¹³²La and comparable to that of ⁸⁹Zr. Preclinical imaging with ¹³³La-PSMA-I&T in tumor-bearing mice clearly delineated tumors with high spatial resolution. Robust, economical, high-yield cyclotron ¹³³La production was demonstrated using recoverable isotopically enriched ¹³⁵BaCO₃ target material.

IMPLICATIONS FOR PATIENT CARE: This study showed that ¹³³La is a strong candidate to improve patient care by providing PET imaging of tumors as a theranostic pair with ²²⁵Ac targeted α -therapy or potential ¹³⁵La AET.

REFERENCES

 Velikyan I. Molecular imaging and radiotherapy: theranostics for personalized patient management. *Theranostics*. 2012;2:424–426.

- Nelson BJB, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry, and applications. *Pharmaceutics*. 2020;13:49.
- Nelson BJB, Wilson J, Andersson JD, Wuest F. High yield cyclotron production of a novel ^{133/135}La theranostic pair for nuclear medicine. *Sci Rep.* 2020;10:22203.
- Aluicio-Sarduy E, Hernandez R, Olson AP, et al. Production and in vivo PET/CT imaging of the theranostic pair ^{132/135}La. Sci Rep. 2019;9:10658.
- Aluicio-Sarduy E, Thiele NA, Martin KE, et al. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. *Chemistry*. 2020;26:1238–1242.
- Aluicio-Sarduy E, Barnhart TE, Weichert J, Hernandez R, Engle JW. Cyclotronproduced ¹³²La as a PET imaging surrogate for therapeutic ²²⁵Ac. J Nucl Med. 2021;62:1012–1015.
- Bailey TA, Mocko V, Shield KM, et al. Developing the ¹³⁴Ce and ¹³⁴La pair as companion positron emission tomography diagnostic isotopes for ²²⁵Ac and ²²⁷Th radiotherapeutics. *Nat Chem.* 2021;13:284–289.
- Kratochwil C, Bruchertseifer F, Giesel FL, et al. ²²⁵Ac-PSMA-617 for PSMAtargeted α-radiation therapy of metastatic castration-resistant prostate cancer. *J Nucl Med.* 2016;57:1941–1944.
- NuDat 2.8: ground and isomeric state information for ¹³³₅₇La. National Nuclear Data Center website. https://www.nndc.bnl.gov/nudat3/chartNuc.jsp. Accessed December 8, 2021.
- Rochman D, Koning AJ, Sublet JC, et al. The TENDL library: hope, reality and future. In: Proceedings of the International Conference on Nuclear Data for Science and Technology. EPJ Web Conf.;2016:146.
- Nelson BJB, Wilson J, Richter S, Duke MJM, Wuest M, Wuest F. Taking cyclotron ⁶⁸Ga production to the next level: expeditious solid target production of ⁶⁸Ga for preparation of radiotracers. *Nucl Med Biol.* 2020;80–81:24–31.
- SRIM the stopping and range of ions in matter. SRIM website. http://www.srim. org/. Accessed November 11, 2021.
- Bhatti AS, Dollimore D, Armstrong B. The thermal decomposition of oxalates. Part 19. The thermal decomposition of barium oxalate hemihydrates. *Thermochim Acta*. 1984;79:217–230.
- Ferguson S, Jans HS, Wuest M, Riauka T, Wuest F. Comparison of scandium-44 g with other PET radionuclides in pre-clinical PET phantom imaging. *EJNMMI Phys.* 2019;6:23.
- Gates-Rector S, Blanton T. The powder diffraction file: a quality materials characterization database. *Powder Diffr.* 2019;34:352–360.
- Fonslet J, Lee BQ, Tran TA, et al. ¹³⁵La as an Auger-electron emitter for targeted internal radiotherapy. *Phys Med Biol.* 2017;63:015026.
- Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. *Phys Med Biol.* 1999;44:781.
- Weineisen M, Schottelius M, Simecek J, et al. ⁶⁸Ga- and ¹⁷⁷Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-ofconcept human studies. *J Nucl Med.* 2015;56:1169–1176.
- Newton D, Ancill AK, Naylor KE, et al. Long-term retention of injected barium-133 in man. *Radiat Prot Dosimetry*. 2001;97:231–240.