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The clinical presentations of early idiopathic Parkinson disease (IPD)
substantially overlap with those of atypical parkinsonian syndromes
such as multiple system atrophy (MSA) and progressive supranuclear
palsy (PSP). This study aimed to develop metabolic imaging indices
based on deep learning to support the differential diagnosis of these
conditions.Methods: A benchmark Huashan parkinsonian PET imag-
ing (HPPI, China) database including 1,275 parkinsonian patients and
863 nonparkinsonian subjects with 18F-FDG PET images was estab-
lished to support artificial intelligence development. A 3-dimensional
deep convolutional neural network was developed to extract deep
metabolic imaging (DMI) indices and blindly evaluated in an indepen-
dent cohort with longitudinal follow-up from the HPPI and an external
German cohort of 90 parkinsonian patients with different imaging
acquisition protocols. Results: The proposed DMI indices had less
ambiguity space in the differential diagnosis. They achieved sensitivi-
ties of 98.1%, 88.5%, and 84.5%, and specificities of 90.0%, 99.2%,
and 97.8%, respectively, for the diagnosis of IPD, MSA, and PSP in
the blind-test cohort. In the German cohort, they resulted in sensiti-
vities of 94.1%, 82.4%, and 82.1%, and specificities of 84.0%,
99.9%, and 94.1%, respectively. Using the PET scans independently
achieved a performance comparable to the integration of demo-
graphic and clinical information into the DMI indices.Conclusion: The
DMI indices developed on the HPPI database show the potential to
provide an early and accurate differential diagnosis for parkinsonism
and are robust when dealing with discrepancies between populations
and imaging acquisitions.
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Idiopathic Parkinson disease (IPD) is one of the most common
neurodegenerative disorders. Although extensively studied, its accu-
rate diagnosis remains clinically challenging, particularly in early
stage patients, because their symptoms overlap largely with atypical
parkinsonian syndromes such as multiple system atrophy (MSA) and
progressive supranuclear palsy (PSP) (1). Approximately 20%–30%
of patients with initial diagnoses of IPD were subsequently demon-
strated to be either MSA or PSP at pathologic examination (1). The
development of accurate indices for parkinsonism’s differential diag-
nosis is of importance and potential utility when determining thera-
peutic strategies.

18F-FDG PET detects a wide spectrum of neurobiologic abnormali-
ties and has been reported of advantage in the differential diagnosis of
parkinsonism in advance of structural damage to brain (2). Metabolic
patterns of IPD, MSA, and PSP identified by principal component
analysis (PCA) (3,4), which were used as features for a machine learn-
ing method of logistic regression, have been found as effective surro-
gates for the early and accurate differential diagnosis (5). However,
the PCA decomposition takes the 3-dimensional (3D) image volume
of a subject as a squeezed 1-dimensional vector without considering
the high-level spatial interrelation during the pattern extraction.
The differences among parkinsonism are reflected in the com-

plex interaction of interrelated brain regions. The differential indi-
ces may be obscured by complexity within the metabolic imaging
signal. We hypothesized that deep learning may reveal characteris-
tic imaging indices from complex metabolic alterations and pro-
vide accurate classifications (6). Therefore, a 3D deep residual
convolutional neural network termed PD Diagnosis Network
(PDD-Net) was built for the automatic identification of imaging-
related indices to support parkinsonism’s differential diagnosis.

MATERIALS AND METHODS

Subjects and Study Protocol
Huashan Parkinsonian PET Imaging (HPPI) Database. A unique

HPPI database, the largest to our knowledge, has been established to
benchmark the imaging-based artificial intelligence development for par-
kinsonism. This database includes 3 cohorts with a total of 1,275
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parkinsonian patients (subset of PD Database and Samples Bank of Hua-
shan Hospital) (Fig. 1; Supplemental Tables 1 and 2 [supplemental mate-
rials are available at http://jnm.snmjournals.org]) (7–11). Among the
cohorts, 85.7% of patients underwent dopaminergic imaging at the same
time as 18F-FDG to assist the diagnosis, and the remaining patients were
followed for 3–8y (5.6 6 2.1 y) to determine the diagnosis. A control
cohort of 643 patients with various neurologic disorders and 220 healthy
subjects was also enrolled (Fig.1; Supplemental Tables 3 and 4; Supple-
mental Fig. 1).

The HPPI database includes the following cohorts: pretraining (398
subjects with possible diagnoses), training (547 subjects with definite
diagnoses), and blind test (330 subjects with confirmative diagnoses with
follow-up) (Fig.1; Table 1). These patients were routinely assessed by
movement disorder specialists in Huashan Hospital before PET examina-
tion between June 2011 and April 2019. Routine MRI examinations
were performed before PET scans and those patients with structural brain
abnormalities were excluded. After PET examination, patients had at
least one return visit and the movement disorders specialists made a clini-
cal diagnosis according to the latest clinical criteria (9–11).

After a low-dose CT for attenuation correction, the emission data
were acquired at 60 min (lasting 10 min) after injection of approxi-
mately 185 MBq of 18F-FDG using the Biograph 64 HD PET/CT (Sie-
mens). After corrections for attenuation, scatter, dead time, and random
coincidences, PET images were reconstructed using the ordered-subset
expectation maximization method.
German Parkinsonian Cohort. A German cohort with 34 IPD, 17

MSA, and 39 PSP patients from the University Hospital of Munich was
included for external validation. These patients were scanned on 3 differ-
ent PET/CT systems (ECAT Exact HR1 [Siemens], Discovery 690 [GE
Healthcare], and Biograph 64) according to the European Association of
Nuclear Medicine protocol (12) using a slow bolus injection of approxi-
mately 150 MBq of 18F-FDG (Supplemental Table 5). The uptake differ-
ences between cohorts are presented in Supplemental Figure 2.

The institutional review boards (IRB or equivalent from Huashan
Hospital and University of Munich) approved this study, and all sub-
jects signed a written informed consent form.

Image Preprocessing
PET images were spatially normalized into Montreal Neurologic

Institute brain space and smoothed by a 3D gaussian filter of 10 mm

in full width at half maximum by SPM5 software (Institute of Neurol-
ogy). Before inputting the PET image into the deep neural network, z
score normalization was applied to convert PET image values into a
certain range for facilitating the network training. In addition, the per-
formances of z score normalization and global mean normalization
were also compared (Supplemental Table 6).

PDD-Net and DMI Indices
The deep learning method contains 2 PDD-Nets (Supplemental Fig. 3).

The PDD-Net-1 sought to exclude patients without parkinsonism. The
PDD-Net-2 performed computation of DMI indices and classification of
IPD, MSA, or PSP. Both PDD-Nets were based on a 3D residual convolu-
tional neural network. The PDD-Net 2 was trained preliminarily in the
pretraining cohort and then fine-tuned in the training cohort. The perfor-
mance of the DMI indices was evaluated with cross-validation (6-fold) in
the training cohort and then an independent test in the blind-test cohort
and the external German cohort.

At the end of the PDD-Net computation, the extracted features were
mapped to 3 classification probabilities of IPD, MSA, and PSP corre-
spondingly, which were proposed as the DMI indices. The highest proba-
bility among the DMI indices was considered for the prediction of IPD,
MSA, or PSP. An additional option of confidence inspection was provided
to warn the predictions without sufficiently high probability. A confidence
threshold can be customized. By default, a set of confidence thresholds
were derived in the cross-validation stage based on the generalized You-
den’s index. Predictions lying below these thresholds were flagged as
uncertain cases (Supplemental Table 7). We generated saliency maps
using the full-gradient method (13) to assist the interpretation of the DMI
indices. The saliency maps assign importance scores to both the input fea-
tures and the individual neurons in a network, reflecting the contribution
of groups of pixels to the DMI probabilities.

Statistical Analysis
The CIs were calculated with DeLong’s method. The optimal cutoff

points of the receiver-operating-characteristic curves were estimated
using the generalized Youden’s index. For continuous variables, the
Wilcoxon test was used to compare 2 paired groups and the Kolmo-
gorov–Smirnov test was used to compare 2 unpaired groups; for cate-
goric variables, the x2 test was used. Four standard metrics, that is,
sensitivity, specificity, positive predictive value (PPV), and negative

FIGURE 1. Study profile, showing a Chinese cohort (Huashan parkinsonian PET imaging dataset) and a German cohort. Clinically definite diagnoses5
diagnoses by clinical experts after return visit but without a formal clinical follow-up; clinically confirmative diagnoses5 diagnoses resulting from at least
1 formal clinical follow-up over 1 y after PET imaging.
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predictive value (NPV), were used to illustrate the diagnostic perfor-
mance of the DMI indices.

RESULTS

Performance of the DMI Indices in Cross-Validation
The performance of the DMI indices in the cross-validation is illus-

trated in Figure 2. The area under the curves was 0.986, 0.997, and
0.982 for IPD, MSA and PSP, respectively. The sensitivity, specificity,
PPV, and NPV are summarized in Table 2, and all values were above
90% except for sensitivity and PPV for PSP with short symptom dura-
tions. Compared with those with short symptom durations, the specif-
icity for those with long symptom durations slightly increased for IPD
and MSA, whereas they remained the same for PSP.
The probabilities of IPD, MSA, and PSP according to the DMI

indices for individual subjects are plotted in 3D coordination space
in Figure 3. These probabilities tended to distribute aggregately to
their expected centers: IPD for [1,0,0], MSA for [0,1,0], and PSP
for [0,0,1]. If the probability for a category was high, the probabili-
ties for the other 2 categories were much smaller. The aggregation
distance, which is the mean distance of the probabilities to the corre-
sponding expected centers, illustrates the determinability of the
DMI indices. The probabilities of those with long symptom dura-
tions (aggregative distance 5 0.103) were more aggregated (P 5

0.020) compared with the subjects with short symptom durations
(aggregative distance 5 0.114). Overall, the probabilities among the
DMI indices had less ambiguity space for differential diagnosis.
The saliency maps are showed in Supplemental Figure 4–6

(13). Regions with relatively higher contribution to the DMI indi-
ces were putamen and midbrain for IPD, MSA, and PSP as well as
cerebellum for MSA.

Performance of the DMI Indices in the Blind Test
Table 3 illustrates the predictive accuracy of the DMI indices in

the blind-test cohort. The image-based classification resulted in
98.1% sensitivity, 90.0% specificity, 94.5% PPV, and 96.4% NPV
for PD and also accurate for MSA (88.5% sensitivity, 99.2% spe-
cificity, 96.4% PPV, and 97.4% NPV) and PSP (84.5% sensitivity,
97.8% specificity, 89.1% PPV, and 97.0% NPV). For the 108
patients in the blind-test cohort with follow-up PET scans, the
DMI indices had slightly better performance comparing follow-up
to baseline (P 5 0.017).

The probabilities among the DMI indices for subjects with fol-
low-up imaging in the blind-test cohort are plotted in Figure 4.
The probabilities of MSA and PSP increased at follow-up imaging
(MSA: P 5 0.028, PSP: P 5 0.002). The probabilities of IPD
between at follow-up and baseline imaging were comparable (P 5
0.894), but the median and most of the IPD probabilities (38/66)
increased. Nine cases presented relative significant lower probabil-
ities of IPD at follow-up (over 0.1) compared with the baseline.
Besides, differential diagnosis performance of using the DMI

indices only and using the combination of the DMI indices with
demographic and clinical features were compared, and no differ-
ence was found (P 5 0.999) (Supplemental Table 8) (14). Besides,
DMI indices made predictions inconsistent with the clinical diagno-
sis in 6 cases obvious probability decrease during follow-up (Sup-
plemental Table 9).
Test on the External German Cohort. The DMI indices

achieved 94.1% sensitivity, 84.0% specificity, 78.0% PPV, and
95.9% NPV for the diagnosis of the IPD on the German cohort
(Table 3). The diagnoses were also accurate for MSA (82.4% sen-
sitivity, 99.9% specificity, 99.9% PPV, and 96.1% NPV) and PSP
(82.1% sensitivity, 94.1% specificity, 91.4% PPV, and 87.3%
NPV). Although the performance metrics were slightly lower than
those for the Chinese cohort, no significant difference has been
observed in the performance of the diagnosis of IPD (P 5 0.14),
MSA (P 5 0.25) and PSP (P 5 0.50).

DISCUSSION

An effective imaging-based tool may contribute to earlier and
more precise diagnosis in parkinsonian conditions and may help
with the development and monitoring of individualized disease-mod-
ifying treatments (15,16). This study confirms that deep learning can
identify accurate imaging-based indices from 18F-FDG PET.
Similar to pattern expression scores of PCA analysis (5), the

DMI indices herein identified 3 probability scores from 18F-FDG
PET for each individual and a prediction was generated by com-
paring these 3 probabilities. The conventional pattern related
scores are derived from linear weightings of imaging intensities.
In contrast, the DMI indices can reveal hyper-level interrelations
such as textures, which may better describe the complex heteroge-
neous pathogenesis of parkinsonian disorders. Compared with pre-
viously reported studies (5), in our study the extensive test in
relatively large cohorts found that the DMI indices can achieve

FIGURE 2. Accuracy of DMI indices in development phase in training cohort and blind-test phase on both Chinese and German test cohorts. Results
in cross-validation were plotted using receiver-operating-characteristic curves. Results in Chinese blind-test cohort were illustrated as single points,
where overall represents results of all tested 330 patients. One hundred eight patients in blind test underwent follow-up scanning, and performance of
these at baseline and follow-up was plotted. Blind-test results in German cohort (90 patients) are also included and denoted with black rectangle for
easy comparison.
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competitive or possibly better performance in the differential diag-
nosis of parkinsonism.
The probabilities among the DMI indices have low ambiguity and

a dominant maximal probability is definable for resulting in a robust
diagnosis prediction. Nevertheless, we also support confidence
inspection to differentiate predictions with different confidence lev-
els. The confidence thresholds can be customized (Supplemental
Table 7). For a default setting according to the optimization of gener-
alized Youden’s index, the confidence threshold for MSA was higher
than for IPD or PSP. In this study, the MSA patients were mixed
with MSA-parkinsonian (MSA-P) and MSA-cerebellar (MSA-C)
types and had greater heterogeneity in metabolic pathologic pheno-
type. Therefore, it could be posited that a higher confidence threshold
is required to obtain a robust prediction.
The DMI indices can be combined with demographic and clini-

cal information as well as other indices, such as impairment of

olfactory function (for IPD vs. MSA) or skin biopsy positivity for
phospho-a-synuclein aggregates (for IPD and MSA vs PSP) (17),
to comprehensively generate diagnostic classifications. In our
study, using the PET scans independently achieved a performance
comparable to the integration of demographic and clinical infor-
mation into the DMI indices, indicating that the most discrimina-
tive information for the parkinsonism diagnosis was included in
the PET scan modality and could be extracted by the proposed
method into the DMI indices. In addition, the 2-stage design (Sup-
plemental Fig. 3) (13,18,19) of our work allows the DMI indices
to reduce the risk of erroneous predictions through exclusion of
nonparkinsonian subjects in the control stage, which aims at fur-
ther improving the robustness of diagnostic classifications.
In general, the DMI indices developed from the Chinese HPPI

database achieved comparable performance in a German cohort.
However, there were substantial differences between the 2 cohorts:

in contrast to the Chinese cohort, the Ger-
man cohort used different scanners. The
imaging protocols (i.e., acquisition time,
reconstruction method, tracer dose) and
patient preparation (i.e., eye patch and
noise-cancelling differences) (Supplemen-
tal Table 5) varied. Significantly different
metabolic uptake was observed in the cere-
bellum, midbrain, and caudate between
these 2 cohorts (Supplemental Fig. 2), for
which population-based differences (3,20)
may exist. The domain difference between
data can present an obstacle to the wider
clinical translation of conventional meth-
ods. A prerequisite for spatial covariance
analysis in the established population-based
patterns for IPD, MSA, and PSP is to bri-
dge the difference between various popula-
tions (5). In contrast to pattern analysis, the

TABLE 2
Accuracy of DMI Indices in Cross-Validation on Training Cohort

Diagnosis Metrics Overall Short symptom duration (#2 y) Long symptom duration (.2 y)

IPD AUC 0.986 (0.977–0.996) 0.981 (0.965–0.997) 0.991 (0.981–1.000)

Sensitivity 95.7% (92.7%–97.7%) 94.9% (89.7%–97.9%) 95.7% (91.4%–98.3%)

Specificity 97.6% (94.8%–99.1%) 97.6% (93.1%–99.5%) 98.4% (94.3%–99.8%)

PPV 97.9% (95.6%–98.9%) 97.7% (93.5%–99.1%) 98.7% (95.5%–99.5%)

NPV 94.9% (91.5%–98.1%) 94.5% (89.1%–98.8%) 94.6% (89.2%–99.3%)

MSA AUC 0.997 (0.994–1.000) 0.996 (0.988–1.000) 0.998 (0.995–1.000)

Sensitivity 97.3% (93.3%–99.3%) 100% (96.0%–100%) 98.3% (91.1%–100%)

Specificity 99.5% (98.2%–99.9%) 98.2% (94.9%–99.6%) 99.6% (97.6%–100%)

PPV 98.6% (95.3%–99.6%) 96.8% (91.0%–100%) 98.3% (91.3%–100%)

NPV 99.0% (97.4%–99.9%) 100% (97.8%–100%) 99.6% (97.5%–100%)

PSP AUC 0.982 (0.965–0.998) 0.968 (0.925–1.000) 0.990 (0.980–1.000)

Sensitivity 91.8% (84.5%–96.4%) 88.2% (72.5%–96.7%) 93.8% (84.8%–98.3%)

Specificity 98.2% (96.5%–99.2%) 98.2% (95.5%–99.5%) 98.2% (95.5%–99.5%)

PPV 91.8% (85.0%–96.4%) 88.2% (74.3%–96.7%) 93.7% (85.2%–98.3%)

NPV 98.2% (96.4%–99.2%) 98.2% (95.1%–99.5%) 98.2% (95.3%–99.5%)

AUC 5 area under the curve.

FIGURE 3. 3D plot of probabilities of IPD, MSA, and PSP of DMI indices in training cohort. (A)
Patients with short symptom duration (#2 y). (B) Patients with long symptom duration (.2 y).
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hierarchical feature representation of deep learning is more flexible
and affords migration of domain differences during the learning
phase (21). Similar to previous studies (22), our test confirmed that
deep learning can be robust to the discrepancies inherent in molec-
ular imaging acquisitions. This finding suggests the DMI marker
extracted using deep learning in this study may be more generaliz-
able and better suited for clinical translation.

Recently, concerns have been raised regarding the reproducibility or
stability of deep learning methods: methods optimized in one cohort
may have limited performance in other cohorts or in other applications
(23). We subjected our DMI indices to a blind test as a means of inde-
pendent in-depth validation (24). The performance of the DMI indices
under conditions of a blind test was consistent with the cross-valida-
tion test. Thus, the DMI indices are reproducible. Deep learning is
impeded by the black-box nature of the derived model, which pre-
cludes the drawing of any links to the underlying pathophysiology. To
address this concern, we used saliency maps to understand the decision
mechanism behind the neural networks. The saliency maps indicated
that the DMI indices derived probabilities largely based on parkinson-
ism-related brain regions, which are consistent with the critical regions
of IPD-, MSA-, and PSP-related covariance pattern (5,25).
Dopaminergic imaging is critical for diagnosing parkinsonian disor-

ders, although it has not been confirmed to be suitable for the reliable
differential diagnosis. Most patients with parkinsonism in our study
underwent contemporary dopaminergic imaging as 18F-FDG. There-
fore, this study can be regarded as performed based on dopaminergic
imaging. Whether 18F-FDG imaging and deep learning can be used to
diagnose parkinsonian disorders with blinded dopaminergic imaging
results is an interesting future direction to explore.
One limitation of this study is that we did not use MRI for partial-

volume correction and spatial normalization. Although MRI is gener-
ally included in the neurologic work-up of these patients, many of
them were scanned at external centers with a variety of protocols and
the 3D images were not always retrievable. We conceded that the cor-
tical thickness derived from MR images might also assist the differen-
tiation of parkinsonism (26). The integration of these morphometries
in any future study may further enhance the imaging-based indices. In
addition, although performance on the training cohort, blind-test
cohort, and German cohort—which have different data distributions
(IPD:MSA:PSP)—has indicated that the DMI indices have a certain
level of ability to handle the distribution-different problems, different
distributions may still be a factor influencing performance on another
future cohort. It is worthy to conduct multicenter studies to further
validate our method. Meanwhile, we evaluated only one possible mul-
timodality fusion method in this work. In the future, to further

TABLE 3
Accuracy of DMI Indices on Blind-Test Cohort from Huashan Parkinsonian PET Imaging Dataset (Chinese Cohort) and

German Cohort

Diagnosis Metrics

Huashan parkinsonian PET imaging dataset (Chinese cohort)

German cohortOverall Baseline Follow-up

IPD Sensitivity 98.1% 98.5% 95.5% 94.1%

Specificity 90.0% 88.1% 97.6% 84.0%

PPV 94.5% 92.9% 98.4% 78.0%

NPV 96.4% 97.4% 93.2% 95.9%

MSA Sensitivity 88.5% 81.8% 95.4% 82.4%

Specificity 99.2% 99.9% 98.8% 99.9%

PPV 96.4% 99.9% 95.5% 99.9%

NPV 97.4% 95.6% 98.8% 96.1%

PSP Sensitivity 84.5% 90.0% 95.0% 82.1%

Specificity 97.8% 97.7% 96.6% 94.1%

PPV 89.1% 90.0% 86.4% 91.4%

NPV 97.0% 97.7% 98.8% 87.3%

FIGURE 4. Comparison of probabilities of IPD (A), MSA (B), and PSP (C)
of DMI indices on the 108 patients in blind-test cohort with repeated PET
scans. (Left column) Comparison of the probability of DMI indices
extracted from baseline and follow-up PET for individuals. (Right column)
Violin plots demonstrate statistical distribution of probabilities of DMI indi-
ces. *P# 0.05. **P# 0.01. ns5 no significance.

1746 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 63 � No. 11 � November 2022



improve the diagnosis performance, other fusion methods such as gat-
ing- and attention-mechanism–based late fusion will be evaluated.

CONCLUSION

We developed a 3D deep residual convolutional neural network
to extract DMI indices for the automated differential diagnosis of
parkinsonism. The indices were evaluated with the cross-validation
experiment and blind tests on both Chinese and German cohorts,
demonstrating that the proposed method was both robust and accu-
rate, which may complement diagnoses made by expert clinicians.
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KEY POINTS

QUESTION: Can deep learning effectively extract indices from
brain glucose metabolic imaging (18F-FDG PET) to improve the
differential diagnosis of Parkinson disease and atypical
parkinsonian syndromes?

PERTINENT FINDINGS: The developed DMI indices prediction
using deep learning provides an early and accurate method for
differential diagnosis that may complement diagnoses made by
expert clinicians. The reliable artificial intelligence development was
achieved by training on large-scale benchmark data on 18F-FDG
PET and extensive testing on longitudinal data and independent
external data with different ethnicity or examination protocols.

IMPLICATIONS FOR PATIENT CARE: These developed DMI
indices may assist early differential diagnosis of parkinsonism and
the development of disease-modifying treatment strategies.
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