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Our purpose was to determine whether ComBat harmonization
improves 18F-FDG PET radiomics-based tissue classification in pooled
PET/MRI and PET/CT datasets. Methods: Two hundred patients who
had undergone 18F-FDG PET/MRI (2 scanners and vendors; 50
patients each) or PET/CT (2 scanners and vendors; 50 patients each)
were retrospectively included. Gray-level histogram, gray-level cooc-
currence matrix, gray-level run-length matrix, gray-level size-zone
matrix, and neighborhood gray-tone difference matrix radiomic fea-
tures were calculated for volumes of interest in the disease-free liver,
spleen, and bone marrow. For individual feature classes and a multi-
class radiomic signature, tissue was classified on ComBat-harmonized
and unharmonized pooled data, using a multilayer perceptron neural
network. Results: Median accuracies in training and validation data-
sets were 69.5% and 68.3% (harmonized), respectively, versus 59.5%
and 58.9% (unharmonized), respectively, for gray-level histogram;
92.1% and 86.1% (harmonized), respectively, versus 53.6% and
50.0% (unharmonized), respectively, for gray-level cooccurrence
matrix; 84.8% and 82.8% (harmonized), respectively, versus 62.4%
and 58.3% (unharmonized), respectively, for gray-level run-length
matrix; 87.6% and 85.6% (harmonized), respectively, versus 56.2%
and 52.8% (unharmonized), respectively, for gray-level size-zone
matrix; 79.5% and 77.2% (harmonized), respectively, versus 54.8%
and 53.9% (unharmonized), respectively, for neighborhood gray-tone
difference matrix; and 86.9% and 84.4% (harmonized), respectively,
versus 62.9% and 58.3% (unharmonized), respectively, for radiomic
signature. Conclusion: ComBat harmonization may be useful for mul-
ticenter 18F-FDG PET radiomics studies using pooled PET/MRI and
PET/CT data.
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Radiomics, a computer-assisted technique for extraction of
quantitative features from diagnostic images (1,2), is increasingly
being applied to PET (3). However, PET radiomic features are

known to be sensitive to image acquisition and reconstruction param-
eter variations, instrumentation bias (4), and probably injected dose
and are therefore of limited use in multicenter studies without further
preprocessing.
ComBat harmonization was proposed and has been successfully

used by Orlhac et al. to correct PET radiomic data for differences in
imaging device and acquisition protocols while preserving biologic
and pathophysiologic associations (5). Notably, previous studies
applying ComBat to PET radiomics used data almost exclusively
from different PET/CT scanners (5–11) but did not include PET/
MRI data. Since PET/MRI relies on a fundamentally different, MRI-
based method for PET attenuation correction (AC) (12), differences
in PET radiomics may be more pronounced between PET/MRI and
PET/CT. To our knowledge, only 2 studies compared 18F-FDG PET
radiomic feature values obtained with PET/CT and PET/MRI.
Vuong et al. compared 18F-FDG PET radiomic feature values of 9
patients with lung lesions who underwent PET/MRI and subsequent
PET/CT after a single 18F-FDG injection, that is, with PET per-
formed at different time points, which, because of the differences in
counts, is likely to affect radiomic feature values (13). Correlation
coefficients suggested that 50% of texture features were not robust
or stable between the 2 scans, but the effects of this feature instabil-
ity on radiomics-based classification were not investigated, and no
harmonization was applied. Tsujikawa et al. compared the 18F-FDG
PET radiomics of 15 patients with gynecologic or oral cavity/oro-
pharyngeal cancers who underwent PET/CT and subsequent PET/
MRI after a single 18F-FDG injection, that is, also at different time
points (14). Contrary to Vuong et al., these authors reported a gener-
ally high correlation between PET/CT- and PET/MRI-based radio-
mic features; in particular, textural features were less affected by
differences in scanners and scan protocols than were conventional
and histogram features, possibly because of the use of resampling
with 64 bins (i.e., a bin width of 0.4). The impact of ComBat harmo-
nization was not evaluated in either study.
Therefore, our dual-center study aimed to determine the impact

of ComBat harmonization in a larger, pooled 18F-FDG PET/MRI
and PET/CT radiomic dataset with real-world—in part, marked—
intrinsic heterogeneity between institutions and vendors in terms
of acquisition parameters according to standard clinical practice.
We focused on discrimination between visually similar but biolog-
ically different tissues, as a surrogate for lesions with similar tracer
uptake. Rather than investigating statistical differences between
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numeric radiomic feature values, we used tissue classification
accuracy as the main outcome measure, to simulate conditions
comparable to those of current clinical radiomics trials.

MATERIALS AND METHODS

Patients and Design
Two hundred consecutive patients (92 women, 108 men; mean age,

46.2 6 17.3 y) who had undergone whole-body 18F-FDG PET/MRI or
PET/CT for clinical purposes from January 2010 to December 2020 were
retrospectively included. This Health Insurance Portability and Account-
ability Act–compliant study was approved by the Institutional Review
Boards of Memorial Sloan Kettering Cancer Center and the Medical Uni-
versity of Vienna; the need to obtain informed consent was waived. Inclu-
sion criteria were no evidence of disease in the liver, spleen, or bone
marrow according to imaging, pathology, and clinical reports, as well as
imaging performed on 1 of 4 specified scanners (50 patients per scanner).
Exclusion criteria were glucose levels above 180 mg/dL before PET, sub-
stantial 18F-FDG extravasation, or imaging artifacts obscuring analyzed
tissues.
Imaging Protocols. At the first center (Memorial Sloan Kettering

Cancer Center), PET/MRI was performed on a Signa PET/MRI scan-
ner and PET/CT on a Discovery 690 scanner (both GE Healthcare)
(Supplemental Table 1; supplemental materials are available at http://
jnm.snmjournals.org). PET was performed 1 h after intravenous injec-
tion of 444 MBq 6 10% of 18F-FDG. For AC, a 2-point Dixon LAVA
(liver acquisition with volume acceleration) T1-weighted sequence was
used for PET/MRI and an unenhanced, low-dose spiral CT series for
PET/CT. Signa PET/MRI used a standard z-axis filter with a cutoff of
5 mm, and Discovery 690 PET/CT used a heavy z-axis filter and gauss-
ian transaxial filter with a 6.4-mm cutoff.

At the second center (Medical University of Vienna), PET/MRI was
performed on a Biograph mMR scanner and PET/CT on a Biograph
TruePoint 64 scanner (both Siemens). PET was performed 1 h after
intravenous injection of a 3 MBq/kg dose of 18F-FDG. For AC, an
axial 2-point Dixon VIBE (volumetric interpolated breath-hold exami-
nation) T1-weighted sequence was used for PET/MRI and a contrast-
enhanced, full-dose spiral CT venous-phase series for PET/CT. For the
Biograph TruePoint64 PET/CT, no postreconstruction filter was used,
and for the Biograph mMR PET/MRI, a gaussian filter of 2 mm in full
width at half maximum was used.

Image Analysis and Harmonization
Using the Beth-Israel PET/CT viewer and the International Bio-

marker Standardization Initiative–compliant PyRadiomics plugins for
FIJI (15–17), 3-dimensional radiomic features were extracted from the
liver, spleen, and bone marrow (vertebral body L4) using manually
defined 2.5-cm3 spheric volumes of interest (Fig. 1). The 3 tissues
were chosen because they are relatively homogeneous, meaning that
variations in volume-of-interest placement should not have a relevant
impact on feature values; they are large enough to allow placement of
a sufficiently large volume of interest of identical size and shape; and
they have a visually similar 18F-FDG PET pattern in terms of degree
of tracer uptake and image texture. In addition, a fourth volume of
interest of the same size was placed in the aorta to measure blood pool
radiomic features. Before feature extraction, intensity discretization
using a fixed bin width of 0.5 and spatial resampling to 1.5 3 1.5 3

1.5 mm voxels using B-spline interpolation were applied; discretiza-
tion and resampling values were chosen because they are in the range
of optimal settings for histogram and texture features reported by Yip
et al. (18). Nineteen features were calculated for gray-level histogram,
24 for gray-level cooccurrence matrix, 16 for gray-level run-length
matrix, 16 for gray-level size-zone matrix, and 5 for neighborhood
gray-tone difference matrix (a feature list is provided in Supplemental

Table 2; equations can be found
at https://pyradiomics.readthe
docs.io/en/latest/features.html).
ComBat harmonization (with-
out empiric Bayes assumption,
with parametric adjustments and
4 batches) was applied to all
features, separately for the indi-
vidual analyzed tissues, as pre-
viously described (5).

Statistical Analysis
Cases were randomly assigned

to a training dataset (70%; 140
patients) and a validation data-
set (30%; 60 patients); assign-
ment to training and validation
datasets was repeated 5 times
(i.e., 5-fold cross-validation) and
was identical for unharmonized
and harmonized datasets to en-
sure comparability. Separately
for unharmonized and harmo-
nized datasets, and indepen-
dently for the different feature
classes (gray-level histogram,
gray-level cooccurrence matrix, gray-level run-length matrix, gray-level
size-zone matrix, and neighborhood gray-tone difference matrix), a mul-
tilayer perceptron neural network (MLP-NN (19); 1 hidden layer with at
least 3 neurons) was used to discriminate between liver, spleen, and
bone marrow to generate a 3-tissue model and then by also adding blood
pool data to generate a 4-tissue model, using all features of a class as
input. Median accuracies were calculated for training and validation
datasets in the 3-tissue and the 4-tissue models, and Wilcoxon signed-
rank tests were used to compare differences in accuracies between paired
unharmonized and harmonized datasets. In addition, for the 3-tissue
model, areas under the receiver-operating characteristic curves (AUCs)
were calculated for validation data using a pairwise (i.e., 1 vs. 2 tissues)
approach. Three-dimensional scatterplots were used to visualize scanner-
specific and organ-specific clustering in both unharmonized and harmo-
nized datasets.

To generate radiomic signatures for tissue discrimination, principal-
component analysis (based on Eigenvalues . 1, maximum of 25 itera-
tions for convergence) based on all features of all classes was performed
separately for 3-tissue and 4-tissue models. Principal radiomic compo-
nents were used as input for the MLP-NN, and accuracies and areas
under the curve were calculated.

To investigate the impact of the number of hidden layers for MLP-
NN classification—that is, to test whether the MLP-NN would, by
itself, be able to correct for technical differences between PET/CT and
PET/MRI scanners with an additional hidden layer—MLP-NN classifi-
cation was again performed on the unharmonized dataset of the 3-tissue
model, this time using the scanner type as an additional nominal input
variable (factor) and using a network architecture with 1 hidden layer
first and then an architecture with 2 hidden layers.

Generalized estimating equation–based casewise classifications from
all 5 MLP-NN iterations performed using radiomic signatures were
applied to model the impact of scanner type, organ, method (unharmon-
ized and harmonized), and all 2- and 3-way interactions on the percent-
age of correctly classified volumes of interest, taking into account
multiple measurements per patient. All tests, including MLP-NN, were
performed using SPSS, version 24.0 (IBM). The specified level of signif-
icance was a P value of less than 0.05.

FIGURE 1. Representative 18F-FDG
PET image showing volume-of-inter-
est placement in 3-tissue model: liver
(blue), spleen (green), and bone mar-
row (red).
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RESULTS

3-Tissue Model
Using unharmonized datasets consisting of pooled data from the

4 scanners, 18F-FDG PET radiomics-based tissue discrimination
yielded median accuracies ranging from 50.0% to 62.4% for indi-
vidual feature classes (Table 1). The multiclass radiomic signature
(10 principal components) provided 62.9% median accuracy in the
training dataset and 58.3% in the validation dataset. Depending on
the feature class, areas under the curve for 1-tissue versus 2-tissue
discrimination suggested poorer separability of the spleen from the
other tissues; separation of liver and bone marrow from the other
2 tissues was similar for most feature classes (Fig. 2).
ComBat harmonization significantly improved 18F-FDG PET

radiomics-based tissue discrimination for all feature classes, but most
prominently for gray-level cooccurrence matrix features (median
accuracy, 138.5 percentage points [p.p.] in the training cohort and
136.1 p.p. in the validation cohort) and gray-level size-zone matrix
features (median accuracy, 131.4 p.p. in the training cohort and
132.8 p.p. in the validation cohort) (Table 1; Fig. 3). Tissue classifi-
cation was also improved for the radiomic signature (10 principal
components), with a median accuracy of 86.9% in the training dataset
(124.0 p.p. compared with unharmonized data) and 84.4% in the
validation dataset (126.1 p.p. compared with unharmonized data).
Similarly, areas under the curve for 1-tissue versus 2-tissue dis-
crimination were markedly improved in all cases (Fig. 2). Nota-
bly, generalized estimating equation analyses revealed lower
classification accuracies (i.e., higher misclassification rates) in
the PET/MRI cohort than in the PET/CT cohort (Supplemental
Table 3).

4-Tissue Model
Using unharmonized datasets, 18F-FDG PET radiomics-based tis-

sue discrimination yielded median accuracies ranging from 39.6% to
46.3% for individual feature classes (Table 2). The multiclass radio-
mic signature (11 principal components) provided slightly better
results, with 51.6% median accuracy in the training dataset and
48.8% in the validation dataset. Again, ComBat harmonization sig-
nificantly improved 18F-FDG PET radiomics-based tissue discrimi-
nation for all feature classes except gray-level histogram, but most
prominently for gray-level size-zone matrix (median accuracy,
141.6 p.p. in the training cohort and 142.9 p.p. in the validation
cohort) and neighborhood gray-tone difference matrix (median accu-
racy, 120.6 p.p. in the training cohort and 118.8 p.p. in the valida-
tion cohort) (Table 2). Tissue classification was also improved for
the radiomic signature (10 principal components), with a median
accuracy of 82.1% in the training dataset (130.5 p.p. compared with
unharmonized data) and 81.3% in the validation dataset (132.5 p.p.
compared with unharmonized data).
Similar to the 3-tissue model, accuracies were lower (i.e., the

percentage of misclassified cases was higher) in the PET/MRI
cohort than in the PET/CT cohort (Supplemental Table 3).

Impact of Number of Hidden Layers for MLP-NN
Using radiomic signatures (principal components) extracted

from unharmonized data in the 3-tissue model, MLP-NN classifi-
cation with 1 hidden layer yielded median accuracies of 71.0%
(range, 66.0%–71.1%) in the training set and 62.8% (range,
59.4%–71.1%) in the validation set. With 2 hidden layers, median
accuracies were 71.0% (range, 64.5%–74.0%) in the training set

TABLE 1
Tissue Classification Based on Radiomic Feature Classes and Signatures in 3-Tissue Model

Classification accuracy

Unharmonized Harmonized

PMedian Range Median Range

Gray-level histogram

Training 59.5 57.4–62.1 69.5 66.0–77.1 0.043

Validation 58.9 53.3–61.1 68.3 58.3–73.9 0.043

Gray-level cooccurrence matrix

Training 53.6 47.9–56.7 92.1 88.1–95.2 0.043

Validation 50.0 48.9–55 86.1 80.6–90.6 0.043

Gray-level run-length matrix

Training 62.4 58.8–64.5 84.8 82.4–89.5 0.043

Validation 58.3 57.2–62.8 82.8 73.9–87.8 0.043

Gray-level size-zone matrix

Training 56.2 52.9–57.9 87.6 84.0–89.0 0.042

Validation 52.8 51.7–58.3 85.6 74.4–90.6 0.043

Neighborhood gray-tone difference matrix

Training 54.8 53.3–55.7 79.5 75.5–82.9 0.043

Validation 53.9 50–59.4 77.2 73.9–85.0 0.042

Radiomic signature

Training 62.9 61–63.6 86.9 86.0–90.0 0.043

Validation 58.3 55.6–63.9 84.4 76.7–86.7 0.043

Data are percentages.
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and 67.2% (range, 61.1%–70.0%) in the validation set. Differences
between MLP-NN with 1 hidden layer and MLP-NN with 2 hid-
den layers were significant neither in the training set (P 5 0.89)
nor in the validation set (P 5 0.27).

DISCUSSION

Our results suggest that ComBat harmonization enables success-
ful 18F-FDG PET radiomics-based tissue classification in pooled
PET/MRI and PET/CT datasets. ComBat led to substantial and
statistically significant gains in classification accuracies for both
individual radiomic feature classes and multiclass radiomic signa-
tures (Table 1; Fig. 2), as typically applied in radiomics research,
and in both the 3-tissue and the 4-tissue models, though at differ-
ent accuracies probably because of introduction of a tissue (i.e.,
blood pool) without actual intrinsic structure.
ComBat harmonization is a postreconstruction algorithm based

on empiric Bayes estimation (20). Originally developed to reduce
the batch effect in genomic data, ComBat has recently been
applied to multicenter PET, CT, and MRI data (5,21,22). Several
PET radiomics studies with heterogeneous datasets used ComBat
to improve classification (6–11), but very few investigated the
actual effects of ComBat on PET radiomics-based classification.
In patients with cervical cancer, and using data from 3 centers,

Lucia et al. reported a combined 18F-FDG PET/CT and MRI radio-
mics-based locoregional control prediction accuracy of 98% for har-
monized data and 86% for unharmonized data (6). Da-Ano et al.
observed similar trends when testing different ComBat modifications
in a slightly extended cervical cancer cohort and for several classifiers
(23). However, ComBat did not improve cervical cancer survival pre-
diction when 18F-FDG PET features were combined with clinical
parameters (8).
Although for PET/CT, the CT component provides attenuation

coefficients and correction factors for PET AC, the standard approach
in PET/MRI is a T1-weighted gradient-echo Dixon sequence to gen-
erate an AC map for separation of soft tissue, fat, lung, and air (12).
This approach, although robust (24), leads to systematic underestima-
tion of attenuation coefficients in the presence of cortical bone (25).
Further, uniform attenuation coefficients are assigned to the separated
tissue types in MRI-based AC, meaning that, contrary to CT AC
maps (26), no noise is present in the MRI AC maps. Noise, therefore,
does not translate into PET images using MRI-based AC. These dif-
ferences may affect not only SUVs but also PET radiomic features
and, thus, comparability between PET/MRI- and PET/CT-based
metrics. Figure 3 clearly illustrates the clustering of radiomic fea-
tures (represented by the top 3 principal components) to the different
scanners in the unharmonized datasets. ComBat decreased or
resolved this scanner-specific clustering and improved organ-specific

FIGURE 2. Receiver-operating-characteristic curves (validation set) for pairwise (1 vs. 2) MLP-NN–based tissue discrimination (median of 5 iterations
shown). After ComBat harmonization, areas under curve are clearly improved for individual radiomic feature classes and radiomic signatures. GLCM5 gray-
level cooccurrence matrix; GLH5 gray-level histogram; GLRLM5 gray-level run-length matrix; GLSZM5 gray-level size-zone matrix; NGTDM5 neighbor-
ing gray-tone difference matrix.
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clustering, leading to higher classification ac-
curacies in both the 3-tissue and the 4-tissue
models (Tables 1 and 2). Notably, there was
an imbalance between PET/MRI and PET/
CT in terms of accuracies, with PET/MRI
data showing slightly lower accuracies than
PET/CT in the unharmonized datasets and
clearly lower accuracies after harmonization
(Supplemental Table 3)—that is, the benefit
of ComBat application was greater for PET/
CT than for PET/MRI.
We used an MLP-NN for tissue classifi-

cation, which—though a long-established
machine learning algorithm—is not as
commonly used in radiomics research as
are other algorithms. However, MLP-NN
has often yielded better results than other,
more popular techniques, such as random
forests (27–31). The use of MLP-NN also
enabled us to explore the impact of an addi-
tional hidden layer on classification results,
which led to slight but statistically nonsignif-
icant improvement of results. Although we
cannot rule out that other algorithms might
have achieved even better classification
accuracy, it seems unlikely that the choice
of a different algorithm would have af-
fected our main result, that is, that ComBat

FIGURE 3. Three-dimensional scatterplots showing obvious scanner-specific clustering within
unharmonized dataset, which is decreased or resolved in harmonized dataset. Conversely, cluster-
ing according to tissue type (liver, spleen, and bone marrow) is improved in harmonized dataset; in
particular, liver cluster (blue) is now clearly visible.

TABLE 2
Tissue Classification Based on Radiomic Feature Classes and Signatures in 4-Tissue Model

Classification accuracy

Unharmonized Harmonized

PMedian Range Median Range

Gray-level histogram

Training 46.3 44.8–48.9 56.1 53.6–60.4 0.043

Validation 45.8 42.5–49.2 53.8 46.3–56.3 0.043

Gray-level cooccurrence matrix

Training 43.4 37.5–46.1 62.7 60.5–64.3 0.043

Validation 39.2 36.7–41.7 57.5 50.8–65.0 0.042

Gray-level run-length matrix

Training 46.3 43.4–47.1 63.0 57.3–64.5 0.042

Validation 41.7 40.4–47.9 59.2 52.5–61.7 0.043

Gray-level size-zone matrix

Training 43.4 41.4–43.8 86.0 83.0–87.5 0.043

Validation 39.6 36.3–42.9 82.5 68.8–85.0 0.043

Neighborhood gray-tone difference matrix

Training 42.1 39.6–45.0 62.7 60.0–64.3 0.043

Validation 42.5 36.7–46.7 61.3 57.1–65.8 0.043

Radiomic signature

Training 51.6 48.2–56.6 82.1 80.0–86.3 0.042

Validation 48.8 42.9–50.8 81.3 67.5–82.9 0.043

Data are percentages.
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improves tissue classification in technically heterogeneous datasets.
The retrospective design of our study together with our use of clini-
cal PET scans (for which raw data were not stored in our institu-
tions) precluded us from using more uniform image acquisition and
reconstruction settings. Although this technical heterogeneity within
pooled PET data from different institutions reflects clinical reality,
use of predefined, more uniform imaging protocols, such as in pro-
spective multicenter studies, is likely to decrease the impact of Com-
Bat harmonization or even make its use unnecessary.

CONCLUSION

Our data suggest that radiomics studies using pooled 18F-FDG
PET data from PET/MRI and PET/CT devices are feasible and
should apply ComBat harmonization as a preprocessing step, at
least in retrospective technically heterogeneous datasets, as well as
prospectively if no uniform imaging protocol is implemented. We
expect this strategy to improve the generalizability of results and
facilitate the development of radiomics-based applications for use
in clinical practice.
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KEY POINTS

QUESTION: Is ComBat harmonization useful in pooled PET/MRI
and PET/CT radiomic data?

PERTINENT FINDINGS: ComBat improves PET radiomics-based
tissue classification for both individual radiomic feature classes
and multiclass radiomic signatures.

IMPLICATIONS FOR PATIENT CARE: ComBat harmonization
should be applied in multicenter radiomics studies using pooled
PET/MRI and PET/CT data.
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