MTV measurements using the same software was 91% for the
method that uses 41% of maximum SUV and more than 95%
for all other methods, and we considered this to be good agree-
ment (/). The success rate of MTV measurement was unaffected
by scanning conditions (whether compliant or not with the EANM
Research Ltd. harmonization program) and the presence or ab-
sence of subsequent disease progression. The uptake time influ-
enced the success rate of measurements for the method that uses
41% of maximum SUV and the method that uses majority vote 3,
which were less successful with longer uptake times.

Laffon and Marthan propose that MTV cutoffs derived from
PET data to guide discrimination of prognosis should be
accompanied by upper and lower confidence limits based on
measurement uncertainty. The main purpose of our work was not
to derive cutoffs to discriminate prognosis but to take a first step to
answer a methodologic question, which was to determine the
optimal automatic segmentation method or methods for MTV to
apply in a larger cohort. The criteria in our study focused on
2 aspects. First, did the MTV measurement methods generate
plausible total tumor burden segmentations? This was prioritized
over precision, as good repeatability does not necessarily provide
meaningful results. Thereby, whether such (known) precision
should subsequently be used to define a threshold uncertainty or
gray zone is a matter of effect size in the studied population and
the intended use of the biomarker. Second, to apply a method
clinically or in trials, the segmentation and workflow should be fast
and easy to use and have minimal observer interaction. By applying
these criteria, we identified 2 candidate methods (majority vote 2
and the method based on a fixed SUV threshold of 4.0 g/mL) that
can be considered for further MTV biomarker validation. For
individual patient assessment to guide prognosis and when the
ultimate goal is to offer personalized treatment, MTV should ideally
be assessed as a continuous variable. Then, cut points and measure-
ment errors or misclassification become less relevant.

We presented data on discriminatory power to confirm similar-
ity for the different segmentation methods as shown previously (2)
and to support the argument that choice of method can be based on
ease of use and success rates in giving plausible volumes under
various conditions. For the current study, we used a case-control
design to test parameters that might influence the best segmenta-
tion method—meaning that the patient population and any derived
cutoffs would not be representative of usual clinical practice. We
are progressing with MTV measurement in a large warehouse of
clinical and scan data in patients with non-Hodgkin lymphoma
(https://petralymphoma.org/). Sufficient data are required to derive
robust optimal MTV cutoffs for training, validation, and test data-
sets. In these studies, measurement error, confidence limits, and
uncertainty will be considered.

Finally, MTV is a robust predictor of prognosis in diffuse large
B-cell lymphoma but will likely need to be factored into an
algorithm with baseline clinical factors, including the international
prognostic index (3), and potentially with emerging biomarkers
that reflect tumor dissemination and molecular heterogeneity (4,5)
and dynamic response markers (3,4).
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Data-Driven Motion Correction in Clinical PET: A
Joint Accomplishment of Creative Academia and
Industry

TO THE EDITOR: I read with great interest the recent JNM
article by Walker et al. comparing data-driven and hardware-
driven motion correction technologies in PET (/). The former is
an important innovation, and its transition into the marketplace is
exciting to see. Publications such as this one play a pivotal role
in the technology’s acceptance and broader dissemination. However,
this work is very similar to work from our group published in 2016
(2), and unfortunately, our publication was not properly referenced.
Like Walker et al., we compared nongated, software-gated, and
hardware-gated images head-to-head in a large set of clinical PET
scans, using quantitative analysis of lesion uptake and qualitative
masked reviewer scoring of image quality, with similar results—a
statistically significant preference for software-gated images over
hardware-gated images and with similar ratios of performance
metrics. There are, of course, subtle differences between the gat-
ing approaches, and Walker et al. note that their work validates
newly available commercial technology. Given that this work fo-
cused on commercial product testing, it should add scientific context to
note that the key points they presented also describe our earlier findings.
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Also, in their closing discussion Walker et al. suggest that data-
driven gating with quiescent-period sorting is a practical motion
correction strategy but that retention of more than 50% of coincidences
may be required before respiratory gated PET imaging can dependably
support the clinic. We are happy to share that we have also studied
this issue, finding that clinical PET data support a spectrum of ideal or
optimal bin sizes throughout a given population and, ultimately, that no
single bin size will ensure maximum benefit, or even any benefit, for
any given patient (3). The implication, and what we have shown in our
work, is that the legacy of one-size-fits-all binning strategies could be
improved upon with a data-conforming binsize one, and make the
motion correction effort better suited for routine clinical use.

The commercial technology discussed in the article of Walker
et al. is GE Healthcare’s MotionFree product. To the credit of the
company, it recognized the potential of data-driven motion cor-
rection and developed a product to translate this potential to clinic
settings. The algorithms used in GE Healthcare’s product, and in
our 2016 and earlier publications (2-5), are remarkably similar.

Data-driven motion correction has evolved over the last two
decades, and our group has been active in its development. In 2007,
we recognized that, at the data level, motion in PET is captured and
recorded in localized signal fluctuations. To our knowledge, we were
the first to demonstrate the ability to characterize patient motion
through direct constructive combination of time—activity signal fluc-
tuations in the data acquired, an original idea that at the time improved
significantly on the strategy of tracking geometric or center-of-mass—type
motion (4-7). In recognizing the importance of practicality, our
group was also the first, to our knowledge, to consider and demonstrate
that processing can be accelerated to virtually real time through
strategic collapsing of raw (i.e., sinogram) data (8). Notably, these
innovations provided proof of principle and formed the basis of
most data-driven gating publications since. Additionally, we be-
lieve that our group was the first to discuss and demonstrate the
concept of fully automated workflows as a uniquely practical
strategy for bringing robust motion management into the clinic
(9-11). We developed innovative spinoff concepts, such as using
a quality factor (defined as the ratio of signal in respiratory and
nonrespiratory temporal frequencies in our collected motion trace)
to determine a priori the capacity of the signal to usefully correct a
patient scan (7) and to modulate bed acquisition times based on
information from such signals for practical clinical integration (/0). It
is gratifying that the MotionFree product integrates all the foregoing
innovations originally presented in our earlier publications.

The overlap between our motion characterization innovation
and the principal-component analysis algorithm supporting the GE
product has not yet been articulated in literature, and is presented
here for context and comparison. In the years 2007-2010, our
group developed the idea of strategically combining the time evo-
lution of raw PET signal to characterize patient motion and sug-
gested that it is likely the methods could be improved with further
development of signal weighting (5,7,8). In 2011, for example,
Thielemans et al. investigated this possibility by integrating a
well-established mathematic function of principal-component
analysis to calculate these weighting factors (/2). Our recent com-
parisons between principal-component analysis—based weighting
and our original constructive combination-based methods have not
yet been published, but they show that the 2 methods perform
comparably or, in many cases, virtually identically (/3)—a likely
consequence of the fact they are derived from the same deconstruction
of signal. It is, therefore, no surprise that the results of Walker et al.’s
clinical assessment and ours are so similar. This is an important result

because it indicates that the data-driven gating technology, based on
combining spatially clustered signal fluctuations, can perform com-
parably across different centers, vendors, and implementations.

In data-driven motion management, our field is witnessing the
culmination of a physics innovation concept-to-impact cycle, with
GE Healthcare providing a first-to-market product (for general
PET respiratory motion correction). Many research scientists who
began this journey over a decade ago have contributed original
ideas to this effort (/2,14-20). Alongside others, our group con-
tributed to inventing the technology, enabling its practicality, ad-
vocating for its consideration, and demonstrating its clinical utility. In
the process, we found researchers eager to cooperate, vendors who
offered support, and an effective process for solution development that
built off each other’s accomplishments and ideas. We also found chal-
lenges, which illuminated prospects to expand our field’s infrastructure
to better support data-driven innovation. These opportunities include
evolving our understanding of data as a resource; opening pathways for
data innovation to reach the market/clinic; and fostering a community
that embraces new concepts for innovation, which we expect to come
with a rapidly advancing digital landscape (2/-23).

Ultimately, our goal should be to transition to a field where data
science innovation is only limited by our imagination and not by a
legacy infrastructure, and we are presented now with a chance to
build that field. The path there is best supported with allied
cooperation, inclusive visions, and shared successes.
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REPLY: Dr. Kesner’s letter regarding our recent publication (/)
raises several useful points. We wholeheartedly agree that data-
driven gating is an important innovation. Indeed, the launch of a
commercial implementation provides an opportunity for celebra-
tion of this success and for reflection on the journey. The many
teams involved in both academic institutions and industry should
be rightly satisfied by this achievement, and it should spur them
and others to continue pushing for further improvements and inno-
vations for the benefit of the many patients whom we humbly serve.

We are grateful to Dr. Kesner for raising awareness about some
current and past developments relating to data-driven gating in
PET, including his own valuable contributions and those of his
coworkers. He has championed this field for many years (2—4). We
do, however, note that although commercial developments often take
inspiration from academic publications, such developments can also
include specific innovations or implementation details that are kept
outside the public domain. We hence take this opportunity to also
acknowledge the contributions of the many exceptional scientists and
developers who rarely publish in the academic literature.

In our recent work, we cited the work of Dr. Kesner in both the
introduction and the discussion but made a conscious decision not
to include an overview of the general development of data-driven
gating techniques. Instead, we provided key references that relate
to the specific commercially developed solution that our manu-
script concerned. Likewise, and as noted in our discussion, we
chose not to include an extensive comparison to different
algorithms. Rather, we chose to keep our discussion focused on
aspects of the commercial solution and to keep our manuscript
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within the journal’s word limit. We considered that the main
interest in our work would come from that part of the JNM reader-
ship who directly use these techniques as health-care profes-
sionals. For this subset of the readership, the performance of the
clinically available software and the limitations of our testing were
considered the most important topics for discussion, and these
were prioritized over a comparison of the performance of different
algorithms or software that is currently absent from the clinic.
Although an extended discussion of the many unapproved data-
driven gating algorithms (and their differences) had interest and
value, it did not make the final cut. To give some justification,
consider the length of the letter from Dr. Kesner, which covers just
some of these points: it is one third the word limit for our entire
manuscript. We also feel that a comparison of the commercial solution
with other algorithms is best achieved via a dedicated study on a
common dataset. We hence respectfully disagree with the assertion
that we did not “properly” reference his work, or that his works
have not been acknowledged. In fact, they are acknowledged through
various citations and discussions in each of our recent publications on
this topic (1,5,6). We are happy to acknowledge them once again.

Because the translation of this technology into a clinical product
is an exciting landmark, we suggest that now may be an appropri-
ate moment for others to provide an objective review of this tech-
nology and the potential for further development.
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