Abstract
Tau protein aggregations are a hallmark of amyloid-associated Alzheimer disease and some forms of non–amyloid-associated frontotemporal lobar degeneration. In recent years, several tracers for in vivo tau imaging have been under evaluation. This study investigated the ability of 18F-flortaucipir PET not only to assess tau positivity but also to differentiate between amyloid-positive and -negative forms of neurodegeneration on the basis of different 18F-flortaucipir PET signatures. Methods: The 18F-flortaucipir PET data of 35 patients with amyloid-positive neurodegeneration, 19 patients with amyloid-negative neurodegeneration, and 17 healthy controls were included in a data-driven scaled subprofile model (SSM)/principal-component analysis (PCA) identifying spatial covariance patterns. SSM/PCA pattern expression strengths were tested for their ability to predict amyloid status in a receiver-operating-characteristic analysis and validated with a leave-one-out approach. Results: Pattern expression strengths predicted amyloid status with a sensitivity of 0.94 and a specificity of 0.83. A support vector machine classification based on pattern expression strengths in 2 different SSM/PCA components yielded a prediction accuracy of 98%. Anatomically, prediction performance was driven by parietooccipital gray matter in amyloid-positive patients versus predominant white matter binding in amyloid-negative patients. Conclusion: SSM/PCA-derived binding patterns of 18F-flortaucipir differentiate between amyloid-positive and -negative neurodegenerative diseases with high accuracy. 18F-flortaucipir PET alone may convey additional information equivalent to that from amyloid PET. Together with a perfusion-weighted early-phase acquisition (18F-FDG PET–equivalent), a single scan potentially contains comprehensive information on amyloid (A), tau (T), and neurodegeneration (N) status as required by recent biomarker classification algorithms (A/T/N).
Footnotes
Published online Jul. 3, 2020.
- © 2021 by the Society of Nuclear Medicine and Molecular Imaging.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
SNMMI members
Login to the site using your SNMMI member credentials
Individuals
Login as an individual user