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The aim of this retrospective multicentric study was to develop and

evaluate a prognostic 18F-FDG PET/CT radiomic signature in early-
stage non–small cell lung cancer patients treated with stereotactic

body radiotherapy (SBRT). Methods: Patients from 3 different cen-

ters (n 5 27, 29, and 8) were pooled to constitute the training set,
whereas the patients from a fourth center (n 5 23) were used as the

testing set. The primary endpoint was local control. The primary

tumor was semiautomatically delineated in the PET images using

the fuzzy locally adaptive Bayesian algorithm, and manually in the
low-dose CT images. In total, 184 Image Biomarkers Standardiza-

tion Initiative–compliant radiomic features were extracted. Seven

clinical and treatment parameters were included. We used ComBat

to harmonize radiomic features extracted from the 4 institutions re-
lying on different PET/CT scanners. In the training set, variables

found significant in the univariate analysis were fed into a multivar-

iate regression model, and models were built by combining inde-
pendent prognostic factors. Results: Median follow-up was 21.1

mo (range, 1.7–63.4 mo) and 25.5 mo (range, 7.7–57.8 mo) in train-

ing and testing sets, respectively. In univariate analysis, none of the

clinical variables, 2 PET features, and 2 CT features were signifi-
cantly predictive of local control. The best predictive models in the

training set were obtained by combining one feature from PET (In-

formation Correlation 2) and one feature from CT (flatness), reaching

a sensitivity of 100% and a specificity of 96%. Another model com-
bining 2 PET features (Information Correlation 2 and strength)

reached sensitivity of 100% and specificity of 88%, both with an

undefined hazard ratio (P , 0.001). The latter model obtained an

accuracy of 0.91 (sensitivity, 100%; specificity, 81%), with a hazard
ratio undefined (P5 0.023) in the testing set; however, other models

relying on CT radiomic features only or the combination of PET and

CT features failed to validate in the testing set. Conclusion: We
showed that 2 radiomic features derived from 18F-FDG PET were

independently associated with local control in patients with non–small

cell lung cancer undergoing SBRT and could be combined in an ac-

curate predictive model. This model could provide local relapse-

related information and could be helpful in clinical decision making.

Key Words: PET/CT; radiomics; early-stage NSCLC; stereotactic

body radiotherapy

J Nucl Med 2020; 61:814–820
DOI: 10.2967/jnumed.119.228106

Non–small cell cancer (NSCLC) is usually associated with a
poor prognosis. However, approximately 16% of patients present

with early-stage cT1–T2 N0 disease at diagnosis (1). Over the past

2 decades, technologic developments in target delineation, motion

management, conformal treatment planning, and daily image guid-

ance have allowed the development of stereotactic body radiation

therapy (SBRT) (2). SBRT uses stereotactic targeting to facilitate

the accurate delivery of a short course of high-dose radiation to the

target. SBRT has demonstrated high local control rates (85%–90%)

comparable to those obtained with surgery in multiple prospective

trials (3) and is now a guideline-recommended treatment for pa-

tients with early-stage NSCLC who are medically unfit or unwilling

to undergo surgery (4). Among these patients, therapeutic results are

nonetheless highly variable, and new predictive factors of response

to SBRT are needed to better individualize treatment.
18F-FDG PET/CT is the standard imaging tool for initial staging and

radiation treatment planning (5). PET/CT has also emerged as a prog-

nostic tool in NSCLC, but parameters such as SUVmax and metabolic

tumor volume have been inconsistently correlated with outcome (6).
Radiomic features are handcrafted metrics used to quantify tumor

intensity, shape, and heterogeneity, some of which have been shown
to reflect intratumoral histopathologic properties (7) and to predict
patients’ outcome in several pathologic conditions including NSCLC
when extracted from 18F-FDG PET, CT, or both (8).
We hypothesized that some radiomic features extracted from the

18F-FDG PET/CT images could have predictive value of recurrence
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in early-stage NSCLC patients treated with SBRT, and we aimed to
evaluate this hypothesis in a multicentric setting.

MATERIALS AND METHODS

Patient Selection

Eighty-seven patients with NSCLC stage I–II and tumor diameters
below 5 cm according to the eighth American Joint Committee on

Cancer classification, treated with definitive curative SBRT from Jan-

uary 2012 to December 2016 at 4 French institutions (Rennes, Tours,

Brest and Nantes), were retrospectively included.

All patients were required to have PET/CT imaging performed within
60 d of SBRT and at least 6 mo of follow-up. Histologic confirmation

was not mandatory, but if a biopsy could not be performed because of a

contraindication, progression according to RECIST on at least 2 serial

CT imaging studies or an increased 18F-FDG uptake on PET/CT were

necessary, according to recommendations (9).
Collected data included age and date of diagnosis, sex, performance

status, histology when available, stage, tumor size as measured on CT

according to RECIST, status at last follow-up, and PET/CT diagnostic

images. Date and site of recurrence were also collected. Diagnosis of

recurrences was based on CT findings (with confirmation of radiologic

progression on serial CT), and histologic confirmation of relapse was

not mandatory.

This study was approved by the Institutional Review Boards at each
institution.

Treatment Planning

The SBRT dose was prescribed according to each institution’s pro-
tocol. Patients with peripherally located lesions received a median total

radiation dose of 48 Gy (range, 48–60 Gy) in 3–4 fractions. For central

lesions, a median dose of 50 Gy (range, 30–60 Gy) in 3–8 fractions was

used (Supplemental Table 1; supplemental materials are available at

http://jnm.snmjournals.org).

Follow-up

Clinical and radiologic follow-up was performed at the treating
institution. CT was performed every 3 mo in the first 2 y and then

every 6 mo for another 3 y.

PET/CT Image Acquisition and Image Analysis

PET/CT images were acquired 60 6 5 min after 18F-FDG injection in

accordance with the European Association of Nuclear Medicine guidelines

(10). All PET images were corrected for attenuation using the acquired

low-dose CT data. Acquisitions differed among the 4 institutions in terms

of PET/CT scanner manufacturer and models, as well as in acquisition

protocols and reconstruction settings (Fig. 1; Supplemental Table 2).

Tumor Delineation

The PET and the low-dose CT images were processed indepen-
dently. An expert radiation oncologist segmented all primary tumors

semiautomatically in the PET images using the fuzzy locally adaptive

Bayesian algorithm, which has been shown to be robust with respect

to differences in image acquisition and reconstruction settings (11),

and manually in the low-dose CT images, with the lung window

setting (window level, 2450 Hounsfield units; window width, 1,500

Hounsfield units) using MiM Maestro (MiM software Inc.) (Fig. 1).

Feature Extraction

Each tumor in both the PET and the CT images was characterized
with 92 radiomic features (shape, intensity, and texture with fixed

number of bins, discretization into 64 bins, and 3-dimensional merging

strategy for matrices; Supplemental Table 2), compliant with the most

up-to-date benchmark values of the Image Biomarkers Standardization

Initiative (12).

Statistical Analysis and Modeling

For each patient, 191 image features (92 in each modality, 7 clinical

and histopathologic parameters [age, sex, gross tumor volume, stage,

localization, World Health Organization status, histology]) and the bi-

ologically equivalent dose were included. To pool radiomic features

extracted from images acquired on the different PET/CT scanners and

associated protocols, we used the ComBat harmonization method (13).

After ComBat harmonization of radiomic features, patients from Rennes,

Tours, and Brest were pooled to constitute the training set, whereas

patients from Nantes were used as the testing set.

The primary endpoint was local control. Secondary endpoints were
cancer-specific survival, distant metastasis–free survival, recurrence-

free survival, and overall survival. For the training set, all variables

were tested using the univariate Cox proportional-hazards model.

Given the number of variables tested and the small number of events,

a conservative significance level of P, 0.005 was considered to reduce

the risk of false discovery (14).

Receiver-operating-characteristic curves were used to determine
optimal cutoffs of significant variables using the Youden index. The

resulting Kaplan–Meier curves for local control were compared using

the log-rank test.
Because univariate selection ignores relationships between vari-

ables, Spearman rank correlation (r) was used to quantify correlations

between the parameters with an area under the receiver-operating-

characteristic curve of above 0.7, to evaluate the redundancy of po-

tentially predictive variables (Supplemental Table 3). Cox regression

models with the stepwise method were subsequently used for multi-

variate analysis by including only uncorrelated variables (r , 0.8,

a threshold arbitrarily chosen on the basis of the usual categories

FIGURE 1. Images obtained at Brest (Biograph; Siemens) (A), Rennes

(Discovery ST; GE Healthcare) (B), Tours (Ingenuity; Philips) (C), and

Nantes (Biograph) (D), with semiautomatically fuzzy locally adaptive

Bayesian segmentation on corrected PET and corresponding manual

gross-tumor volume segmentation on CT with lung window setting.
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suggested by Mukaka et al. (15)) identified as significant in the uni-

variate analysis, to identify independent factors that could be com-
bined into multiparametric models. Such models were then built for

binary classification of the patients with both risk factors into one
group, versus the patients with none or only one of the risk factors into

another group.
The best models were evaluated in the testing set. Adjusted hazard

ratios (HRs) and the corresponding 95% confidence intervals (CIs)
were calculated.

In addition, correlations between the parameters identified in the
multivariate analysis and standard metrics (e.g., SUVmax and volume)

were checked to avoid developing models that would end up being
simply surrogates of usual variables (Supplemental Table 4).

All statistical analyses were performed using MedCalc Statistical
Software, version 18.5 (MedCalc Software). The datasets generated

during or analyzed during the current study are available from the
corresponding author on reasonable request.

RESULTS

Patient and Tumor Characteristics

The flowchart (Supplemental Fig. 1) presents the patient selection.
The 87 patients were split into a training set that included 64 patients
from Brest (n5 8), Rennes (n5 27), and Tours (n5 29), whereas 23
patients from Nantes constituted the testing set. Patients, tumors, and
treatment characteristics are provided in Table 1 and Supplemental
Table 5.

No clinical parameters were statistically significant between the
training and testing sets. In 51 patients (59%), the diagnosis of NSCLC
was confirmed histologically (34 in the training cohort and 17
patients in the testing cohort).
In the training set, the median SBRT dose delivered was 54 Gy

in 3 fractions (range, 30– 60 Gy in 3–8 fractions; median biologically
equivalent dose, 150 Gy). In the testing set, the median SBRT dose
delivered was 48 Gy in 4 fractions (median biologically equivalent
dose, 105.6 Gy).
There was no significant difference in median SUVmax between

the training and testing sets or between patients with biopsy-proven
NSCLC (median, 7.5; range, 2.6–36.2) and those without histologic
information (median, 7.7; range, 2.5–18.23).

Outcome

Training Set. In the training set, median follow-up was 21.1 mo
(range, 1.7–63.4 mo). Progression or disease recurrence occurred
in 15 patients (24%) after a median follow-up of 37 mo (range,
22–41 mo). Eleven patients had distant recurrence (17%), none
had regional recurrence, and 4 (6%) had a local failure. The 2-y local
control, overall survival, cancer-specific survival, distant metastasis–
free survival, and recurrence-free survival rates were 90%, 75%,
89%, 75%, and 69%, respectively.
Testing Set. In the testing set, median follow-up was 25.5 mo

(range, 7.7–57.8 mo). Progression or recurrence occurred in 9 pa-
tients (39%), 7 (23%) had a distant recurrence, 4 (17%) had regional

TABLE 1
Patient and Tumor Characteristics

Characteristic Training set (n 5 64) Testing set (n 5 23) P

Median age (y) 72 (range, 45–87) 69 (range, 52–85) 0.589

Median tumor volume (cm3) 133.3 (range, 8.3–946.9) 149.7 (range, 5.7–987.2) 0.946

T stage (n)

T1 13 (20.3%) 4 (17.4%) 0.864

T2 51 (79.7%) 19 (82.6%)

Sex (n)

Male 48 (75%) 19 (82.6%) 0.821

Female 16 (25%) 4 (17.4%)

Histology (n)

Adenocarcinoma 25 (39%) 12 (52.2%) 0.742

Other histologies 9 (14%) 5 (21.7%)

Unknown 30 (47%) 6 (26.1%)

WHO performance status (n)

0–1 49 (76.6%) 22 (95.6%) 0.435

.1 15 (23.4%) 1 (4.4%)

Tumor location (n)

Peripheral 55 (85.9%) 21 (91.3%) 0.558

Central 9 (14.1%) 2 (8.7%)

BED10 (n)

,150 Gy 41 (64%) 17 (73.9%) 0.599

.150 Gy 23 (36%) 6 (26.1%)

Median SUVmax 7.76 (range, 2.5–36.2) 7.79 (range, 2.5–18.6) 0.538

WHO 5 World Health Organization; BED10 5 biologically equivalent dose.
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recurrence, and 2 (9%) had a local failure. The 2-y local control,
overall survival, cancer-specific survival, distant metastasis–free
survival, and recurrence-free survival rates were 87%, 100%, 100%,
75%, and 72%, respectively.

Development of the Radiomic Signature in the Training Set

Local Control. In univariate analysis, no clinical parameter was
statistically correlated with local control. BED10 (biologically
equivalent doses were calculated with an a/b of 10; .151.2
Gy) showed an association with worse local control without, how-
ever, reaching statistical significance, with a HR of 10 (95% CI,
1–95) (P 5 0.016) (Table 2).
Three CT-derived features and 2 PET-derived features reached

an area under the curve of more than 0.7 (Supplemental Tables
3 and 4). In univariate analysis, CT flatness, CT shade, and
elongation (AUC 0.79) were associated with local control (P ,
0.001 with an undefined HR and P 5 0.003 with an HR of 13
[95% CI, 1.1–168], respectively). PET Information Correlation 2
(IC2) from gray-level cooccurrence matrix and PET texture
strength from the neighborhood gray-tone difference matrix
remained significant, with HR undefined for both (P 5 0.005 and
P 5 0.001, respectively).
The model combining these 2 PET features (with cutoffs of 0.89

and 45.11 for IC2 and strength, respectively) reached an accuracy
of 0.94 (sensitivity, 100%; specificity, 88%) to predict local control,
with an undefined HR (P , 0.001) (Fig. 2A). The estimated 3-y
local control rates between patients with low versus high values for
this model were 100% and 62.5%, respectively (Fig. 2B). A PET/
CT model combining PET IC2 and CT flatness (with cutoffs of 0.89
and 0.73, respectively) reached an accuracy of 0.98 (sensitivity,
100%; specificity, 96%) to predict local control, with an undefined
HR (P , 0.001) (Fig. 3). The estimated 3-y local control rates
between patients with low versus high PET/CT model were 100%
and 60%, respectively.
In the multivariate analysis, PET (PET IC2 and PET strength)

and PET/CT (PET IC2 and CT flatness) models remained statistically
significant, with HRs of 31 (95% CI, 3–369; P5 0.007) and 38 (95%
CI, 3–449; P 5 0.004), respectively (Table 2).

Overall and Cancer-Specific Survival. In univariate analysis, none
of the investigated parameters (clinical or radiomic) were associated
with overall survival or cancer-specific survival. BED10, with a
150-Gy cutoff, showed a trend for cancer-specific survival (HR
of 6 [95% CI, 1–49]; P 5 0.07).
Distant Metastasis–Free Survival and Recurrence-Free Survival.

In univariate analysis, BED10 (.150 Gy) remained statistically
correlated with distant metastasis–free survival and recurrence-free
survival, with an HR of 8 (95% CI, 2–27; P , 0.001) and 6 (95%
CI, 2–18; P , 0.001), respectively (Table 2). None of the radiomic
features was associated with distant metastasis–free survival or
recurrence-free survival.

Evaluation of the Radiomic Signatures in the Testing Set

The PET-only signature combining PET IC2 and PET strength
reached an accuracy of 0.91 for local control (sensitivity, 100%;
specificity, 81%) (Figs. 4A and 4B), with an undefined HR (P 5
0.023). The PET/CT signature combining PET IC2 and CT flat-
ness failed to reach statistical significance.
The predictive power of SBRT regarding disease-free and

recurrence-free survival was not confirmed.

DISCUSSION

Our results are in line with previous studies on NSCLC that
exploited 18F-FDG PET/CT to predict outcome, showing that
tumor uptake distribution quantitatively characterized by 18F-
FDG PET radiomics is associated with response to external-beam
radiotherapy (16).
In this study, we identified a PET radiomic signature combin-

ing 2 textural features, namely IC2 and strength, that has pre-
dictive power regarding the efficacy of SBRT in the treatment of
early-stage NSCLC. We showed that the higher these features
were, the worse local control was, reflecting tumor heterogene-
ity on staging PET/CT of patients with lung cancer eligible for
SBRT.
Radiomic features exhibit variable sensitivity to the acquisition

and reconstruction parameters (17). These can vary considerably

TABLE 2
Uni- and Multivariate Analysis for Local Control in Training Set

Univariate Multivariate

Characteristic HR 95% CI P HR 95% CI P

Age (,72 vs. $72 y) — — 0.975

Tumor volume (.132 vs. #132 cm3) — — 0.059

TNM (T2 vs. T1) 6 0.1–405 0.078

Sex (male vs. female) 3 0.3–29 0.251

Histopathologic type (others vs. ADK) 3 0.4–21 0.297

WHO performance status (#1 vs. 2) — — 0.420

Localization (peripheral vs. central) — — 0.793

BED10 (.151.2 vs. #151.2 Gy) — — 0.016

Radiomic signature

PET signature (IC2 and strength) — — ,0.001 30.75 2.56–369.11 0.007

PET/CT signature (PET IC2 and CT flatness) — — ,0.001 37.5 3.13–448.61 0.004

ADK 5 adenocarcinoma; WHO 5 World Health Organization; BED10 5 biologically equivalent dose.
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from one institution to another or even within an institu-
tion relying on different scanners (e.g., Nantes in the present
study); therefore, validating radiomics-based models in a multi-
centric context is often challenging. This is one of the identified
limitations for a broader transfer of radiomics to clinical prac-
tice. We recently confirmed that the ComBat method could
successfully harmonize radiomic features extracted from PET
and MR images obtained with different acquisition and recon-
struction parameters to facilitate validation of radiomic signatures
in a multicentric setting (18). In our present work, we further
confirmed the interest of ComBat (Supplemental Fig. 2).

Indeed, without harmonization, the radio-
mic features had lower predictive power
(Supplemental Table 6).
Studies focusing on early-stage lung

tumors treated with SBRT are sparse. A
first retrospective study on a cohort of 101
patients treated with SBRT showed that
SUVpeak and radiomic features could pre-
dict distant recurrence with a C-index of
0.71, higher than SUVmax or tumor volume
alone (19). This work considered only PET
images and was monocentric, although 2
different scanners were used—a fact that
was not accounted for in the radiomic fea-
tures computation or statistical analysis.
Another study reported gray-level cooc-
currence matrix entropy as independently
associated with local control in a series of
45 patients treated with SBRT (20). Oiko-
nomou et al. performed a larger analysis
of 150 patients combining CT and PET

parameters but did not specifically report on local control. They
used a manual PET segmentation that suffers from high inter-
and intraobserver variability (21). Furthermore, they tested only
21 texture parameters extracted on 2 dimensions. Finally, Lovin-
fosse et al. identified gray-level cooccurrence matrix dissimilarity
from 18F-FDG PET in 63 patients as associated with disease-
specific survival and disease-free survival but not overall survival
(22). All these studies were retrospective and monocentric, and
none followed a training–testing scheme, which can be crucial,
as we showed here that features predictive in the training set may
not be validated in the testing set (the CT features in our case).
In addition, most of these studies investigated a comparatively
small number of radiomic features not compliant with the Image
Biomarkers Standardization Initiative and relied on different seg-
mentation or intensity discretization schemes, which may help
explain why different features were identified among these stud-
ies. Reproducibility and comparison between radiomic studies out-
side the Image Biomarkers Standardization Initiative framework is
impossible (23).
In most radiomic studies, the number of variables is often greater

than the number of patients, potentially leading to a high risk of
false discovery (14). To address this problem, we relied on a more
conservative P value threshold in the univariate analysis of the
training cohort (0.005 instead of the usual 0.05), and we evaluated
the trained models in an separate dataset. With this approach, we
found a local control signature consisting of 2 PET features that
yielded a high prognostic performance for local control. The retained
features showed low (r , 0.01 for CT flatness) to moderate (r ,
0.64 for PET strength) rank correlation with the associated tumor
volume (Supplemental Table 3).
Overall, 6 patients of 87 (7%) developed a local relapse later

on. This low rate of infield relapse is in accordance with the
literature (24).
Our study has several limitations. First, histologic confirma-

tion was not available for 43% of the patients, leaving doubt that
some might have been treated for a benign disease. However,
findings from surgical studies have shown that the likelihood
of a benign diagnosis in patients having a new or growing lesion
on CT with a corona radiate sign and local 18F-FDG uptake is
less than 4% (25). In addition, data from the literature show that

FIGURE 3. Receiver-operating-characteristic curve analysis for pre-

diction of local control according to model combining PET IC2 and CT

flatness in training cohort. AUC 5 area under curve.

FIGURE 2. (A) Receiver-operating-characteristic curve analysis for prediction of local control

according to PET IC2 and PET strength in training cohort. (B) Kaplan–Meier curve of local

control based on radiomic signature PET IC2 and PET strength in training cohort. AUC 5 area

under curve.
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therapeutic results in patients without histologic information are
similar to those of patients whose histologic type is known or
those who benefited from surgical resection (26). In our present
work, we showed no difference between patients with and with-
out histology (Supplemental Table 7). Another limitation is that
all PET images were acquired in the free-breathing condition,
which could influence radiomics although some features can be
robust when compared between free breathing and optimal re-
spiratory gating (27). The interobserver reliability of the CT
features could not be evaluated because segmentation on the
CT images was performed manually by a single expert in the
same way as he routinely delineates the gross tumor volume
to plan stereotactic treatment (28). Of note, the signature includ-
ing a CT feature could not be validated in the testing set, con-
trary to the PET-only signature that combines features extracted
from semiautomatically delineated tumor volumes with the
fuzzy locally adaptive Bayesian algorithm, which allows reduc-
ing interobserver variability. Several alternative segmentation
methods can provide similar performance (29). It should also
be emphasized that the CT component of PET/CT exploited in
the present study is not of the same resolution and quality as a
planning or a diagnostic CT scan and was also without contrast
enhancement. This factor can also contribute to the lower pre-
dictive value of CT features compared with PET. Finally, our
study was retrospective (as are most radiomic studies) and included
a limited number of patients, which is also a limitation to applying
ComBat despite its proven robustness for small samples, since
the number of patients per batch was small. The small number
of events may also have limited the statistical significance of
the results and the representativeness of the model assessment
(e.g., some of the HRs in our results could not be determined
because of 100% sensitivity). A post hoc power analysis re-
garding an area under the curve of 0.9, compared with the null
hypothesis (area under the curve, 0.5), with an a-risk of 0.05
and power of 0.8, shows that the training cohort is sufficient (4 events
for 60 patients, as required) but that the testing cohort is under-
powered (2 events for 21 patients instead of 4 events for 42 patients).
Finally, some patients had a short follow-up (5 patients had a follow-
up , 1 y) and thus could still develop recurrence despite being

predicted as low risk, which would decrease
the overall performance of our model.

CONCLUSION

In this multicenter, retrospective study,
we showed that imaging features derived
from PET/CT were independent predictive
factors of local control in patients with
NSCLC undergoing SBRT. These features
could provide recurrence-related informa-
tion and could be helpful in clinical de-
cision making, especially regarding dose
escalation. Our findings need to be con-
firmed in a larger cohort, which is currently
being collected at our institution and other
centers.
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KEY POINTS

QUESTION: Can pretreatment 18F-FDG PET/CT radiomics predict

local recurrence in patients treated with SBRT for early-stage

NSCLC?

PERTINENT FINDINGS: We showed that the ComBat harmoni-

zation method allowed efficient pooling of radiomic features

extracted from the 4 clinical centers to train and validate a 2-

feature PET radiomic model that achieves high accuracy in pre-

dicting local recurrence, especially in comparison with clinical

factors that were not predictive.

IMPLICATIONS FOR PATIENT CARE: A simple PET-derived

radiomic signature (2 features) may provide recurrence-related

information and could be helpful in clinical decision making, es-

pecially regarding dose escalation.
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