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We describe a fully automated processing pipeline to support the

noninvasive absolute quantification of the cerebral metabolic rate

for glucose (CMRGlc) in a clinical setting. This pipeline takes advan-

tage of “anatometabolic” information associated with fully integrated
PET/MRI. Methods: Ten healthy volunteers (5 men and /5 women;

27 ± 7 y old; 70 ± 10 kg) underwent a test-retest 18F-FDG PET/MRI

examination of the brain. The imaging protocol consisted of a 60-min

PET list-mode acquisition with parallel MRI acquisitions, including
3-dimensional time-of-flight MR angiography, MRI navigators, and a

T1-weighted MRI scan. State-of-the-art MRI-based attenuation cor-

rection was derived from T1-weighted MRI (pseudo-CT [pCT]).
For validation purposes, a low-dose CT scan was also performed.

Arterial blood samples were collected as the reference standard

(arterial input function [AIF]). The developed pipeline allows the der-

ivation of an image-derived input function (IDIF), which is subsequently
used to create CMRGlc maps by means of a Patlak analysis. The

pipeline also includes motion correction using the MRI navigator se-

quence as well as a novel partial-volume correction that accounts for

background heterogeneity. Finally, CMRGlc maps are used to generate
a normative database to facilitate the detection of metabolic abnormal-

ities in future patient scans. To assess the performance of the devel-

oped pipeline, IDIFs extracted by both CT-based attenuation correction
(CT-IDIF) and MRI-based attenuation correction (pCT-IDIF) were

compared with the reference standard (AIF) using the absolute

percentage difference between the areas under the curves as well

as the absolute percentage difference in regional CMRGlc values.
Results: The absolute percentage differences between the areas

under the curves for CT-IDIF and pCT-IDIF were determined to be

1.4% ± 1.0% and 3.4% ± 2.6%, respectively. The absolute percent-

age difference in regional CMRGlc values based on CT-IDIF and pCT-
IDIF differed by less than 6% from the reference values obtained

from the AIF. Conclusion: By taking advantage of the capabilities of

fully integrated PET/MRI, we developed a fully automated computa-

tional pipeline that allows the noninvasive determination of regional
CMRGlc values in a clinical setting. This methodology might facilitate

the proliferation of fully quantitative imaging into the clinical arena

and, as a result, might contribute to improved diagnostic efficacy.
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The prospect of deriving fully quantitative physiologic measure-
ments of the human body that go beyond the differential evaluation of

image patterns is a key strength of PET imaging (1). Moreover, the

quantitative assessment of physiologic processes in vivo, such as

metabolism, perfusion, or neurotransmitter receptor binding, is

considered a necessary next step on the path to human precision

medicine (2).
Pioneering studies in the early days of PET imaging clearly

demonstrated the potential of absolute quantification in understand-

ing human physiology (1). However, because of the complexity and

invasiveness (i.e., arterial cannulation) of the protocols, their adop-

tion into clinical work was limited. Instead, absolute quantification

was supplanted in due course by less physiologic, but more practical,

measures, such as SUVs (3). However, despite their indisputable clin-

ical usefulness, such semiquantitative measures cannot provide infor-

mation about underlying physiologic mechanisms and are meaningful

only within the context of the diagnostic application.
To obviate the need for the arterial input function (AIF) in brain

studies, several methodologies have been proposed to extract an

image-derived input function (IDIF) directly from PET images (4–

12). These studies demonstrated that the extraction of an IDIF

from a dynamic PET dataset requires 3 main tasks: the accurate

definition of a blood-pool region, the accurate correction for sub-

ject motion, and the exact correction of extracted time–activity

curves for partial-volume effects because of the small diameter of

the internal carotid arteries.
In past implementations, an IDIF was extracted either from

PET/CT data in conjunction with a separate MRI scan (4,6,10,12)

or from a fully integrated PET/MRI protocol (7,8,11,13). In par-

ticular, taking advantage of methodologic advances provided by

fully integrated PET/MRI allows the 3 challenges mentioned ear-

lier to be addressed in a straightforward manner.
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For example, high-resolution MR sequences, such as 3-dimensional
(3D) time-of-flight MR angiography (MRA), can be effectively used
to localize the carotid vasculature, and the combined anatomic (vessel
geometry) and physiologic (vessel tracer concentration) information
can be used for the accurate correction of partial-volume (PV) dis-
tortions in the PET data. In addition, high-speed MRI navigators can
be interleaved with clinical MR sequences to define motion vectors
that allow the correction of subject motion (14).
PET/MRI-based IDIF methodologies have well-defined advan-

tages over combined PET/CT and MRI protocols; however, they
have suboptimal MRI-based attenuation correction (AC) that typi-
cally mandates a separate low-dose CT scan to derive a CT-based
attenuation correction (CT-AC) map. Therefore, PET/MRI-based
IDIF methodologies have been restricted to research because
of their dependence on external CT scans and substantial post-
processing analysis schemes to extract an accurate IDIF.
The adoption of a noninvasive absolute quantification scheme in

clinical routines requires both an automated analysis approach and
independence from additional procedures (CT imaging). Here, we
introduce a fully automated processing pipeline that enables the
noninvasive absolute quantification of the cerebral metabolic rate
for glucose (CMRGlc) in a clinical setting on the basis of synergistic
information obtained from a fully integrated PET/MRI system. In
this extension of our previous work (11), we now introduce MRI
navigator–based motion correction that, apart from PET data align-
ment, also aligns the attenuation maps (dynamic AC maps) with PET
emission data. Moreover, we now use an improved partial-volume
correction (PVC) method that is sensitive to the spatial and temporal
variations of the target and background activities. In addition, we
have implemented a state-of-the-art MRI-based AC method (15) that
abrogates the need for an external CT-AC map. Furthermore, we
have incorporated an absolute quantification component that allows
the calculation of CMRGlc maps using Patlak analysis and that also
generates a normative database (NDB) that can be used to objec-
tively define patient-specific brain abnormalities and directly support
clinical readings. Finally, we have integrated all of these methodo-
logic advances into a single automated processing pipeline, affording
noninvasive absolute quantification in a clinical setting.

MATERIALS AND METHODS

Ten healthy volunteers (5 men and 5 women; 27 6 7 y old) were
included in this study. The study was approved by the Ethics Com-

mittee of the Medical University of Vienna and was performed in

accordance with the Declaration of Helsinki (1964), including current

revisions. All volunteers were deemed to be healthy on the basis of

their medical history, physical examinations, and vital signs. Written

informed consent was obtained from all of the subjects before the

examinations.

Study Design

The subjects underwent test-retest examinations (mean time differ-

ence, 17 6 44 d) in a fully integrated PET/MRI system (Biograph

mMR; Siemens). To validate the accuracy of the IDIF, arterial blood

samples were obtained from a radial artery. Moreover, after the PET/

MRI examinations, a low-dose CT scan of the brain (120 kVp; 50 mAs)

was acquired only for test examinations using a PET/CT system on-site

(Biograph TruePoint TrueView 64; Siemens Healthineers) to compare

the performance of MRI-based AC with that of CT-AC.

Imaging Protocol

All examinations were conducted in the afternoon; subjects were

asked to keep their eyes open without performing any task. Before

each scan, the glucose concentration (mmol/L) in blood was measured,

and a venous line was established for the injection of the 18F-FDG

tracer. In addition, an arterial line was established in the contralateral

arm for manual arterial blood sampling. To ensure a high signal-to-noise

ratio in the MR images, a head and neck coil was used.
After the brain was positioned in the center of the field of view, a

60-min PET list-mode acquisition was initiated with the intravenous

injection of 18F-FDG (352 6 66 MBq), which was administered as a

slow bolus over 40 s. Contemporaneously with the PET data acquisi-

tion, multiple MRI sequences were acquired: a 3D time-of-flight MR

angiography (TOF-MRA) sequence (voxel size, 0.5 · 0.5 · 1 mm;

echo time, 3.6 ms; repetition time, 21 ms; flip angle, 25�; matrix, 228

· 384; 220 slices) for the definition of the carotid vasculature, a T1-

weighted MRI sequence (voxel size, 1 · 1 · 1 mm; matrix, 256 · 256;

192 slices) for the anatomic localization and calculation of the

pseudo-CT (pCT) AC (pCT-AC) map, and a conventional Dixon se-

quence (voxel size, 2.60417 · 2.60417 · 3.12 mm; matrix, 192 · 128;

126 slices) for the generation of a Dixon AC map (16). In addition,

sparsely sampled MRI navigators (2-dimensional echo-planar imaging;

voxel size, 3.0 · 3.0 · 3.0 mm; matrix, 64 · 64; 36 slices; echo time, 30

ms; repetition time, 3,000 ms) were acquired for motion correction.

MRI navigators were interleaved at specific time intervals (0, 2.5, 5,

7.5, 10, 14, 17, 21, 26, 33, 38, 42, 44, and 50.5 min after injection).
PET list-mode data were rebinned into a dynamic frame sequence

(24 · 5 s, 1 · 60 s, 1 · 120 s, and 11 · 300 s) and reconstructed
(Siemens e7 tools) into a 344 · 344 · 127 matrix (voxel size, 2.08 ·
2.08 · 2.03 mm) using the ordinary Poisson ordered-subset expectation-
maximization 3D algorithm (3 iterations, 28 subsets, and 2-mm gaussian

filter). Attenuation and scatter correction were performed using AC maps
corrected for motion.

Blood Sampling

Arterial blood samples were collected manually from the radial

artery at different time points (24 · 5 s, 1 · 60 s, 1 · 120 s, 1 · 300 s,

1 · 600 s, and 2 · 1200 s after injection). The blood sampling was

performed using vacuum test tubes via an arterial cannula fitted with

an adapter. Before every arterial sample was collected 2 min after

injection, the line was flushed with 5 mL of sodium chloride solution

to prevent clotting and sampling of stagnant blood. To avoid dilution

of the actual sample, 1 mL of blood was drawn and discarded before

the arterial blood sample was drawn. Whole-blood concentrations were

measured using a g-counter (2480 WIZARD2 automatic g-counter;

PerkinElmer). To obtain the AIF, whole-blood samples were centri-

fuged to separate the plasma component before the radioactivity in the

plasma was measured. The measured whole-blood and plasma tracer

concentrations were used to calculate the plasma-to-blood ratio for each

subject.

Attenuation Map Processing

The Dixon AC map and the first MRI navigator (Nav-0) were
considered to be coregistered because they were acquired sequentially

with a negligible temporal gap. To generate dynamic AC maps that

considered patient motion (see additional information later in the

article), the low-dose CT image volume and the T1-weighted MR image

(acquired 10 min after the start of the PET acquisition) were aligned

with the Dixon AC map as follows. Initially, a Dixon composite image

was derived by summing the in-phase and out-of-phase fat and water

images. This Dixon composite image volume served as the reference

volume to which the CT image volume was rigidly aligned using

SPM12 (Wellcome Trust Center for Neuroimaging, University College

London) (17). After automatic removal of the CT bed, tube voltage–

dependent bilinear scaling was applied to convert the low-dose CT

image to a CT-AC map (18). In addition, a state-of-the-art MRI-based

AC map (pCT map) was derived directly from T1-weighted MR images
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through a multiatlas propagation scheme, which locally matches the

MRI-derived morphology to a database of MRI-CT pairs using a local
image similarity measure (15). The obtained pCT map was rigidly

coregistered to the low-dose CT map, and then tube voltage–dependent
bilinear scaling (18) was applied to generate a pCT-AC map. CT-AC

and pCT-AC maps were smoothed using Siemens e7 tools to match the
spatial resolution of PET images.

Noninvasive Quantification Pipeline

The developed pipeline consists of an IDIF component and a

quantification component (Fig. 1). Six nodes each perform a specific
task in sequential order (Supplemental Fig. 1) (supplemental materials

are available at http://jnm.snmjournals.org). The IDIF component per-
forms dynamic PET reconstruction (Siemens e7 tools); this step is

followed by the generation of an IDIF through the automatic delinea-
tion of a suitable volume of interest and the application of corrections

for subject motion and partial-volume distortions. The IDIF is then
forwarded to the quantification component, which creates a pixel-by-

pixel CMRGlc map using Patlak analysis (19). The resulting CMRGlc
maps are spatially normalized and incorporated into an NDB that can be

subsequently used to create abnormality maps for individual patients.

Automated Internal Carotid Artery (ICA) Segmentation

The petrous segment of the internal carotid artery (ICA) was chosen
as the volume of the interest to extract the IDIF. The petrous region

was automatically segmented from the 3D TOF-MRA sequence using
an algorithm proposed by Sundar et al. (11). A combination of histo-

gram-based quantile thresholding (20) and an automatic seeded region–
growing algorithm created a mask of carotid vessels. Given that the

petrous segment of the ICA was well defined by a distinct morphology
(geometric orientation, axis length, and ellipticity), it could be easily

extracted from axial slices, yielding the ICA target region (Pmask).

MRI-Driven Motion Correction

Sparsely sampled MRI navigators interleaved between MR se-
quences were used to perform motion correction of PET images (14).

The initial navigator (Nav-0) was considered to be the reference volume,
and all subsequent navigators (Nav-1–Nav-13) were rigidly aligned to

Nav-0 using SPM12, yielding a set of motion vectors (MV-1–MV-13;

3 translations and 3 rotation parameters). Correspondence between the

MRI navigators and PET emission data was assumed on the basis of
the smallest temporal difference between the respective MRI navigator

acquisition time and the midscan time of the PET frame (Fig. 2).
To account for spatial misalignment between the initially de-

termined static AC map and the PET emission data, the inverse of the
motion vectors was applied to this AC map (CT or pCT), resulting in a

set of motion-corrected AC maps. The obtained motion-corrected AC
maps were then used for reconstruction of the dynamic PET emission

data using Siemens e7 tools. Navigators were also used to account for
the misalignment between the Pmask and the dynamic PET frames.

Because the TOF-MRA sequence was acquired at the start of the PET
acquisition (sequentially with the Dixon AC map and Nav-0), we as-

sumed these image volumes to be aligned. All subsequent coregistrations
were visually confirmed using AMIDE 1.0.5 software (21).

PVC

PVC was performed using a modified version of the Müller-Gärtner

algorithm (22), also taking into account the radial, circumferential,
and temporal variabilities of the background activity surrounding the

Pmask. PVC entails both spill-in and spill-out corrections, for which
knowledge of the point spread function (PSF) of the PET system is

required. We previously determined the PSF of the PET/MRI system
used here as a 3D gaussian function with an isotropic full width at half

maximum of 6.0 mm (11).
An accurate correction for partial-volume distortions that affected

the apparent tracer concentration in the Pmask mandated correction for
background heterogeneity in both the radial and the circumferential

directions (Fig. 3). To accomplish such a correction, a background

mantel was initially created by dilating the Pmask from the edge by
5 voxels (;12 mm, equivalent to 2 times the full width at half max-

imum) to mark the region from which the tracer concentration poten-
tially spilled over into the Pmask. At late time points, a strong radial

tracer concentration gradient was determined toward the brain, whereas
the tracer gradient toward soft tissue in the neck was found to exist

predominantly in the circumferential direction (Fig. 3).
To determine the location of brain tissue within the background

mantel, a brain mask was derived from the T1-weighted MR image
volume using the SPM12 segmentation algo-

rithm. The overlap between the background

mantel and the brain mask represented the

brain segment (BS) that contributed to par-

tial-volume distortions in the Pmask. More-

over, the region located between the BS and

the Pmask represented the mixed zone (MZ),

as it received contributions from both the BS

and the Pmask. Segmentation of the tracer con-

centration using Otsu thresholding (23) at

each time frame resulted in the following

volumes within the background mantel:

brain tissue (BSvol); the region located be-

tween the BS and the Pmask, representing

the MZ (MZvol); and background sections

(BGvol
j, where j – 1,...M), representing het-

erogeneous tracer concentrations expressed

predominantly in the circumferential direc-

tion (Fig. 3). All volumes contributed inde-

pendently to partial-volume distortions in the

Pmask (CAvol), resulting in the measured arte-

rial tracer concentration CA.

The corresponding measured tracer con-
centrations were denoted as CA, BS, MZ, and

BGj (measured tracer concentration in the j-th

FIGURE 1. Noninvasive absolute quantification pipeline consisting of 6 nodes (depicted as

circles); pink nodes correspond to IDIF-generating components, and blue nodes correspond to

quantification components. Input consists of synergistic data from PET/MRI study along with

parameter file, with output yielding IDIF as well as CMRGlc and abnormality maps (Z-maps).

MoCo 5 motion correction; PVC 5 partial-volume correction; VOI 5 volume of interest.
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BG segment), and the true (partial-volume–corrected) tracer concen-

trations for each of the subvolumes were denoted as CA9, BS9, MZ9,
and BG9j, respectively. Before all calculations, the subvolumes were

corrected for subject motion using the inverse of the motion vectors.
To correct for the bidirectional spillover between subvolumes, an

iterative approach for estimating the true tracer concentration in
the ICA target volume (CA9) was applied. On the basis of the model

shown in Figure 3, CA9 can be expressed as

CA9 5
1

RCACA

�
CA 2 BS9 · RBSCA 2 MZ9 · RMZCA

2 +
M

j51

BGj9 · RBGjCA

�
; Eq. 1

where the geometric factors RCACA, RBSCA, RMZCA, and RBGjCA

represent the convolution of the known PSF and the individual volumes

CAvol, BSvol, MZvol, and BGvol
j, respectively, averaged at the location of

CAvol (the symbol 5 represents the convolution operation):

RCACA 5 ðPmask5PSFÞCAvol; Eq. 2

RBSCA 5
�
BSvol5PSF

�
CAvol ; Eq. 3

RMZCA 5
�
MZvol5PSF

�
CAvol ; Eq. 4

RBGjCA 5
�
BGvol

j 5PSF
�
CAvol : Eq. 5

On a conceptual level, Equation 1 implies that the true arterial con-

centration in the target region (CA9) can be calculated by first correct-

ing the measured arterial concentration (CA) for spillover from the
true tracer concentrations in the brain (BS9), the MZ (MZ9), and the

various background segments (BG9j) and then applying the spill-out
correction for the target region (RCACA). However, the true tracer con-

centrations BS9, MZ9, and BG9j are unknown because the measured

concentrations BS, MZ, and BGj, respectively, include an unknown

spillover component from CA9.
Thus, an iterative process is initiated by assuming the spillover

contribution from CA9 to the neighboring tissues to be negligible, so
that BS9 5 BS, MZ9 5 MZ, and BG9j 5 BGj. Using these assump-

tions, an initial estimate of CA9 (CA90) can be calculated as

CA09 5
1

RCACA
ðCA 2 BS · RBSCA 2 MZ · RMZCA

2 +
M

j51

BGj · RBGjCA: Eq. 6

Once an estimate of CA9 has been calculated (CA9n), it can be
iteratively improved by recalculating new estimates for BS9n11,

BGj n119, and MZ9n11, yielding the updated CA9n11, as follows:

BSn119 5
1

RBSBS

�
BS 2 CAn9 · RCABS

�
; Eq. 7

BGjn119 5
1

RBSjBGj

�
BS 2 CAn9 · RCABGj

�
; Eq. 8

MZn119 5
1

RMZMZ

�
MZ 2 CAn9 · RCAMZ 2 BSn119 · RBSMZ

2 +
M

j51

BGj:n119 · RBGjMZ

�
; Eq. 9

CAn119 5
1

RCACA

�
CA 2 BSn119 · RBSCA 2 MZn119 · RMZCA

2 +
M

j51

BGj:n119 · RBGjCA

�
: Eq. 10

This iterative procedure is terminated once the difference between

successive values for CA9 achieves convergence.
An important observation is that during the first pass, the tracer is

predominantly present in the arteries and the spill-in contribution from
the background region is negligible because there

is no uptake in the surrounding tissues (Fig. 3).
Therefore, Equation 1 can be simplified to

CA9 5
1

RCACA
ðCAÞ: Eq. 11

Two assumptions are inherent in our model.

First, the contribution of MZ to BS is neg-

ligible, given that the uptake of 18F-FDG in

brain tissue is either as low as or much greater

than that in the connective tissue of the neck.

Second, the spillover components among the

background regions (BGj) can be reasonably

ignored in light of the circumferential tracer

concentration gradient in neck tissue being a

relatively slowly changing function, thus ren-

dering spillover effects within the background

regions of minor importance.

Postprocessing of IDIF

After motion correction and PVC, the IDIF
was interpolated with a step length of 1 using a

piecewise cubic Hermite interpolating polynomial

FIGURE 2. MR-driven motion correction as implemented in developed pipeline. MRI naviga-

tors are assigned to each PET frame on basis of smallest temporal difference, and obtained

motion vectors are used for aligning both AC map and petrous volume of interest to PET image

data. VOI 5 volume of interest.
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to match the blood sampling times. All corrections were applied to the IDIF

because the AIF is considered to be the reference standard (10,11). First, the

counts per minute (cpm) obtained from sampled arterial blood were scaled

using the cross-calibration factor (kBq/cm3/cpm) between the PET/MRI

system and the on-site g-counter. Second, a plasma IDIF was based on

the individual plasma-to-blood ratios obtained from the sampled arterial

blood from the study subjects. Third, the delay between the AIF and the

IDIF was corrected by shifting the IDIF curve to match the arrival times of

the AIF. Finally, because of the difference in sampling locations (ICA for

the IDIF and radial arteries for the AIF), a monoexponential dispersion

function with a tau value of 5 s (24,25) was convolved with the IDIF to

mimic the dispersion effects. The procedure was repeated for CT-AC–based

PET images and pCT-AC–based PET images to derive their respective

IDIFs (CT-IDIF and pCT-IDIF).

Quantification (Patlak Graphical Analysis)

Motion vectors derived from the MRI navigators were applied
to the corresponding PET frames, resulting in motion-corrected

PET frames. After the spatial alignment, a voxelwise Patlak graph-

ical analysis (lumped constant, 0.65 (26)) was performed using time–

activity curves derived from motion-corrected PET frames in

combination with their respective AIFs and IDIFs. Analysis was

performed using an in-house–developed MATLAB tool (MATLAB

R2018a; The MathWorks, Inc.) that generated parametric images

representing CMRGlc (mmol/100 g/min). Specifically, a linear func-

tion was fitted to the Patlak graphical analysis–transformed data,

including data from 25 min after injection until the end of the study

(8 data points). The resulting slope was then multiplied by the sub-

ject’s plasma glucose level (mmol/L) and divided by the lumped

constant.

Assessment of NDB Generated

from IDIF

For each subject, T1-weighted MR images

were coregistered to their respective PET im-
ages. Individual T1-weighted MR image vol-

umes were subsequently spatially normalized
using the DARTEL (Diffeomorphic Anatomic

Registration Through Exponentiated Lie al-
gebra) software implemented in SPM12. The

resulting deformation fields were then ap-
plied to the coregistered CMRGlc images,

yielding a set of CMRGlc images that were
transformed into template space.

Once in template space, the set of CMRGlc
images (n5 20) defined mean (m) and SD (s)

maps that constituted the NDB. Multiple
NDBs (m and s images) were created sepa-

rately from CMRGlc images derived using
the AIF (NDBAIF: mAIF-CT, sAIF-CT), CT-IDIF

(NDBCT-IDIF: mCT-IDIF, sCT-IDIF), and pCT-
IDIF (NDBpCT-IDIF: mpCT-IDIF, spCT-IDIF).

Quantitative Comparison of Input

Functions and CMRGlc Values

The areas under the curves (AUCs) of the
3 input functions (AIF, CT-IDIF, pCT-IDIF)

were quantitatively compared using the ab-
solute percentage error: j%Dj 5 [(AUC for

IDIF 2 AUC for AIF)/AUC for AIF] · 100.
Moreover, test-retest variability (Var) with

respect to both AUCs and CMRGlc values
was assessed as

Var 5

 
jTest 2 Retestj
Test1Retest

2

!
· 100: Eq. 12

Finally, to assess differences in regional CMRGlc values deter-
mined on the basis of the IDIFs against the AIF, the absolute

percentage error between CMRGlc values based on the 3 input
functions was calculated for 6 brain regions: corpus callosum, brain

stem, cerebellum, thalamus, anterior cingulate cortex, and superior
frontal cortex. Standardized regions based on the Hammersmith

atlas (27) were applied in the NDBs, yielding values for m and s

images for each anatomic region across the normal population.

RESULTS

Figure 4 shows a comparison of input functions based on CT-
AC (CT-IDIF) and pCT-AC (pCT-IDIF) against the reference stan-
dard of arterially sampled blood (AIF). The AUC derived using
the CT-IDIF showed excellent agreement with the AIF, with an
absolute percentage error of 1.4% 6 1.0%. In contrast, the AUC
obtained using the pCT-IDIF showed higher variability, with an
absolute percentage error of 3.4%6 2.6% against the AIF-derived
AUC. Sample input function curves are shown in Supplemental
Figure 2.
A comparison of regional CMRGlc values demonstrated excellent

agreement between values derived using the AIF and image-derived
values (Fig. 5). The absolute percentage error of regional CMRGlc
values associated with the pCT-IDIF (5.8%6 3.2%) was higher than
that associated with the CT-IDIF (3.5% 6 2.1%).

FIGURE 3. (A and B) PET frame reconstruction with ICA overlay (white) for early (A) and late

(B) times after injection. Temporal and spatial variabilities of ICA background can be clearly

deduced from images. (C) Tracer distribution in vicinity of ICA displays both radial and circum-

ferential tracer concentration gradients. (D) Definition of subregions in vicinity of Pmask used

to account for partial-volume distortions. BG1, BG2, and BG3 5 various background regions

with homogeneous tracer concentrations; BS 5 brain activity; CA 5 measured activity in ICA;

MZ 5 activity in MZ.
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The difference in whole-brain CMRGlc values between test and
retest scans was found to be much greater than the difference
between the individual methods for extracting an IDIF. The
absolute percentage errors between repeated whole-brain
CMRGlc values across the group were 13.3% 6 10.0% for the
AIF and 13.0% 6 11.0% and 17.6% 6 15.0% for CMRGlc values
determined using the CT-IDIF and pCT-IDIF, respectively (Sup-
plemental Fig. 3). Regional m and s values obtained from all scans
are shown in Table 1. The data indicated a coefficient of variation
(COV) [(s/m) · 100%] of 19%6 3% for regional CMRGlc values
derived using the pCT-IDIF. The COV for CMRGlc values derived
using the AIF was determined to be 18% 6 4%—similar to the
COV derived using the CT-IDIF (18% 6 3%).
Figure 6 shows the m, s, and COV images obtained from

CMRGlc values derived from an IDIF based on pCT-AC. Be-
cause of the physiologic variation in CMRGlc values, the normal
COV across the brain ranged from 15% to 25% (Supplemental
Fig. 4).

DISCUSSION

We present here a fully automated approach that allows the
noninvasive determination of CMRGlc maps using dynamic

18F-FDG imaging with a fully integrated PET/MRI system. Our
objective was to develop a methodology that allows the clinical
quantification of 18F-FDG PET data in addition to complemen-
tary visual information. Such readings are markedly influenced
by the assessment of tracer uptake asymmetries. As a result,
expert interpreters often find themselves in a situation in which
they have to make a judgment call about the clinical value of a
particular asymmetry. The role of quantitative PET analysis is to
provide added information with respect to the identification of
suspicious territories that warrant a closer inspection by the clin-
ical interpreter. Such an approach could provide greater confi-
dence in the clinical interpretation of PET scans.
Previous attempts directed toward using PET/MRI methodol-

ogy for quantitative imaging based on an IDIF limited the use of
MRI information to the definition of arterial target regions and
correction for partial-volume distortions. For example, Jochimsen
et al. (7) used structural information from MRI to apply PVC based
on a geometric transfer matrix (28) approach to extract the true
arterial tracer concentration. Although the geometric transfer matrix
provides a closed solution to this problem, it requires accurate
structural parcellations of both the arterial target region and the
various (physiologically heterogeneous) surrounding tissues. How-
ever, this information is extremely difficult to obtain from MRI
segmentation. Sari et al. (10) proposed a less demanding alternative,
the single-target correction PVC, which requires only the segmen-
tation of the arterial target region. However, the single-target cor-
rection PVC is highly dependent on both the accurate alignment of
PET and MRI data and the exact estimation of the PSF of the PET
system. In addition to being highly sensitive to motion artifacts,
both of these methods inherently assume that the tracer concentra-
tion distribution (and the resulting parcellation) varies spatially, but
not temporally (4–12). However, the importance of considering the
temporal variability of the target and background regions during
IDIF extraction was emphasized previously (29).
In our current implementation, we took advantage of the synergistic

‘‘anatometabolic’’ information obtained from the fully integrated
PET/MRI protocol to account for both the dynamic radial and

FIGURE 4. Comparison of IDIFs using AUCs. (A) Individual absolute

percentage differences in AUCs for CT-IDIF and pCT-IDIF against AIF.

Shaded areas indicate test-retest results for same subject. Broken lines

represent mean difference over all scans between AUCs derived using AIF

and CT-IDIF (orange) and those derived using AIF and pCT-IDIF (green).

(B) Plot of absolute percentage differences in AUCs for AIF and IDIFs (CT-

IDIF and pCT-IDIF). Shaded area enclosing box plot indicates probability

density distribution for absolute percentage differences. Average absolute

percentage difference for both methods was ,5% (shown above graph).

FIGURE 5. Probability density distribution for absolute percentage dif-

ferences between CMRGlc values derived using AIF and those derived

using IDIFs (CT-IDIF and pCT-IDIF) for 6 different brain regions. Absolute

percentage differences in CMRGlc values derived using CT-AC are

shown in blue, and those derived using pCT-AC are shown in orange.

Mean and SD for each region and 2 AC methods are shown above

graph.
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circumferential variability of the background regions and to use
sparsely sampled MRI navigators to correct for subject motion in
both emission and transmission spaces. Moreover, to obviate the
need for acquiring an additional CT scan, which was a key limi-
tation of our prior work (11), we implemented and validated a
state-of-the-art MRI-based AC (pCT (15)). Our results indicated
that although the IDIF based on pCT-AC resulted in higher vari-
ance in CMRGlc maps than the IDIF based on CT-AC, the abso-
lute percentage difference remained within 6% of CMRGlc values
derived using the reference standard of arterially sampled blood
and CT-AC (Table 1). Accordingly, we suggest that pCT-AC is
acceptable for clinical work because of its feasibility, robustness
(30), and availability.
Taken together, our results demonstrated the feasibility of

quantification of the absolute metabolic rate of glucose in the
brain using combined PET/MRI, without the need for arterial
blood sampling or the need for an additional low-dose CT brain
scan for AC. Specifically, our data showed excellent agreement
between regional CMRGlc values calculated on the basis of
arterial blood sampling and those determined using an IDIF that
was corrected for attenuation using an MRI-derived pCT attenu-
ation map. Nevertheless, our results also indicated that the MRI-
derived pCT attenuation map was still inferior to the CT-derived
attenuation map at the base of the skull—the area from which the
IDIF was extracted. Consequently, further studies that could pro-
vide better AC maps derived from MR images at the base of the
skull and neck regions are warranted (30).
Further, the derivation of an IDIF requires the use of a suitable

anatomic region that can be reliably defined using an automated
approach and that aids in the application of an accurate PVC. On
the basis of their locations in the field of view of the PET/MRI
system and their relatively large diameters, the cervical and pe-
trous segments of the ICA appear to be well suited for the extrac-
tion of an IDIF. Although the cervical segments of the ICA feature
a sufficiently large diameter (.5 mm), they are also subject to
considerable physiologic variation, deviating in approximately
25% of subjects from a straight to a tortuous geometry (31). In
contrast, the petrous segment of the ICA is a well-accepted land-
mark for neurosurgeons because of its 90� bend when entering the
carotid canal (petrous angle) and is considered to be the most vital

and easily visualized structure on MRA images (32). This distinct
geometry allows reliable automated segmentation of the petrous
ICA segment, although on rare occasions signal loss might occur at
the genu of the petrous segment. Nevertheless, this segment of the
ICA appears to be best suited for the extraction of an accurate IDIF.
Because the ICA diameter is in the same range as the full width

at half maximum of the PET system, the determination of an IDIF
is highly sensitive to local misregistration arising from involuntary
patient motion (Supplemental Fig. 5). As such, accurate motion
correction is mandatory for the extraction of an accurate IDIF
(33). Here, our implementation included sparsely sampled MRI
navigators that were acquired throughout the study, yielding a
motion vector for every PET frame. In addition, inverted motion
vectors were used to align both AC maps and regions of interest
with the PET emission data, leaving the reconstructed PET images
untouched. This approach prevented further smoothing of PET
images caused by resampling, which would have negatively af-
fected PVC. To assess the improvement in the accuracy of
CMRGlc values due to the applied PVC, we performed a compar-
ison of global CMRGlc values determined with and without PVC
(using CT-AC) against the reference standard of AIF-derived
global CMRGlc values. With the application of PVC, the absolute
percentage difference between global CMRGlc values was re-
duced from 14.7% 6 7.6% to 3.7% 6 2.3%; these data support
the efficacy of the implemented PVC.

TABLE 1
Regional CMRGlc Values in NDB for 6 Reference Regions in Brain

CMRGlc values* obtained from:

AIF CT-IDIF pCT-IDIF

Region Mean ± SD COV (%) Mean ± SD COV (%) Mean ± SD COV (%)

Corpus callosum 16.1 ± 3.6 22 16.1 ± 3.6 22 15.9 ± 4.0 25

Brain stem 20.0 ± 2.7 14 19.9 ± 2.7 14 19.6 ± 3.1 16

Cerebellum 24.6 ± 3.4 14 24.6 ± 3.5 14 24.3 ± 4.1 17

Anterior cingulate 31.9 ± 6.4 21 31.8 ± 6.3 20 31.4 ± 7.0 22

Thalamus 34.3 ± 5.9 17 34.2 ± 5.8 17 33.7 ± 6.6 20

Superior frontal 34.4 ± 6.6 19 34.2 ± 6.6 19 33.8 ± 7.3 22

*Reported as μmol/100 g/min.

Maximum deviations from AIF standard of CMRGlc obtained from CT-IDIF and fully automated pCT-IDIF were 10% and 12%,

respectively.

FIGURE 6. Database images in Montreal Neurological Institute space

representing mean, SD, and COV maps for absolute values of CMRGlc.

COV map indicates normal physiologic variability of 15%–25%.

282 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 61 • No. 2 • February 2020



At present, the developed pipeline has several limitations, which
might forestall its rapid translation into clinical routines. For

example, absolute quantification requires extended imaging times
to measure the 18F-FDG uptake period in tissue (;40 min). This
duration is about twice that of a clinical static 18F-FDG brain scan.

Thus, there is a cost involved in performing a quantitative PET
scan; accordingly, quantification might not be appropriate for
every patient in a clinical setting. Instead, we envision that quan-
titative scans will be reserved for selected patients—those for whom

the knowledge of absolute CMRGlc values might provide added
diagnostic value, such as patients with nonlesional extratemporal
lobe epilepsy (34).
In addition, there are several methodologic issues that need to be

considered. To successfully delineate the petrous ICA segment, the
implemented algorithm requires specialized sequences, such as

TOF-MRA, that are not necessarily routinely used in clinics. Such
TOF-MRA sequences are poorly suited for patients with vessel
stenosis because there is usually a signal drop in the clogged region.
Another issue is motion artifacts. The quality of motion compensa-

tion schemes is crucial for the clinical implementation of our
method, especially because the postprocessing motion compensation
approach used is restricted to interframe motion correction without

the ability to account for intraframe subject motion. Subjects in our
study were specifically instructed to suppress movement during the
scan; as a result, the observed motion magnitude was minimal
(maximal translation of ,4 mm; maximal rotation of ,4� in all 3

axes). However, in clinical situations, the motion magnitude may be
significantly higher because of patient noncompliance. Apart from
these methodologic limitations, the usefulness of the pipeline is

limited to tracers that have either no metabolite fraction or a known
and stable plasma-to-blood ratio. In our previous study (11), we
showed that the average plasma-to-blood ratio for 18F-FDG in the
control group (n 5 20) was 1.06 6 0.01. Therefore, it is possible to

convert blood IDIF to plasma IDIF without using any arterial blood
samples in the case of 18F-FDG.
The fully quantitative assessment of CMRGlc provides valuable

and detailed information about the regional metabolic state of
brain tissue, but this advance in methodology brings its own set of
issues that need to be carefully considered. Early studies investi-
gating absolute CMRGlc in control subjects revealed a surprisingly

large physiologic variability—in the range of 10%–20%—even for
large regions and with the same subject being scanned only a few
days (Supplemental Fig. 3) apart (35,36). Our own data confirmed

these previous findings (Fig. 6). Consequently, in the absence of
improved data acquisition protocols that are able to standardize the
psychologic state of the subjects under study, the sensitivity for
detecting areas of significantly increased or decreased CMRGlc will

be relatively low, requiring about 25% deviation from the baseline.
This sensitivity compares unfavorably with that of the visual assess-
ment of regional asymmetries between homotopic brain areas,

which can be quite easily detected at the 10%–15% level. Thus,
to improve the relevance of absolute quantification for the detection
of brain abnormalities, standardization of the subjects’ psychologic
state will be necessary. Unfortunately, how such standardization could

be achieved is currently unclear.

CONCLUSION

We presented here a fully automated, clinically feasible PET/
MRI processing pipeline that allows the generation of CMRGlc
maps from dynamic 18F-FDG PET brain scans in a clinical setting.

We hope that our work will aid in the proliferation of quantitative
imaging into the clinical arena and, as such, will contribute to the
ultimate goal of personalized imaging.
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KEY POINTS

QUESTION: Can a fully automated analysis pipeline for the non-

invasive determination of the cerebral metabolic rate for glucose

(CMRGlc) be established using anatometabolic information

obtained from a fully integrated PET/MRI protocol?

PERTINENT FINDINGS: The developed approach allows the ac-

curate noninvasive determination of an image-derived input func-

tion. The developed noninvasive method yields CMRGlc values that

are within 6% of those determined using arterial sampling.

IMPLICATIONS FOR PATIENT CARE: Advances in the meth-

odology of integrated PET/MRI allow the determination of abso-

lute regional CMRGlc values in a clinical setting and therefore may

provide added diagnostic value in patients with various neurologic

diseases.
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