TO THE EDITOR: We read with interest the recent article by Koopman et al. entitled "Performance of Digital PET Compared with High-Resolution Conventional PET in Patients with Cancer" (1) published in the October issue of The Journal of Nuclear Medicine, describing the improved performance of the digital PET compared with the high-resolution analog PET in the detection of small lesions and image quality, which allows disease upstaging. These results are in line with our previous published data, showing superior performance of the digital PET/CT over the analog PET/CT in the detection rate and image quality in a group of oncologic (2) and nononcologic patients. In the discussion section, Koopman et al. indicated that our study showed 22 additional small lesions (<10 mm) on digital PET images in 100 oncologic patients. Indeed, the detection performance was even superior since in 17 out of the 100 oncologic patients, neither the digital nor the analog PET/CT revealed radiotracer uptake suggestive of malignancy (PET-negative). Therefore, the detection performance of the digital PET/CT was superior to the analog PET/CT in detecting subcentimeter lesions (<10 mm) in 22 out of the 83 PET-positive patients (26.5%) (P = 0.05, 95% confidence interval, 17.9-36.7). In addition, the authors considered invalid another previous study coming from our laboratory comparing the SUV_{max} between the digital PET/CT and the analog PET/CT (3) because of the differences in reconstruction parameters between both systems. It is well known that various technical and physics issues, such as detector performance, voxel size, and reconstruction parameters, influence SUV measurements. However, the aim of our study was not to evaluate the influence of such factors on SUV measurements, but to compare under standard clinical conditions the values rendered by both systems. The results of Koopman et al. (1) are again in line with our previous results showing increase of the SUVmax in the digital PET/CT as compared with the analog PET/CT. Koopman et al. compared digital and analog PET/CT using high-resolution reconstructions for both systems, whereas our study compared digital and analog PET/CT under standard clinical conditions as provided by the vendor (digital PET using high-resolution reconstructions and analog PET using standard-resolution reconstructions).

We believe that in the next years, digital PET/CT will coexist with analog PET/CT, and differences in performance and SUV measurements must be considered in follow-up studies. Differences in clinical and research performance will guide the selection of the appropriate system for future given indications, with impact on the diagnosis and therapy assessment of oncologic and nononcologic diseases.

REFERENCES

 Koopman D, van Dalen JA, Stevens H, et al. Performance of digital PET compared to high-resolution conventional PET in patients with cancer. J Nucl Med. 2020;61:1448–1454.

- López -Mora DA, Flotats A, Fuentes-Ocampo F, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. *Eur J Nucl Med Mol Imaging*. 2019;46:1383–1390.
- Fuentes-Ocampo F, López-Mora DA, Flotats A, et al. Digital vs. analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions. *Eur J Nucl Med Mol Imaging*. 2019;46:1745–1750.

Diego Alfonso López-Mora* Albert Flotats Francisco Fuentes-Ocampo Ignasi Carrió *Hospital de la Santa Creu i Sant Pau Pare Claret 167 08025, Barcelona, Spain. E-mail: dlopezmo@santpau.cat

Published online May 1, 2020. DOI: 10.2967/jnumed.120.244608

Flare Phenomenon in *O*-(2-[¹⁸F]-Fluoroethyl)-L-Tyrosine PET After Resection of Gliomas: Potential Contribution from Postoperative Ischemia

TO THE EDITOR: We read with great interest the recent article by Filss et al. published in *The Journal of Nuclear Medicine* (*1*). They observed a considerable increase of ¹⁸F-FET uptake in 26% of subjects compared with preoperative values adjacent to the resection cavity with subsequent decrease in follow-up PET in most of the patients. The authors did not directly study the histopathology, but hypothesized that surgical intervention stimulated the metabolic activity of infiltrating tumor tissue with low metabolic activity before surgery. This is a very important study given the growing interest in using amino acid PET for target volume definition for radiotherapy beyond MRI signal abnormality (2,3), and clinicians should be aware of this phenomenon especially during the first 2 wk after surgery.

Postoperative ischemic changes after glioma resection are very common and can be diagnosed on early postoperative MRI by diffusion-weighted imaging. In a study of 104 patients with newly diagnosed and recurrent glioma (4), these postoperative ischemic lesions were identified in 31% of patients with newly diagnosed gliomas and 80% patients with recurrent gliomas (4). It is important to mention that most of these ischemic lesions were clinically silent, and only 24% of patients with newly diagnosed glioma and 48% of patients with recurrent glioma had new neurologic deficits (4). In another study of 251 glioblastoma patients who underwent surgery, postoperative infarct volume significantly correlated as an independent variable with overall survival (5), and the authors suggested that hypoxia might mediate invasive tumor growth and contribute to decreased survival (5).

A multitracer PET study to investigate amino acid accumulation in brain tissue surrounding focal ischemia demonstrated ¹¹C-MET uptake not only in the core of ischemia but also in surviving brain tissue surrounding infarction likely representing alterations of amino acid transport or protein synthesis (6). Increased ¹⁸F-FET uptake in subacute ischemia is also anecdotally reported by others

COPYRIGHT © 2020 by the Society of Nuclear Medicine and Molecular Imaging.