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The aim of this review is to provide readers with an update on the
state of the art, pitfalls, solutions for those pitfalls, future perspec-

tives, and challenges in the quickly evolving field of radiomics in

nuclear medicine imaging and associated oncology applications.

The main pitfalls were identified in study design, data acquisition,
segmentation, feature calculation, and modeling; however, in most

cases, potential solutions are available and existing recommenda-

tions should be followed to improve the overall quality and re-

producibility of published radiomics studies. The techniques from
the field of deep learning have some potential to provide solutions,

especially in terms of automation. Some important challenges

remain to be addressed but, overall, striking advances have been
made in the field in the last 5 y.

Key Words: radiomics; machine learning; deep learning

J Nucl Med 2019; 60:38S–44S
DOI: 10.2967/jnumed.118.220582

Nuclear medicine in oncology was revolutionized by the deploy-
ment of PET/CT (combined) scanners in the 2000s (1). Subsequent

hardware and software innovations have led to improvements in the

spatial resolution and the signal-to-noise ratio of reconstructed im-

ages, with point-spread-function and time-of-flight information be-

ing integrated into reconstruction algorithms (2,3). PET/CT images

have always been quantitative, and their accuracy has been in-

creased thanks to these improvements. However, PET/CT images

have been exploited in a limited way in most clinical publications,

clinical trials and, obviously, routine clinical practice. In most cases,

nuclear medicine physicians detect and anatomically localize path-

ologic uptake visually. Subsequently, the identified lesions are char-

acterized by a single semiquantitative parameter corresponding to

the maximum-intensity voxel, known as the SUVmax. An aggregate

of several voxels in a 1-cm3 spheric region may be used (SUVpeak)

to increase the robustness of the measurement with respect to sta-

tistical noise (4). Although the SUVmax has been successful in sev-

eral clinical applications, including diagnosis and staging, it has

also been shown to be insufficiently discriminative in several set-

tings, such as baseline prognosis (5) or prediction of a response to

therapy (6).
Nuclear medicine physicians need to go beyond such a simplistic

metric, notwithstanding the fact that these data are also images. In

that regard, the recent success of deep learning (DL) is a promising

development, because DL is specifically aimed at learning patterns
relevant for a given task (e.g., segmentation or endpoint prediction)

from the data (i.e., images) themselves, instead of relying on ‘‘engineered’’

or ‘‘handcrafted’’ features (7).
In parallel to the improvements in hardware and reconstruction

software, several developments in image processing, analysis, and

machine learning have been applied to PET/CT and SPECT/CT.

First, preprocessing algorithms such as denoising (8,9) and cor-

rection of partial-volume effects (10) have led to improvements in

both qualitative and quantitative accuracy. Second, compared with

experts, (semi)automated algorithms have been able to detect le-

sions of interest and delineate them with similar accuracy and

higher reproducibility and robustness (11). Third, the extraction

of quantitative metrics from PET and SPECT images to charac-

terize tumors or organs of interest has been exponentially growing

over the last 10 y, relying initially on engineered features (12,13)

or, more recently, on ‘‘deep’’ features extracted using convolu-

tional neural networks (CNNs) (14). Finally, the development of

multiparametric models using machine learning for disease diag-

nosis or staging and predicting outcomes also has been exponen-

tially increasing (15,16). These 4 methodologic foundations are

key elements of the field of radiomics (17,18).
Radiomics considers images as quantitative data from which to

extract information that may not be accessible to the naked eye,

even the expertly trained one (19). Thus, ‘‘images are more than

pictures, they are data’’ (20); however, images should not be for-

gotten—that is, data are also images. Although the content of an

image can be reduced to a set of quantitative features, the entire

image may still provide additional information; it is important to

remember this fact with regard to the learning process of DL

algorithms.
The goal of this commissioned article is to provide an update

on the state of the art, pitfalls, solutions for those pitfalls, future

perspectives, and challenges in the quickly evolving field of radiomics

(i.e., images as data and vice versa) in nuclear medicine imaging

and associated oncology applications.

PET AND SPECT RADIOMICS PUBLICATIONS

Although the radiomics approach was initially developed in the
context of radiotherapy and radiology, the number of studies

applying radiomics to PET or SPECT has been steadily increasing.

On March 25, 2019, about 1,000 publications (excluding abstracts

and meetings) using the term radiomics could be found in Web of

Science databases—an exponential increase (Fig. 1). About 27%

of them concerned PET or PET/CT, and only a few concerned

SPECT/CT (e.g., (21)). However, almost one-quarter (22%) of

them were editorials and reviews. Also, several papers published

before or after the term was introduced could be considered ‘‘PET

radiomics studies’’ (e.g., (12,22–24)).
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MAIN PITFALLS (AND SOLUTIONS FOR THOSE PITFALLS)

IN NUCLEAR MEDICINE RADIOMICS STUDIES

The work flow of radiomics analysis is the same for any image
modality and actually corresponds to the usual machine learning
pipeline (Fig. 2): data (images) are input for an extractor (e.g.,
software calculating features), and then a modeling step is used to
map the features to the classification goal (e.g., outcome for pa-
tients). This pipeline makes every step highly dependent on the
methodologic choices made in the previous steps. Thus, there are
several pitfalls in each of them.

Study Design

Before data collection is actually begun, it is important to define
the question to be answered, to determine the kind (and quantity)
of data needed to answer it, and to list the study needs and
requirements. Several guidelines can help in the design of future
studies (25–28), avoiding pitfalls typically associated with each
of the next steps. For instance, we recommend relying on the radio-
mics quality score (29) and the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or

Diagnosis) guidelines (30). A specific example is to ensure having
datasets of sufficient size and from different sources to satisfy the
training, validation, and testing requirements (31).

Data Acquisition

Image Acquisition and Reconstruction. Data including images
must be collected (retrospectively) or acquired (prospectively).
When images are retrospectively collected, the associated raw data
are not available; therefore, the reconstructed images must be
exploited as they are. On the contrary, when images are acquired
prospectively, raw data should be stored for research purposes or,
at the very least, image reconstruction settings suitable for radiomics
analyses should be chosen. Indeed, clinical reconstruction settings
are usually optimized for visual analysis tasks that are mostly
focused on detection rather than finer characterization—hence,
larger voxel sizes (;4–5 mm, often nonisotropic) and postrecon-
struction smoothing of images with suboptimal gaussian filtering.
For radiomics, smaller (facilitated delineation) and isotropic (un-
biased texture computation) voxel sizes (Fig. 3) (32), without post-
filtering, should be used—so that if the radiomics pipeline includes
preprocessing steps (e.g., denoising, correction of partial-volume
effects), these can be applied to unprocessed images.
Nonimage Data Collection. Collection of information from clinical

records and other analyses (e.g., histopathology, transcriptomics,
genetics) is a crucial step for which curation quality checks need
to be provisioned in the study design. Indeed, this information is
usually retrieved from medical records by investigators and manually
entered into new research databases, a process prone to errors.
Such errors introduced at this level of the work flow can be highly
detrimental and complex to identify a posteriori, warranting the
need for a well-designed data infrastructure (25).
Multicenter Data. The need for larger multicenter datasets was

emphasized previously (33,34). Indeed, developing multiparamet-
ric models requires large, representative cohorts to train the models
on relevant data and make them as clinically useful and generalizable
as possible. Because sharing data in a single storage facility for a
centralized analysis is complex for legal, ethical, administrative, and
technical reasons, such sharing is not the reality of current radiomics

FIGURE 1. Evolution of number of publications found in Web of Sci-

ence (all databases, black part) using the term radiomics and containing

the term PET or PET/CT or positron (white part).

FIGURE 2. Radiomics pipeline in comparison with usual machine learning work flow.
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studies, especially in nuclear medicine. As a result, most published
radiomics models have not been properly validated (35).
Distributed learning provides a solution to train a model at each

institution and update the parameters of the model in a centralized
computing station without the data ever leaving clinical centers, as
only the parameters of the model are exchanged (36). However,
whether images are processed locally or in a centralized fashion,
differences in image properties and the resulting variability of
features need to be taken into account to build robust models.
Indeed, several studies showed that most radiomic features are
sensitive (to a variable degree) to differences in scanner models,
acquisition parameters, and reconstruction settings (23,37).
Several options for addressing these issues are available. First,

standardizing PET/CT acquisition and reconstruction protocol
settings is an important aspect of multicenter data collection,
with guidelines already available for PET/CT imaging (38,39).
However, these are still mainly focused on the SUV and do not
include standardization recommendations regarding radiomics, for
which harmonization may be more difficult to achieve. Although
these efforts should be expanded for radiomics (40) and can help
reduce differences in radiomic feature distributions across different
sites, they may not be sufficient. In addition, this approach is feasible
only for prospectively collected data, but most radiomics studies are
still performed by retrospectively analyzing available data.
Second, preprocessing images can help reduce differences, for

example, by interpolating them to a common voxel size and
filtering so that they have similar resolution and noise character-
istics. This approach may be insufficient to suppress all differences
in the resulting radiomic feature distributions. Also, performing
this approach is not trivial, as there are dozens of algorithms for
interpolating and filtering, and identifying an optimal combination
is challenging. This approach can also introduce artifacts or reduce
the quality of the quantitative information contained in images.
Removing features identified as too sensitive to the variability

of acquisition and reconstruction settings is another solution that
can help build more robust models when used with an external
dataset. This solution has been extensively studied for several

modalities, including PET (23,41–44), but similar studies for

SPECT are currently lacking. Most of these studies have shown

that the robustness, repeatability, or reliability of features (with respect

to acquisition, reconstruction, filtering, segmentation, or analysis

and computation choices) is highly variable among features in gen-

eral as well as among features of a given category or specific matrix.

The main drawback of this approach is the potential loss of infor-

mation, as numerous features will be discarded even though they

may contain clinically relevant information. Another limitation is
that identifying the optimal subset of features that is sufficiently
robust and provides enough discriminative power is challenging
and likely must be done for each combination of image modality,
cancer type, and task. A recently evaluated method consists of
dealing with the variability of radiomic features from each dataset
or cohort a posteriori in the modeling step itself, by harmonizing
feature distributions so that they can be pooled together.
Several methods have been developed to address the same

issues in genomics, for which the ‘‘batch effect’’ has a significant
impact. The ComBat method (45) has been shown to work well for
small samples and to outperform similar techniques (46). ComBat
was shown to allow PET radiomics predictive models to achieve
higher performance in the external validation step (47,48). This
approach has several advantages: it is easy and fast, and it allows
all of the information to be exploited because all of the features
are retained. One limitation is that a sample population of at least
30 patients from each center dataset must be available, and it
cannot be applied on an individual-patient basis. Other techniques,
such as rescaling and normalization, were recently evaluated for
improving multicenter modeling, with interesting results (49).

Segmentation

The delineation of the object of interest (e.g., a tumor) is the
most time-consuming bottleneck step, as full automation is difficult
to achieve. In most studies, an expert first isolates the object of
interest in a manually or semiautomatically defined volume of
interest, and then a (semi)automated algorithm is used for actually
delineating the object. This step is more complex for diffuse disease
or several lesions. PET tumor delineation has been investigated in
numerous studies (11). Despite perfect repeatability and very high
interobserver reproducibility, threshold-based techniques have been
shown to perform poorly in terms of robustness and absolute accu-
racy, especially for heterogeneous uptake distributions (11). Manual
delineation has well-known limitations regarding inter- and intraob-
server variability and should be performed by at least 2 (preferably
more) experts, with consensus. A recent MICCAI (Medical Image
Computing and Computer-Assisted Intervention) challenge high-
lighted the poor performance of fixed thresholding as well as the
ability of more advanced techniques to achieve higher accuracy (50).
An alternative for reducing variability in the performance of

individual algorithms and obtaining a more consistent result
across a given dataset is to consider the statistical consensus of
several methods (51). Another potential solution is to train an
algorithm to select the best method for a given case depending
on image properties and other a priori information (52). DL has
been especially successful in medical image segmentation tasks
(7), as the learning process occurs on the voxel level and not
on the entire-image level (as for classification tasks), thereby re-
ducing the requirements regarding the amount of learning data
needed for efficient training. Recently, convolutional neural net-
work approaches were applied to PET (50) and PET/CT segmen-
tation (53–55). DL algorithms for PET tumor detection and
segmentation (56) may provide fully automated solutions for these
steps of the radiomics pipeline. Similar efforts have been made
to characterize disease in PET/CT images without the use of DL
methods (57).

Feature Calculation

Standardization and Nomenclature. The main pitfall related to
this step is the lack of standardization of both nomenclature and

FIGURE 3. Axial slice of 18F-FDG PET image of lung tumor recon-

structed with 3-dimensional row-action maximization-likelihood algo-

rithm using standard 4 · 4 · 4 mm3 (A) or finer 2 · 2 · 2 mm3 (B) voxels.
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implementation. The calculation of features involves several steps
and several different choices (mostly for textural features); their
implementation is therefore prone to errors.
With regard to these issues, the efforts of the Imaging Bio-

markers Standardization Initiative (IBSI) (26,58) should be em-
phasized. This initiative is performed by more than 20 research
groups from 8 countries and aims to establish standardized defi-
nitions of usual radiomic features (currently 172) and their calcu-
lation; a common nomenclature for the full radiomics pipeline and
each step of pre- and postprocessing leading to feature extraction;
recommendations regarding interpolation, discretization, and tex-
ture matrix design; a benchmark of standardized values based on
both a synthetic digital phantom and real clinical images for each
radiomic feature calculated in different possible configurations; and
recommendations regarding reporting. The 123-page reference docu-
ment (version 9, updated May 2019) is available online and
published as a preprint (26). Although the IBSI is not specifically
dedicated to PET imaging, most of its recommendations and results
are directly applicable to PET radiomics studies. For instance, we
highly recommend checking the IBSI compliance of homemade or
commercial/open-source libraries and software before using them in
a study, as doing so will greatly increase its reproducibility (27).
Confounding Issues for Volume and Other Metrics. Radiomic

features include standard PET metrics (e.g., functional volume, mean,
or SUVmax). Regarding additional, more complex quantitative
measurements, such as geometric descriptors (e.g., sphericity or
surface irregularity) or second- and higher-order textural features
(e.g., entropyGLCM or GLNUGLRLM), it is important to check their
redundancy and complementary values with both clinical factors
(e.g., stage or sex) and other available variables as well as standard
PET metrics (e.g., volume or SUVmax). It is pointless to calculate
complex image features that are simply surrogates of these (41).
This issue is especially important for metabolic volume, as all
radiomic features are calculated from a previously determined vol-
ume of interest through segmentation of the tumor. It has been
shown that the design choices made in the calculation of features,
such as the method and parameters used in the discretization of
original intensities or the merging strategies of texture matrices,
can have a tremendous impact on feature distributions and correla-
tive relationships with volume or SUVmax (33,43,44,59,60). For
example, regarding PET radiomics, it was shown by Hatt et al. (41)
that the textural features previously identified by Tixier et al. (24)
to predict a response to chemoradiotherapy in esophageal cancer
were actually highly correlated with the corresponding volume
and therefore provided little to no additional information, with a
predictive ability similar to that of the volume alone. It was later
shown that through different calculation settings (discretization
and texture matrix design), the same textural features can provide
complementary or additional value relative to volume, including for
small tumors. Thus, their combination could lead to better strati-
fication of patients (44), contrary to previous claims that no such
complementary value could be obtained for volumes of less than
45 cm3 (61).
Another metric, the so-called ‘‘heterogeneity factor’’—defined

as the derivative (dV/dT) of the volume–threshold function—was
reported to be highly correlated with functional volume (62) and
was therefore a surrogate of volume rather than an actual hetero-
geneity measurement (63). Similarly, the CT-derived radiomics
signature for lung and head and neck cancers (64) was demonstrated
to actually reflect mostly tumor volume rather than actual tumor
heterogeneity and shape, as the shape (compactness) and textural

(GLNUGLRLM) parameters selected for this signature were later
shown to be highly correlated with the corresponding volume
(65,66). However, it was also shown that by adopting modified
feature definitions, as proposed in the IBSI (i.e., dimensionless, com-
pact, normalized, and merged textural matrices for GLNUGLRLM

calculation), it was possible to obtain a higher prognostic power of
the same signature compared with volume (65).
New Features. A single feature could have a large number of

different values according to the choice of various parameters,
including—but not limited to—the intensity discretization method
and parameter(s) or merging strategy (directions and averaging).
Although the feature definition is always the same, the obtained
value can vary greatly from one matrix design to the next and
therefore can create an additional variable for the analysis.
This variability can actually be a way to optimize texture analysis,
as each feature may end up being more informative with specific
and different calculation choices (32,60). The robustness of fea-
tures with respect to their calculation compared with their clinical
discriminative power should not be overemphasized; further in-
vestigation to determine which features are indeed robust enough
with respect to their level of discriminative power for a given end-
point is warranted (67).
New ‘‘engineered’’ or ‘‘handcrafted’’ features with potentially

higher discriminative power or better properties are continuously
being developed. CoLIAGe (Cooccurrence of Local Anisotropic
Gradient Orientations) (68), a metabolic gradient (69), or 3-dimensional
Riesz-covariance textures (70) are examples of such new features
with a potentially higher differentiation power compared with stan-
dard textural features. A novel metric for quantifying PET hetero-
geneity was also proposed as a more intuitive and simple alternative
to textural features; this method involves summing voxelwise dis-
tributions of differential SUVs, weighted by the distance of SUV
differences among neighboring voxels from the center of the tumor
(71). This metric was designed to yield increased values for tumors
with peripheral subregions having high SUVs. A new grey-level
cooccurrence matrix methodology was recently developed to reduce
the redundancy of resulting features, demonstrating a more accurate
classification of tumor types in CT images (72). Even if some of
these metrics were not specifically developed for PET imaging, they
could be directly applied to PET.
Finally, DL has also been the source of new features, commonly

denoted as ‘‘deep features.’’ These can be extracted from medical
images using pretrained networks. These networks may have been
trained on very large medical image datasets as well as on natural
images (73). Because these networks have learned from natural
images to extract rough to finer features at different scales through
different layers, they can extract similar patterns and features from
medical images (including PET) and can be used ‘‘off the shelf’’ or
after an additional fine-tuning step (also called transfer learning).
Most current results obtained with deep features as well as their
combination with typical radiomic features have been obtained in
CT and MRI applications (74–78), but the same concept can be
applied to PET.

Modeling

Statistical analysis for mapping the extracted features to a given
endpoint (either classification or regression) is one of the most
challenging steps in the entire radiomics process. The goal of this
step is usually to identify the optimal combination of the fewest
available variables (clinical data, radiomics, and other analyses)
allowing the maximization of 1 or several criteria (usually the
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receiver operating characteristic area under the curve, concordance
statistic, specificity, sensitivity, or accuracy). Indeed, statistical
analysis was the weakest part of most texture and radiomics studies
before 2015 because it tested too many hypotheses (i.e., number of
features) for small patient cohorts without correction for type I
errors (i.e., false discovery) and without the use of a validation
dataset, thereby reporting mere (overfitted) correlations and not
actual predictive power. Most radiomics or texture studies with PET
have been performed with cohorts of fewer than 150 patients (48)
and—because the number of features (and variables) is constantly
growing, especially in the case of texture optimization (i.e., calcula-
tion of each feature with different parameters)—statistical analysis
is fraught with the curse of dimensionality, a high rate of false-
positive results, collinearity issues, and risk of overfitting. Choosing
a machine learning method is also quite challenging. The most re-
cent comparison studies highlighted the differences between popular
methods as well as the fact that none of them performed best across
the entire spectrum of datasets and tasks (15,16,79).
Following simple guidelines for robust and reliable statistical

analysis and machine learning (31) is crucially important for
obtaining reproducible and reliable results. The most important
guidelines are splitting the available data into a training set (i.e.,
learning a model, e.g., a linear combination of 2 variables) and a
validation set (i.e., tuning the parameters of the model, e.g., the
weights of each variable in the linear combination) and perform-
ing the final evaluation with a testing set (i.e., performing the
trained model with fixed parameters using a dataset never used
in the training and validation steps). In the context of radiomics,
different strategies can be used. Splitting a single available dataset
into 3 parts is a potential solution. For example, a 100-patient
cohort can be split into a training set of 50 patients, a validation
set of 30 patients, and a final, testing set of 20 patients. Obviously,
the larger the cohort, the better, as evaluating the final model with
only 20 patients can provide limited evidence of its usefulness.
Alternatively, if different datasets are available (e.g., in a multi-
center setting), then it may be appropriate to train and validate
with 1 cohort and test the resulting model with other cohorts
(47,80). However, this approach requires harmonization of the
features because of differences in their distributions across
centers.
Different techniques can be used for splitting; we recommend

either using stratified sampling (81) to ensure similar distributions
in the splits or performing several different splits randomly and
reporting the mean and SD for the results. Indeed, random splits
can lead to very different distributions in the training, validation,
and testing sets (e.g., all ‘‘easy’’ cases end up in the training set or,
worse, the training set contains all of the cases to detect but the
testing set contains none).
Another important pitfall concerns the imbalance of the data

and classification (or regression) task, combined with the metrics
used for performance evaluation. In most radiomics studies, the
clinical endpoint is not balanced; that is, 1 class (e.g., patients with
recurrence) dominates the other (e.g., patients without recurrence).
In such a context, a machine learning algorithm classifying each
instance as the dominating class would end up being right most of
the time. Therefore, it is important to implement strategies to help
an algorithm learn the minority cases as well as the majority cases,
despite having fewer training examples. Several strategies are
available; these include synthesizing additional minority instances
(e.g., with the Synthetic Minority Oversampling Technique, [SMOTE]
(82)), oversampling the minority class, undersampling the majority

class, or tweaking the function cost to raise the cost of minority
instance misclassification. Furthermore, it is important to rely on
appropriate performance metrics, especially in the case of imbal-
anced data. For example, the often-considered metrics accuracy or
F1 score can indeed provide a biased estimation in the case of
imbalanced data; the use of balanced accuracy (the mean of sensi-
tivity and specificity), receiver operating characteristic area under
the curve, and Matthews correlation coefficients is recommended
instead to provide a reliable estimate of the performance of the
model (31). For survival analysis and regression tasks, the use of
hazard ratios and the concordance statistic is appropriate for eval-
uating time-to-event endpoints (15).
Finally, as there seem to be no currently available classifiers or

feature selection methods that perform best across the entire spec-
trum of tasks and types of data, it may be interesting to consider
ensemble techniques and the fusion of several different classifiers
as a way to obtain more robust models (83).

REMAINING CHALLENGES TO ADDRESS AND HOW

TO MOVE TO CLINICAL TRANSLATION

To enable clinical translation, despite numerous recent efforts,
the radiomics community still has to address the following main
challenges to help reduce the current limitations for both robust
and reproducible research as well as actual clinical transfer: final-
ize and expand standardization efforts; develop tools and methods
for collecting, storing, and sharing sufficiently large databases
containing images associated with contextual clinical data and
other analyses for a large panel of pathologies; reach a level of full
automation for the entire pipeline (especially for the detection and
segmentation steps); and identify and standardize optimal methods
for model building and validation.
Regarding the collection of larger datasets, the main limitation

preventing multicenter studies from reaching their full potential
(i.e., the sensitivity of most radiomic features to variations in
scanner models, acquisition protocols, and reconstruction settings)
can be considered resolved on the basis of the use of a posteriori
harmonization methods (45,47,49). For most of the remaining
challenges, DL techniques can provide potential solutions, either
for each of the steps in the radiomics work flow or by entirely
replacing the usual work flow with an end-to-end DL-based ap-
proach (14,84). In the latter approach, all steps performed separately
and sequentially (segmentation, feature extraction, modeling) are
now performed by 1 (or several) neural network(s). This approach
mostly replaces previous challenges with others specific to the use
of DL techniques, such as the need for datasets much larger than
those usually available in radiomics studies for efficient training.
Therefore, techniques such as transfer learning and data augmentation
become crucially important. Another requirement is to provide in-
terpretable models by opening the ‘‘black box’’ that such networks,
with the millions of parameters they contain, can appear to be. This
requirement could be met by network visualization techniques (85),
providing some visual feedback to end users and explaining why
and how the network reached its final prediction—for instance, by
providing heat maps on the original input images to highlight the
most relevant areas in the images or even within the tumor.

CONCLUSION

The field of radiomics has been exponentially growing, including
in PET/CT imaging. It is a very active and promising field of research,
but it is full of methodologic pitfalls. Until recently, the approach has
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been mostly to consider images as data by reducing full 3-dimensional
images to a vector containing relevant quantitative handcrafted
radiomic features. With the advent of DL techniques to solve challenges
and lift the limitations of the current radiomics work flow, the
radiomics community is returning to images as a whole; in this
approach, patterns are captured by multilayer neuronal networks that
learn the relevant features instead of selection and combination of
handcrafted features.
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