
Principal Components Analysis of Brain Metabolism Predicts
Development of Alzheimer Dementia
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The value of 18F-FDG PET for predicting conversion from mild cog-

nitive impairment (MCI) to Alzheimer dementia (AD) is currently un-

der debate. We used a principal components analysis (PCA) to
identify a metabolic AD conversion–related pattern (ADCRP) and

investigated the prognostic value of the resulting pattern expression

score (PES). Methods: 18F-FDG PET scans of 544 MCI patients

were obtained from the Alzheimer Disease Neuroimaging Initiative
database and analyzed. We implemented voxel-based PCA and

standard Statistical Parametric Mapping analysis (as a reference)

to disclose cerebral metabolic patterns associated with conversion

from MCI to AD. By Cox proportional hazards regression, we ex-
amined the prognostic value of candidate predictors. Also, we con-

structed prognostic models with clinical, imaging, and clinical and

imaging variables in combination. Results: PCA revealed an
ADCRP that involved regions with relative decreases in metabolism

(temporoparietal, frontal, posterior cingulate, and precuneus cortices)

and relative increases in metabolism (sensorimotor and occipital cor-

tices, cerebellum, and left putamen). Among the predictor variables
age, sex, Functional Activities Questionnaire, Mini-Mental State Ex-

amination, apolipoprotein E, PES, and normalized 18F-FDG uptake

(regions with significant hypo- and hypermetabolism in patients with

conversion vs. those without conversion), PES was the best indepen-
dent predictor of conversion (hazard ratio, 1.77, per z score increase;

95% CI, 1.24–2.52; P , 0.001). Moreover, adding PES to the model

including the clinical variables significantly increased its prognostic
value. Conclusion: The ADCRP expression score was a valid pre-

dictor of conversion. A combination of clinical variables and

PES yielded a higher accuracy than each single tool in predicting

conversion from MCI to AD, underlining the incremental utility of
18F-FDG PET.
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People with mild cognitive impairment (MCI) have a high risk
of conversion to Alzheimer dementia (AD), but they can also de-

velop a different type of dementia, remain stable, or even regress

to a normal aging process (1). Various studies have shown that

MCI patients exhibit metabolic changes that can be detected with
18F-FDG PET (2–5). However, a limited accuracy of prediction by
18F-FDG PET of conversion from MCI to AD was reported in

some studies (6–8). Likewise, a Cochrane review did not recom-

mend using 18F-FDG PET for this purpose (9), although this rec-

ommendation has been a matter of controversy (10).
Principal components (PC) analysis (PCA) was proposed as an

alternative voxelwise approach to image analysis for the diagnosis

of neurodegenerative disorders. PCA has shown value in the

development of disease-specific spatial covariance patterns of

regional metabolism characterizing disorders such as Parkinson

disease, multiple-system atrophy, progressive supranuclear palsy,

and corticobasal degeneration (11–15). Moreover, a high predic-

tive value of PCA for Parkinson disease with cognitive decline was

shown, suggesting that the pattern expression score (PES) of a

cognition-related pattern in Parkinson disease is a useful bio-

marker for the prediction of conversion from Parkinson disease–

MCI to Parkinson disease with dementia (16,17). In this study, we

used PCA and 18F-FDG PET to determine whether there is a

specific metabolic pattern associated with conversion from MCI

to AD (termed the AD conversion–related pattern [ADCRP]). In

particular, we aimed to examine the potential of ADCRP expres-

sion alone and in combination with clinical variables for predict-

ing conversion from MCI to AD.

MATERIALS AND METHODS

Patients’ Data and Diagnoses
18F-FDG PET scans obtained from the Alzheimer Disease Neuro-

imaging Initiative (ADNI; ClinicalTrials.gov Identifier: NCT00106899)

were used in this study. The ADNI was launched in 2003 as a public–

private partnership led by principal investigator Michael W. Weiner,

MD. Information about study protocols and the ADNI project can be

found at www.adni-info.org. This study was approved by the ADNI, and

written informed consent was obtained by the ADNI from all patients

before protocol-specific procedures were performed.
For the present analysis, we used the ADNI 1, ADNI 2, and ADNI

GO cohorts. Participants (n 5 576) were evaluated at baseline and at

6- to 12-mo intervals after initial evaluation for up to 10 y. We used
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18F-FDG PET scans acquired at the baseline visit. We included pa-

tients who were diagnosed with MCI and had a Mini-Mental State
Examination (MMSE) score of at least 24 points at the time of PET

imaging (6 patients were excluded). Additionally, we requested
a minimal follow-up time of at least 6 mo (20 patients were excluded,

among them 10 without follow-up). Furthermore, 6 patients with a
bidirectional change in diagnosis (MCI to AD and back to MCI)

within the follow-up time were excluded. The remaining 544 patients
were dichotomized into patients who converted to AD (MCI converters

[MCI-c]) and those who did not convert to AD (MCI nonconverters
[MCI-nc]).

The data were randomly split into training and test datasets of equal
sizes (n 5 272). Age, sex, MMSE score, and median follow-up time

did not differ significantly between the 2 datasets (P . 0.1). As
expected, the rate of apolipoprotein E (APOE) e4 carriers was signif-

icantly higher and Functional Activities Questionnaire (FAQ) scores
were significantly lower for MCI-c than for MCI-nc in each of the

datasets, but these values were comparable per subgroup between the
2 datasets. The clinical and demographic characteristics of the datasets

are shown in Table 1.

PET Imaging

The PET data acquisition details can be found in the study protocols

of the ADNI project at www.adni-info.org. In 487 cases, dynamic 3-
dimensional scans with six 5-min frames were acquired 30 min after

the injection of 185 6 18.5 MBq of 18F-FDG. In the remaining 57
cases, patients were scanned with a static 30-min acquisition. For

dynamic scans, all frames were motion-corrected to the first frame
and then summed to create a single image file.

Individual scans were spatially normalized to an in-house 18F-FDG
PET template in Montreal Neurological Institute brain space and

smoothed with an isotropic gaussian kernel of 12 mm at full width
at half maximum. All preprocessing was implemented with an in-

house pipeline in MATLAB (The MathWorks, Inc.) and Statistical
Parametric Mapping (SPM) software (SPM12; www.fil.ion.ac.uk/

spm) in accordance with recommendations for the optimal statisti-
cal analysis of brain 18F-FDG PET scans in the context of MCI-to-AD

conversion (18).

Multivariate PCA

Scaled subprofile model PCA was used to generate a scaled
subprofile model pattern on the basis of group discrimination between

MCI-c and MCI-nc. It was implemented on the training dataset of 272
subjects using the Scanvp/SSMPCA toolbox (19). Each subject’s

3-dimensional image data were first converted to a continuous

row vector and then embedded in a group data matrix. Each data

entry was transformed to logarithmic form, and the data matrix

was centered by each row mean value. The deviation from both

subject and group means represented the resulting subject residual

profile image. PCA was applied to the covariance matrix to derive

orthogonal eigenvectors and associated eigenvalues. The spatial

eigenvectors were PC image patterns given by the scaled subprofile

model PCA.

PC related to the explored group difference were associated with
the highest total variance accounted for by the eigenvector. To

delineate topographies associated with conversion from MCI to AD,

we performed voxelwise PCA on a combination of the MCI-c and

MCI-nc groups from the training dataset. To identify a significant

pattern, different combinations of PC were tested on the basis of the

following statistical criteria: the analysis was limited to the first set of

contiguous PC that accounted for the top 50% of the variability in the

dataset, and the best combination of these PC was selected by a

logistic regression analysis with group (i.e., MCI-c and MCI-nc) as the

dependent variable and subject scores for the PC as the independent

variable. The obtained ADCRP represented spatially covariant voxels

associated with the conversion to AD, with each voxel being

specifically weighted toward its relative contribution. For both the

training dataset and the test dataset, each individual’s PES for the

ADCRP was evaluated by the topographic profile rating algorithm

involving computation of the internal vector product of the subject’s

residual profile vector and the pattern vector (20).

Additionally, we performed a voxelwise 2-sample t test between
18F-FDG scans of MCI-c and 18F-FDG scans of MCI-nc from the

training dataset by SPM. In this analysis, differences in normalized
18F-FDG uptake were compared by applying proportional scaling

to minimize the effect of the intersubject variability of global 18F-

FDG uptake. The P value adjustment for contrasts was set to a family-

wise error–corrected P value of less than 0.05. The resulting SPM

volumes of interest (VOIs) comprising all significant clusters of

relative hypo- and hypermetabolism were then used to extract the

individual normalized 18F-FDG uptake inside these SPM VOIs after

the subject’s scan was normalized using a predefined mask of brain

parenchyma. Mean uptake in hypometabolic VOIs and that in hy-

permetabolic VOIs were linearly combined, with weighting defined

by logistic regression. Mean uptake in only hypometabolic clusters

was also included for comparison given that this is a commonly

used measure of abnormal brain regions in clinical dementia

imaging.

TABLE 1
Clinical and Demographic Characteristics of Training and Test Datasets

Training dataset (n 5 272) Test dataset (n 5 272)

Characteristic MCI-c (n 5 87) MCI-nc (n 5 185) MCI-c (n 5 94) MCI-nc (n 5 178)

Age in y (mean ± SD) 75 ± 7 74 ± 8 73 ± 7 73 ± 8

Sex (no. of men/no. of women) 56/31 116/69 54/40 108/70

MMSE score (mean ± SD) 27 ± 2 28 ± 2 27 ± 2 28 ± 2

APOE ε4 positive (%) 63 43 70 42

FAQ score (mean ± SD) 1.74 ± 3.1 4.44 ± 4.7 1.70 ± 3.0 4.97 ± 4.7

Follow-up time (mo)

Median 48 47 47 47

95% CI 47–49 47–49 46–48 46–48

Interquartile range 21.3 26.5 29.0 18.0

838 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 60 • No. 6 • June 2019

http://www.fil.ion.ac.uk/spm
http://www.fil.ion.ac.uk/spm


Cox Model Analysis

For each individual, the baseline time was considered to be the time
of PET imaging, and the endpoint was chosen to be the time of AD

diagnosis for MCI-c or last follow-up time for MCI-nc. Cox
proportional hazards regression models were calculated in R (http://

www.R-project.org/) using the ‘‘Survival’’ package (21) to test the
predictive value of the following 18F-FDG PET variables and clinical

variables for conversion from MCI to AD: PES (ADCRP from PCA),
mean normalized 18F-FDG uptake (within SPM VOIs), FAQ, APOE

e4 genotype (positive or negative for the presence of at least 1 e4
allele), and MMSE. Cox model analyses were adjusted for age at

baseline (years) and sex (1 for male, 0 for female). All continuous
covariates were z transformed such that the hazard ratio reflected risk

changes per SD increase.
First, to compare the hazard ratios of independent predictor

variables, we computed a Cox model including all predictors (PES,
normalized 18F-FDG uptake, FAQ, APOE, MMSE, age, and sex) for

the training dataset using the ridge regression option to account for
multicollinearity.

Second, for the training dataset, we examined the identified signif-

icant predictors grouped to construct a clinical model (FAQ, APOE,
and MMSE), imaging model (PES of ADCRP), and combined model

(FAQ, APOE, MMSE, and PES), all adjusted for age and sex. The
prediction accuracies of the models were statistically compared using

the Harrell concordance index (Harrell C index).
For the sake of validation of the constructed models, the results of

each Cox model were independently applied to the test dataset via
calculation of the prognostic index (PI) for each subject (22). Here, the

PI is the sum of the product of the regression coefficients bi and
predictor variables xi (with i being the index for the order of predictors

in the model), as follows:

PI 5 b1x1 1 . . . 1bixi:

On the basis of the PI values, the test dataset was stratified into 3

equally sized risk groups. Separation of the models was evaluated
using Kaplan–Meier survival curves and the Akaike information cri-

terion (AIC). Risk group separation based on the PI values of the
model with combined variables (FAQ, APOE, MMSE, and PES) (i.e.,

the combined model) was compared with that based on PES values only
(i.e., ‘‘raw’’ values of PES, not PI).

RESULTS

AD Conversion–Related Pattern

We limited the PC estimated by our scaled subprofile model
PCA to the first 7 PC that accounted for 52.05% of the total
variance. However, only PC 2, 3, 6, and 7 (PC2, PC3, PC6, and
PC7, respectively) were selected by logistic regression and
showed a significant between-group difference after Bonferroni
adjustment (P , 0.05). The logistic regression model including
these PC yielded the highest significance and lowest AIC in com-
parison to the other combinations. Therefore, PC2, PC3, PC6, and
PC7 were linearly combined to yield the ADCRP (Fig. 1A), which
allowed for a significant separation of the MCI-c and MCI-nc
groups (P 5 9 · 10213). For comparison, the more restricted,
although overlapping, SPM-derived pattern of regions with signif-
icant hypo- and hypermetabolism in MCI-c versus MCI-nc is
shown in Figure 1B.
The most prominent decreases in metabolism in MCI-c

compared with MCI-nc on ADCPR were found in the tempor-
oparietal cortex as well as the precuneus/posterior cingulate
cortex. Furthermore, decreases were also found in the right

frontal cortex, but with a lower factor loading to the pattern in
total. Relative increases (probably corresponding to regions with

preserved metabolic activity) were detected in the sensorimotor

and occipital cortices, cerebellum, and left putamen.
Topographic profile rating of the ADCRP for each subject in the

training and test datasets resulted in a PES that could be used to

assess the degree to which a subject expressed that pattern. There

was no difference in PESs between the 2 MCI-c groups (training

vs. test dataset; P. 0.1) or between the 2 MCI-nc groups (training

vs. test dataset, P . 0.1). On the basis of receiver operating

characteristic analyses, the area under the receiver operating char-

acteristic curve for separation of the MCI-c and MCI-nc groups

reached 0.749 for the training dataset and 0.761 for the test data-

set; these results verified the high stability of the pattern across the

subject cohorts. Similar separation was achieved on the basis of

the mean normalized 18F-FDG uptake values obtained with the

linear combination in both hyper- and hypometabolic SPM VOIs:

normalized 18F-FDG uptake 5 24.82 1 (12.52 · mean 18F-FDG

uptake in hypometabolic clusters) 2 (9.52 · mean 18F-FDG up-

take in hypermetabolic clusters); the area under the receiver op-

erating characteristic curve for the training dataset was 0.758, and

that for the test dataset was 0.760. The area under the receiver

operating characteristic curve for normalized 18F-FDG uptake in

the hypometabolic VOI alone was smaller but was included for

comparison because it is a commonly used measure of abnormal

brain regions (Supplemental Fig. 1) (supplemental materials are

available at http://jnm.snmjournals.org).

FIGURE 1. Patterns of regional brain metabolism. (A) ADCRP derived

by PCA (P , 0.05) and (B) significant regions derived by SPM t test

(familywise error–corrected P , 0.05), overlaid on MRI template image.

Voxels with negative region weights and hypometabolism are shown in

“cool” colors, and regions with positive region weights and hypermetab-

olism are depicted in “hot” colors. Data are presented in neurologic

orientation.
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Cox Models

First, for the training dataset, the Cox proportional hazards
regression with age, sex, FAQ, MMSE, APOE, PES, and normalized
18F-FDG uptake as predictors was computed and penalized by ridge

regression to suppress collinearity among predictors (Fig. 2). PES

(ADCRP), normalized 18F-FDG uptake (SPM VOIs), FAQ, and

MMSE were significant predictors, with PES having the highest haz-

ard ratio, 1.77 (95% CI, 1.24–2.52; P , 0.001).
Next, we examined imaging and clinical models and later

joined them into a combined Cox model to investigate a possible

additive prognostic value of PES to the clinically established

predictors APOE, FAQ, and MMSE. The variables included in

each model and their corresponding hazard ratios are shown in

Table 2. The results of the imaging Cox model revealed PES to be

a significant predictor for conversion from MCI to AD, with a

hazard ratio for z transformed PES of 2.96 (95% CI, 2.35–3.74;

P5 2 · 10216). Age and sex were not significant predictors in any

of the models.
Although the clinical model (Harrell C index, 0.80) had a higher

accuracy than the imaging model (Harrell C index, 0.76), adding

PES to the clinical variables significantly (P , 0.001) increased

the prognostic value (Harrell C index for clinical variables com-

bined with PES, 0.84). The quality of the statistical models was

tested with the AIC test (combined model AIC value, 749.6; im-

aging model AIC value, 783.3; clinical model AIC value, 797.2);

the combined model was significantly better than the imaging

model (P , 0.001), and the imaging model was found to be

significantly better than the clinical model (P 5 0.007). Thus, the

combined model is the preferred model, with the minimum AIC

value.
Second, Cox models were validated for the test dataset. We

obtained PI values that were used for the survival analysis. As with

the training dataset, the clinical model for the test dataset had a

higher Harrell C index than the imaging model (0.77 and 0.73,

respectively). The increase in the prognostic value of the clinical

model when PES was added as a predictor to yield the combined

model was also confirmed for the test dataset (combined model
Harrell C index, 0.81).
Normalized 18F-FDG uptake (SPM VOIs) as a single predictor

had a hazard ratio and a significance level lower than those of
PES (ADCRP) (Fig. 2). However, because it is a commonly used
measure in neuroimaging analysis, we constructed similar clin-
ical, imaging, and combined Cox models with normalized
18F-FDG uptake (analogous to those with PES). A significant
increase in the predictive value of the clinical model (Harrell C
index for the training and test datasets, 0.80 and 0.77, respec-
tively) was observed when 18F-FDG uptake was added as a pre-
dictor (imaging model Harrell C index for the training and test
datasets, 0.76 and 0.73, respectively; combined model Harrell C
index for the training and test datasets, 0.84 and 0.81, respec-
tively), and the AIC test indicated that the combined model was
the best model.
The combined model with normalized 18F-FDG uptake (SPM

VOIs) had a significantly lower predictive value than the com-
bined model with PES (for the combined model with PES, the
AIC value was 749.6; for the combined model with normalized
18F-FDG uptake, the AIC value was 751.6; P , 0.001 [likelihood
ratio test]). The detailed results for the clinical, imaging, and
combined Cox models with normalized 18F-FDG uptake for the
training and test datasets are shown in Supplemental Table 1.

Risk Group Stratification

For the test dataset, we tested whether risk groups were better
separated by the PI derived from the combined model (including
PES values) or by PES values alone (Fig. 3). Both models dem-
onstrated good separation of groups with high, medium, and low
risks of conversion to AD. The best stratification was reached
with the PI resulting from the combined model. This method
allows for the accounting of all available variables at once, in-
cluding time to conversion of the training dataset used for the
definition of the Cox model. The most noticeable difference was
observed in the first 60 mo, and comparison of the risk strata was
statistically limited after this time point because of the small
number of subjects (Table 3).

DISCUSSION

Using 18F-FDG PET data in combination with voxel-based
PCA, we identified a metabolic pattern associated with conversion
from MCI to AD. Aside from constructing the ADCRP, we esti-
mated its predictive accuracy in a large cohort of subjects and
prospectively confirmed its validity for the test dataset.
The obtained network topography is consistent with previously

published hypo- and hypermetabolic regions identified in AD
(3,17,23,24). We found that conversion to AD is characterized by
a significant decrease in metabolic activity in the temporoparietal
regions, right frontal cortex, posterior cingulate, and precuneus
cortex, whereas the occipital cortex, sensorimotor cortex, cerebel-
lum, and left putamen showed relatively increased metabolic ac-
tivity. The latter most likely corresponds to preserved metabolic
activity, given that proportional scaling by global uptake was per-
formed. We also analyzed the same groups of subjects with the
SPM t test, which indicated overlapping regions of hypo- and
hypermetabolism; however, these regions were much more
restricted.
Although we observed some similarities between the topogra-

phy of ADCRP and the distribution of regional metabolic differ-
ences depicted by SPM in the present study, these results portray

FIGURE 2. Hazard ratios for different predictors, penalized by ridge

regression to suppress effects of multicollinearity among them. Normal-

ized 18F-FDG uptake stems from linear combination of normalized 18F-

FDG uptake in VOIs with significant hypometabolism and that in VOIs

with significant hypermetabolism. APOE reference: APOE positive; sex

reference: female. FAQ5 FAQ total score; N5 number of subjects; n.5
normalized. All continuous variables were z transformed.
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very different measures of brain function. Indeed, the ADCRP
from spatial covariance analysis is based on variance information
about glucose metabolism measured on 18F-FDG PET. In contrast,
maps of the SPM t test revealed regional differences in mean
values of normalized glucose metabolism. It has been shown con-
sistently that the PCA approach has a higher sensitivity than SPM
group comparisons for the detection of brain regions with meta-
bolic changes in neurodegenerative disorders such as AD (23) and
Parkinson disease (25) or in subjects with idiopathic rapid eye
movement sleep behavior disorder (26,27). These data are further

supported by the observation that the PES of the AD-related pattern
had a higher accuracy in group discrimination than metabolic
changes measured in regions of interest (23,28). The superior per-
formance of the PES as a predictor over that of normalized uptake
in SPM VOIs in the present study is consistent with these prior
results. Moreover, the computation of the degree of pattern expres-
sion in individual patients is performed automatically and without
clinical information. Thus, this approach is potentially more objec-
tive than any diagnostic categorization achieved by visual interpre-
tation or predefined ROI analysis.

In contrast to the AD-related pattern
of Teune et al. (24), we focused our

study not on the differences between

AD and normal elderly controls but on

the prodromal phase of AD. The meta-

bolic pattern at the MCI stage may be

particularly influenced by compensatory

neural mechanisms (29). However, Meles

et al. (30) investigated the expression

of the AD-related pattern (24) in an MCI

cohort and reported a comparable area

under the receiver operating character-

istic curve (0.80). Like those investiga-

tors, we observed a significant inverse

correlation between the PES and the

MMSE (r 5 20.27; P , 0.001). In ad-

dition, we found a significant positive

correlation between the PES and the

Clinical Dementia Rating Scale Sum of

Boxes (r 5 0.37; P , 0.001) and be-

tween the PES and the Alzheimer Disease

TABLE 2
Characteristics of Cox Regression Models

Harrell C index for:

Model Predictor Hazard ratio P value AIC Training dataset Test dataset

Imaging PES 2.96 2 · 10−16 783.3*,† 0.76 0.73

Age 1.01 0.87

Sex 0.98 0.93

Clinical Age 1.00 0.95 797.2†,‡ 0.80 0.77

Sex 1.18 0.48

FAQ 1.66 2.0 · 10−10

APOE 1.85 0.007

MMSE 1.54 3.5 · 10−5

Combined PES 2.46 7.1 · 10−13 749.6*,‡ 0.84 0.81

Age 1.01 0.90

Sex 1.08 0.72

FAQ 1.49 2.2 · 10−6

APOE 1.36 0.18

MMSE 1.51 0.0001

*Imaging vs. combined model: P 5 4 · 10E−10.
†Imaging vs. clinical model: P 5 0.007.
‡Clinical vs. combined model: P 5 8 · 10E−9.
All continuous variables were z transformed.

FIGURE 3. Kaplan–Meier curves for test dataset. (A) Risk strata determined using PES values

alone. (B) Risk strata determined using PI derived from combined model (including PES values).

Med. 5 medium.
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Assessment Scale (sum of 11 cognitive subscale scores) (r5 0.36;
P , 0.001), indicating a significant association between the ex-

pression of the detected pattern and cognitive impairment (data
not shown). No correlation was found between the PES and sex or

age in both datasets (not shown in detail).
Although various biomarkers have already been examined as

predictors in regression models, in the present study we

examined imaging (PES; normalized 18F-FDG uptake in linearly
combined VOIs with significant hypo- and hypermetabolism)

along with genetic (APOE), sociodemographic (age, sex), and

cognitive (FAQ, MMSE) variables in Cox model analyses to rate

the progression from MCI to AD. As a single predictor, the PES

had a higher hazard ratio than the FAQ, MMSE, APOE, or nor-
malized 18F-FDG uptake. We found that the imaging Cox model

with the PES was comprehensive and provided a significant

enhancement in predicting conversion when combined with clin-

ical variables. Because receiver operating characteristic analysis

does not include time-to-event information, the AIC and Harrell

C index were used instead to evaluate the performance of the
prediction. The combination of imaging and clinical variables

provided the best prediction; this result was similar to that of

Liu et al. (3).
It was shown that PES could be applied to a new subject on a

single-case basis, despite the fact that subjects were scanned on
different PET systems (12,30). The benefit of the present study

is the ability to combine the disease-related network pattern

with the clinical variables to obtain a quantifiable PI for con-

version from MCI to AD per subject. Although the PES itself is

a good predictor and can be used to predict conversion, the
combination of the PES with clinical variables and the calcu-

lation of the PI provide better stratification; this approach may

be particularly attractive for single-subject predictions (Fig. 3).

For instance, a subject may be assigned to 1 of the defined

groups on the basis of the PI, and acquainted with its most
probable median ‘‘conversion-free’’ time. These results are of

great importance not only from a research standpoint (e.g., pa-

tient involvement in clinical trials) but also for clinical

purposes.

CONCLUSION

Our results confirm the predictive value of 18F-FDG PET in
patients with MCI. The PCA technique showed its applicability
for differentiating between MCI subjects who converted to AD

and stable MCI subjects. The PES of the ADCRP was identified

as a valid predictor of conversion, and the combination of clin-

ical variables with the PES yielded a higher predictive value

than each single tool.
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