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Prostate-specific membrane antigen (PSMA) PET/CT has a high

diagnostic accuracy for lesion detection in metastatic prostate

cancer, including bone metastases. Novel therapeutic approaches

require valid biomarkers for standardized disease staging and for
evaluation of progression and therapy response. Here, we intro-

duce EBONI (Evaluation of Bone Involvement), a software tool to

automatically quantify the bone metastasis load in PSMA PET/CT.
Lesion quantity, mean and maximum lesional SUV, z score, and

percentage of affected bone volume are determined. EBONI is open

source and freely available. Methods: To validate EBONI, the re-

sults of automated quantification of 38 PSMA PET/CT scans with
different levels of bone involvement were compared with visual ex-

pert reading. The influence of SUV threshold and Hounsfield unit

thresholds was analyzed. Results: A high correlation between bone

lesion quantity as determined visually and automatically was found
(SUVmax, r2 5 0.97; SUVmean, r2 5 0.88; lesion count, r2 5 0.97). The

Hounsfield unit threshold had no significant influence, whereas an

SUV threshold of 2.5 proved optimal for automated lesion quantifi-
cation. The systematic error of false-positive tissue misclassification

was low, occurred mainly around the salivary and lacrimal glands,

and could easily be corrected. There were no false-negative ratings.

Conclusion: EBONI analysis is robust, quick (,3 min per scan), and
100% reproducible. It allows rater-independent quantification of

bone metastasis in metastatic prostate cancer. It provides lesion

quantification equivalent to that of visual assessment, as well as

providing complementary information. It can be easily implemented
as an add-on to visual analysis of PSMA PET/CT scans and has the

potential to reduce turnaround time.
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Prostate-specific membrane antigen (PSMA), also known as
glutamate carboxypeptidase II, is a transmembrane glycoprotein
that is highly expressed in prostate cancer cells (1). With the re-
cent advent of radioligands binding to PSMA, it has become ob-
vious that molecular imaging with PSMA PET/CT is a diagnostic
tool with high sensitivity and specificity for detecting tumor le-
sions of prostate cancer (2–5). Thus, PSMA PET/CT bears great

potential for early detection of recurrence and for disease staging
and follow-up.
There is an obvious need for biomarkers for accurate disease

staging and for longitudinal diagnostic assessment of prostate
cancer, such as for monitoring disease progression or the effects of
a therapeutic intervention. Although overall survival as a param-
eter represents a most important endpoint, particularly in studies
investigating later disease stages, its value is limited. It potentially
requires long follow-up periods to allow judgment of therapeutic
efficacy and, thus, is not suitable in earlier disease stages, and it
may be strongly affected by the baseline stage of disease and the
pattern of disease distribution (i.e., the affected organ systems).
Thus, biomarkers are required allowing precise disease staging at
baseline for patient selection and classification, including identi-
fication of affected organ systems and assessment of the true
extent of disease, as well as quantitative follow-up of disease
progression and therapy monitoring. Whereas several methods are
used in this context, such as serum levels of the prostate-specific
antigen and different imaging procedures, validation is incomplete
and no uniform response criteria are established (6–9).
Over 85% of patients in late stages of prostate cancer have

tumor involvement of the bone (10). Conventional bone scintigra-
phy represents the current gold standard to measure metastasis
load, but it has only a limited sensitivity, especially in cases with
low prostate-specific antigen levels (11). Thus, also regarding in-
clusion in therapy trials, patients with existent bone metastases
may be missed or the extent of disease may be underestimated
by means of bone-scan assessment. PSMA PET/CT may represent
a more promising imaging biomarker for this purpose because of
its high sensitivity and specificity in detecting metastases after
biochemical relapse of prostate cancer (12,13) and the increasing
availability of the method. Consistently, a recent study indicated
the superiority of PSMA PET/CT over conventional bone scintig-
raphy in the detection of bone metastases (14).
However, PSMA PET/CT ratings based on visual readings or

observer-dependent region-of-interest–based approaches (deriving
categoric or numeric values to approximate the metastatic load) is
hampered by the limited inter- and intrarater reliability (e.g., based
on arbitrary or nonstandardized definition of size or location of
regions of interest) (15), the limited information on the true extent
of disease (e.g., underestimation of actual tumor load by exclusive
assessment of lesion number), and the need for time-consuming
effort.
It has already been shown that automated software–based scan

interpretation of conventional planar bone scintigraphy improves
the assessment of disease progression in patients with metastatic
prostate cancer (16–18). This software-based interpretation makes
use of the so-called bone-scan index, a well-introduced tool orig-
inally developed for manual scoring allowing quantification of
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total bone metastasis load as a percentage (19,20). Likewise, in the
diagnosis of pulmonary nodules or liver lesions with CT (21,22),
and in the field of neuroscience, semiautomated and automated
approaches toward image rating are currently being evaluated as
well (23–26). Moreover, automated lesion delineation has been
applied in a unimodal PET study imaging the National Electrical
Manufacturer Association phantom (27).
Here, we present EBONI (Evaluation of Bone Involvement), a

software tool for fully automated quantification of bone metastasis
load in PSMA PET/CT scans, using bimodal information from
PETand CT. EBONI is a tool developed only for scientific purposes
and has not been approved for clinical use. The software creates a
standardized report that can be used for longitudinal intrasubject
comparison of PET/CT-derived parameters and for scientific use
in the evaluation of the prognostic value of these parameters. Total
bone volume, total bone metastasis volume, percentage of affected
bone tissue, SUVmean and SUVmax in the affected tissue, and total
metastasis count are determined. The software and its source
code are freely available at https://github.com/jochenhammes/
PSMA_Analysis/.

MATERIALS AND METHODS

All procedures in studies involving human participants were in
accordance with the ethical standards of the institutional research

committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Written informed

consent was obtained from all participants included in this study.
Analyses were performed according to the Standards for Reporting

Diagnostic Accuracy Studies, as described in the supplemental
material (available at http://jnm.snmjournals.org).

Patients

Twenty 68Ga-PSMA PET/CT scans of patients with metastatic

prostate cancer that was clinically rated as containing at least 1 bone
metastasis and 18 bone-negative scans were selected. The patient

characteristics are in Table 1.

Imaging

PETwas performed at the Department of Nuclear Medicine, University
Hospital Cologne, Germany, with a Biograph mCT Flow 128 Edge

scanner (Siemens). A low-dose CT scan was acquired before all PET
scans and used for attenuation correction (voxel size, 1.5 · 1.5 · 3 ·
0 mm). A whole-body scan was acquired 76 min (617 min) after in-
travenous injection of 68Ga-PSMA HBED-CC (where HBED-CC is N,

N9-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N9-diacetic
acid) (average dose, 170 MBq; SD, 40.3 MBq). Images were iteratively

reconstructed (3-dimensional ordered-subsets expectation maximization;

4 iterations; 12 subsets; 200 · 200 matrix; voxel size, 4.1 · 4.1 ·
3.0 mm) and smoothed by a gaussian filter (5 mm in full width at half
maximum).

Software Development

The software is implemented in the operating system–independent

MATLAB environment (The MathWorks, Inc.). Essential functions
can also be run in Octave (https://www.gnu.org/software/octave), a

freely available open-source implementation of the MATLAB pro-
gramming language.

Prerequisites

Image data must be available in DICOM format (28). A 3-dimensional
PET/CT dataset consists of slices representing axially aligned planar

images stacked along the z-axis. Separate DICOM stacks exist for CT
and PET datasets. To ensure the functionality of EBONI, the CT and

PET datasets must comprise a similar number of slices and the data

need to be represented in a common anatomic space so that a definite
mapping of each CT voxel to a corresponding PET voxel is possible

(similar in-plane resolutions are not required).

Algorithmic Design

Automated PET/CT analysis comprises 7 steps, which are depicted

in Figure 1. The first step is loading of the DICOM header of the PET
and CT images to determine the image acquisition parameters (in-

jected activity, interval between injection and image acquisition, pa-
tient weight, physical half-life of the nuclide, in-plane resolution, slice

number). The second step, importing of the image matrices into the
MATLAB workspace, uses the ‘‘dicm2nii Toolbox’’ by Li (29) and the

‘‘Tools for NIfTI and ANALYZE Image’’ by Shen (30). In the third

step, a binary bone mask is created by applying a Hounsfield unit
threshold (HUT) to the CT image matrix. All below-threshold vales

are set to 0, and all above-threshold values to 1. The total bone volume
is calculated by multiplication of the voxel volume by the number of

nonzero voxels in the bone mask. The fourth step is application of the
bone mask to the PET image to set all nonbone voxels to 0. The fifth

step is segmentation of the PET image matrix by application of
an SUV threshold (SUVT) to eliminate all values below the SUVT.

SUVmean and SUVmax in the above-threshold voxels and total above-
threshold volume are calculated. If means and SDs of SUVmean in a

group of healthy controls are present, Z-transformed deviations of
individual SUVmean from control group average SUVmean are calcu-

lated. The sixth step is cluster analysis to identify contiguous above-
threshold voxels with voxelwise application of a 3-dimensional flood

fill algorithm (modified from Dinath (31)). For each contiguous lesion,
volume, SUVmean, SUVmax, and xyz-position are determined. The final

step is to save the results in .csv files and in a graphic report sheet with
a maximum-intensity projection displaying the anatomic distribution

of above-threshold voxels. Sample images of 4 patients depicting

TABLE 1
Patient Characteristics

Characteristic Bone-positive group Bone-negative group P

Number of scans 20 18

Mean age (y) 73.4 (6.7) 67.2 (8.2) 0.05

Mean Gleason score 8.1 (0.9) 7.2 (0.9) 0.06

Disease duration before scan (y) 7.0 (3.7) 5.8 (4.8) 0.51

Mean number of bone lesions (determined visually) 42.6 (30.2) 0 ,0.001

Data in parentheses are SDs.
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maximum-intensity projections of unprocessed input PET datasets and
the respective EBONI output are displayed in Figure 2. The generated

report contains information on total bone volume, total bone metasta-

sis volume, percentage of affected bone tissue, SUVmean and SUVmax

in the affected tissue, Z-transformed deviation of SUV in the affected

tissue from average SUV in nonaffected tissue, and total metastasis
count.

Validation

Avisual rating of the bone metastasis load in the 38 PSMA PET/CT
datasets of patients was performed by 2 expert readers. The bone

tumor burden was determined in analogy to PERCIST (32). The num-
ber of osseous lesions was determined independently by each rater,

and the arithmetic mean was used for later analysis. The readers
reached a consensus on the 5 most prominent osseous lesions in each

scan, and the SUVmean and SUVmax in the lesions was determined. To
determine SUVmean, the lesion volume was segmented automatically,

delineating consecutive voxels around the hottest voxels down to a

threshold of 0.4 · SUVmax.
The bone-positive datasets were then analyzed automatically by

EBONI, and the reports were compared with the results of the visual
rating. Different values for SUVT and HUT were applied in the

automated analysis: SUVT ranged from 1.5 to 10, and HUTs of 270,
300, 330, 360, and 400 were used. To evaluate the influence of

different HUTs, a 1-way ANOVA of SUVmean in the PET-positive

tissue was performed for all SUVTs. To estimate the influence of
the selected SUVT and overall metastasis load on PET-positive vol-

ume, a multiple-regression model was calculated with PET-positive
volume as a dependent variable and with metastasis count and the

selected SUVT as independent variables. The visually determined
numbers of lesions (arithmetic mean between ratings of the 2 readers)

were compared with the automated lesion count for different SUVTs.
For each SUVT, a correlation analysis was performed between the

visually determined lesion number and the number derived from au-
tomated analysis. Additionally, summed squared deviations between

these measures were calculated. The average concordance between
visual and automated ratings for SUVmean and SUVmax was deter-

mined by correlation analysis for different SUV thresholds. To de-
termine the mean and SD of SUVmean in nonaffected bone tissue and

to quantify the percentage of voxels falsely classified as positive,
EBONI analysis was also performed on the bone-negative PSMA

PET/CT datasets.

RESULTS

The average run time per scan was 2.9 min (61.3 min). SUVmean

in bone tissue in the bone-negative scans was 0.55, with an SD of
0.10. The average relative amount of tissue falsely classified as
positive in bone-negative scans was 0.03% for an SUVT of 10,
0.05% for an SUVT of 8, 0.1% for an SUVT of 6, 0.22% for an
SUVT of 4, and 1.1% for an SUVT of 2. In the bone-positive scans,
no false-negative classification of bone metastasis selected by the
raters occurred in the EBONI analysis.
The selected HUT did not have a significant influence on group

average SUVmean in PET-positive tissue for any of the SUVTs, as
confirmed by ANOVA, whereas total segmented bone volume
naturally showed a strong negative correlation with the selected
HUT (R2 . 0.98, P , 0.01 for every scan). Furthermore, metas-
tasis count was a fair predictor of total PET-positive volume as
described by a multiple linear regression model with the selected
SUVT as the covariate (multiple R2 5 0.59, P , 0.001 for me-
tastasis count, P 5 0.59 for SUVT).
We observed a strong concordance between manually and

automatically extracted SUVmax (R2 5 0.97, Fig. 3A) independent
of SUVT. Correlation strengths between visually and automati-
cally determined SUVmean depend on the selected SUVT (Fig.
3C). The strongest correlation was observed for an SUVT of 8
(R2 # 0.88, Fig. 3B). The number of visually counted lesions
correlated strongly between the expert readers (r 5 0.97). The
concordance between visually and automatically determined lesion
counts was best for an SUVT of 2.5 (Fig. 3C).

DISCUSSION

Here, we have presented EBONI, a software tool that can
perform a fully automated, observer-independent quantification of
bone metastasis load in PSMA PET/CT scans. Total bone volume,
total bone metastasis volume, percentage of affected bone tissue,
SUVmean and SUVmax in the affected tissue, Z-transformed de-
viation of SUVmean in the affected tissue from SUVmean of
bone-negative controls, and total metastasis count are included
in a standardized report. The software is freely available on the
Internet.
Because of the algorithmic nature of the automated quantifi-

cation, it is 100% reproducible and observer-independent. A
systematic comparison of the rating results of 38 PSMA PET/CT

FIGURE 1. Algorithmic design of automated PSMA PET/CT analysis

software. csv 5 comma-separated values; HC 5 healthy controls.
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scans revealed a good concordance between the standardized
visual rating by expert readers and the EBONI output. The overall
performance of bone segmentation was good. Spillover from
extraosseous activity from salivary and lacrimal glands to bone
voxels caused the only systematic misclassification of bone
tissue near these areas (i.e., false-positive findings). However, the
relative amount of misclassified tissue was small in comparison
to the total bone volume and was well below 1% for SUVTs of 3
and above. If the software tool were to be applied in a clinical
setting, the average percentage of misclassified voxels would
have to be considered. One possible method of error correction
might be to decrease the determined volume by the expected
relative misclassified volume for the respective Hounsfield and
SUV parameters.
No statistically significant influence of initial HUTwas found in

an ANOVA comparing automatically extracted SUVmean in PET-
positive tissue. This effect is understandable, because final delin-
eation of lesions is dominated by SUVT. Only lesions located at
the border of bone tissue having a low x-ray density would be
excluded by a low HUT. Since the cortical lamina of the bone

usually has higher x-ray densities than the
bone marrow (33), and typical bone metas-
tases of prostate cancer tend to be sclerotic,
the probability of falsely excluding voxels
belonging to a metastasis because of too-
low Hounsfield values is small. In turn, it is
feasible to set a rather low HUT to take
into account the possibly reduced x-ray
densities of the typically elderly patients,
possibly also with osteoporosis (34), and to
ensure that bone voxels are not artificially
excluded from the analysis.
The CT datasets used in this validation

were all low-dose CT scans acquired im-
mediately before the PET acquisition with-
out use of an intravenous contrast agent.
Because Hounsfield unit density influences
SUV via attenuation correction, EBONI
SUVT might have to be adjusted when CT
contrast agent is used. We do not expect a
strong influence on bone tissue classifica-
tion, because the Hounsfield unit densities
of blood vessels in a venous contrast agent
phase are typically well below the thresh-
old we used here.
Lesions with intense tracer uptake might

lead to errors in estimations of the total
affected bone volume, because the area of
tracer uptake might exceed the true ana-
tomic borders of the lesion, causing over-
estimation of the affected bone volume. On
the other hand, other than visual rating, the
bone-limited approach of EBONI would at
least lead to the exclusion of extraosseous
spillover. Consequently, although such ef-
fects cannot be completely eliminated with
our tool, we believe that the standardized
approach presented here would probably
average out some of the corresponding
fluctuations and still be less susceptible to
this source of error than visual rating.

SUVmax did not alter when the SUVT was changed, as is easily
explained by the fact that the hottest lesion is naturally included in
every analysis. On the other hand, we observed an increase in
correlation strength between automatically extracted and visually
determined SUVmean with higher SUVTs. This phenomenon is
driven by the fact that the lesions included in the visual rating
were picked as being among the 5 visually hottest in the whole
scan, in accordance with PERCIST (32). This circumstance also
causes the numeric difference between visually extracted and au-
tomatically determined SUVmean. Because no lesions with lower
SUVs were picked in the visual analysis, their average SUVmean

naturally is higher than the average SUVmean derived by an algo-
rithm that will include any above-threshold voxel in its analysis.
Concordance between visual and automated lesion counts was

best for the rather low SUVTs (Fig. 3D), because only in this
way can lesions with a low signal be considered by the algo-
rithm. This finding comes with a caveat, as low SUVTs cause
higher probabilities of tissue misclassification due to spillover
from regions with high PET signal near bone tissue, such as the
lacrimal glands.

FIGURE 2. Four subjects who underwent PSMA PET/CT. (A) Subject showing no bone metas-

tasis in visual rating. (B and C) Subjects showing moderate bone metastasis load. (D) Subject

showing high number of PET-positive osseous lesions. Maximum-intensity projections of unpro-

cessed input data are shown at top, and automatically segmented bone tissue (gray) and PET-

positive osseous lesions (black) are shown at bottom. Systematic elimination of nonspecific

uptake can be seen in, for example, abdominal organs and urinary tract.
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In addition to providing more standardized and fully repro-
ducible information on number of metastases, for example, as
compared with visual assessment, EBONI allows the visual
assessment to be complemented by several additional quantita-
tive output parameters on the extent of disease. These values may
potentially become established as novel measures for a more
standardized and accurate quantification of bone disease, for
example, for staging and therapy monitoring.
Automated software has been developed for quantifying the

total skeletal tumor burden in planar scintigraphy (18,35), and a
study recently proved that software-based determination of the
bone-scan index improves the assessment of disease progression
in patients with metastatic prostate cancer (16). Automated anal-
ysis of PSMA PET/CT with the software we present here also
provides additional valuable information about the individual bone
metastasis load in patients with metastatic prostate cancer. The
diagnostic and prognostic value of the parameters derived from
automated analysis need to be validated in larger cohorts and in a
longitudinal setup.
The algorithmic design of this software is not limited to the

analysis of PSMA PET/CT but can also analyze other molecular
radiotracers specific for different tumor entities. Furthermore, an
automated assessment of bone marrow activation in 18F-FDG PET
could also be performed with only slight modifications to the code.
Additionally, because the software should also be able to load
SPECT/CT datasets, automated interpretation and scoring of

3-dimensional scans with 99mTc-labeled
bisphosphonates might also be a future
application. The application of machine-
learning algorithms might also improve
the quality of tissue classification in a fu-
ture version of the software.
This study had some limitations. Some

of the typical problems in visual assess-
ment of PSMA-positive bone lesions also
affect automated analysis by the software
tool. In a clinical setting, it is sometimes
unclear whether a PET-positive lesion is
really caused by a metastasis or is instead
due to a different process independent of
prostate cancer cells—for example, soli-
tary lesions in the thoracic cage that are
unlikely to be bone metastases. Furthermore,
to date there is no established standard
threshold for the definition of a PET-positive
lesion in PSMA PET/CT. In addition, EBONI
cannot detect metastases with no or low
PSMA expression, which can occur in some
cases, such as after radiotherapy or as a
consequence of dedifferentiation of tumor
cells. In the case of hypersclerotic metasta-
ses with rather low tracer uptake, a future
version of EBONI could include a function
to dynamically adjust the SUVT for every
voxel depending on its Hounsfield unit den-
sity. Moreover, visual rating, even by expert
readers, may not represent a 100% reliable
gold standard for the evaluation of a soft-
ware tool. Human raters may even show
performance inferior to an automated ap-
proach, and the malignancy of a lesion

cannot be determined without biopsy (which is not feasible for
multiple lesions). Also, to standardize visual rating, PERCIST
were applied in this study, however, PERCIST have not yet been
validated for PSMA PET/CT.
Lesion quantity is a marker that comes with a caveat. In

longitudinal approaches to evaluating disease progression or
response to a therapy, a possible increase in lesion load might be
masked if only lesion number is used as the parameter. Growing
confluent lesions might lead to a decrease in lesion number while
the actual affected bone volume increases. This effect is demon-
strated in Figure 2: although the patient shown in part D had a
higher bone metastasis load than the patient in part C, the number
of lesions was lower in the former. Therefore, lesion quantity
should always be interpreted together with other parameters.
We believe that these limitations do not fundamentally question

the demonstrated value and functionality of EBONI. The software
can easily be adjusted regarding novel insights and the predefined
settings (e.g., on SUVTs of bone metastases and HUT), and the
limitations do not affect the salient advantages of the automated
procedure, such as standardization and reproducibility.

CONCLUSION

Automated bone scoring with EBONI produces robust results
that correlate strongly with visual rating, are 100% reproducible,
eliminate interrater variability, and add new statistical measures

FIGURE 3. Results of correlation analysis between manually and automatically extracted val-

ues. (A) Correlation of SUVmax determined visually and automatically with SUVT of 5. (B) Corre-

lation of highest mean SUV in visual rating and SUVmean in PET-positive volume (SUVT of 8). (C)

Dependence of correlation strength between visually and automatically determined SUVmean and

SUVT. (D) Dependence of correlation between visually and automatically determined lesion count

on selected SUVT, and summed squared deviation between visually and automatically deter-

mined lesion count.
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for quantifying the extent of bone disease. The tool provides
highly standardized, observer-independent, reproducible informa-
tion that may be valuable for the interpretation of PSMA PET/CT
scans, such as for staging and therapy monitoring. Because of its
graphical user interface and platform independence, it is easy to
implement as an add-on to the visual analysis of PSMA PET/CT
scans and has the potential to distinctly reduce turnaround time.
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