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Gliomas are the most common type of tumor in the brain. Although

the definite diagnosis is routinely made ex vivo by histopathologic

and molecular examination, diagnostic work-up of patients with
suspected glioma is mainly done using MRI. Nevertheless, L-S-

methyl-11C-methionine (11C-MET) PET holds great potential in the

characterization of gliomas. The aim of this study was to establish

machine-learning–driven survival models for glioma built on in vivo
11C-MET PET characteristics, ex vivo characteristics, and patient

characteristics. Methods: The study included 70 patients with a

treatment-naı̈ve glioma that was 11C-MET–positive and had histo-

pathology-derived ex vivo feature extraction, such as World Health
Organization 2007 tumor grade, histology, and isocitrate dehydro-

genase 1 R132H mutational status. The 11C-MET–positive primary

tumors were delineated semiautomatically on PET images, followed
by the extraction of tumor-to-background–based general and

higher-order textural features by applying 5 different binning ap-

proaches. In vivo and ex vivo features, as well as patient charac-

teristics (age, weight, height, body mass index, Karnofsky score),
were merged to characterize the tumors. Machine-learning ap-

proaches were used to identify relevant in vivo, ex vivo, and patient

features and their relative weights for predicting 36-mo survival. The

resulting feature weights were used to establish 3 predictive models
per binning configuration: one model based on a combination of in

vivo, ex vivo, and clinical patient information (M36IEP); another

based on in vivo and patient information only (M36IP); and a third
based on in vivo information only (M36I). In addition, a binning-

independent model based on ex vivo and patient information only

(M36EP) was created. The established models were validated in a

Monte Carlo cross-validation scheme. Results: The most prominent
machine-learning–selected and –weighted features were patient-

based and ex vivo–based, followed by in vivo–based. The highest

areas under the curve for our models as revealed by the Monte

Carlo cross-validation were 0.9 for M36IEP, 0.87 for M36EP, 0.77
for M36IP, and 0.72 for M36I. Conclusion: Prediction of survival in

amino acid PET–positive glioma patients was highly accurate using

computer-supported predictive models based on in vivo, ex vivo,
and patient features.

Key Words: glioma; amino acid PET; survival; radiomics; machine

learning

J Nucl Med 2018; 59:892–899
DOI: 10.2967/jnumed.117.202267

Gliomas are the most common type of tumor in the brain,
representing 81% of all cerebral malignancies. The incidence of

gliomas as a whole is up to 5.7 per 100,000 people worldwide

and increasing (1). Expected patient survival varies with glioma

type, with the most frequent and highly malignant type—glioblas-

toma multiforme—showing the worst 5-y survival rate: about 5%.

Clinical evaluation and therapeutic management of glioma patients

currently rely on the combined analysis of age, Karnofsky score,

and ex vivo tumor grade (1–3). Beyond tumor histology, molecular

alterations such as isocitrate dehydrogenase 1 (IDH1) and 2 muta-

tion, as part of the World Health Organization (WHO) 2016 clas-

sification system, have additional prognostic value in gliomas (4,5).
Imaging of gliomas is widely performed by MRI (6). Neverthe-

less, the high sensitivity and specificity of a radiolabeled amino

acid PET tracer such as L-S-methyl-11C-methionine (11C-MET) is

considered a promising diagnostic approach toward tumor charac-

terization and longitudinal therapeutic monitoring (7–10).
The prognostic value of 11C-MET PET is currently under investi-

gation. Recent reports on the feasibility of dichotomizing tumors by a

maximum tumor-to-background ratio (TBR) threshold are contradic-

tory (11–14). In contrast, in vivo features derived from 11C-MET PET

SUVs have been reported to hold additive prognostic value (5).
One of the most prominent features of tumors is their hetero-

geneity across scales (15). It is therefore a logical step to investi-

gate tumor heterogeneity in the context of survival prediction.

Nevertheless, heterogeneity cannot be characterized by conven-

tional calculations, such as SUVs, mean or maximum TBR, and

metabolic tumor volumes (16). Recent studies have begun to focus

on the evaluation of in vivo textural features on PET images, with
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promising results for characterizing tumor heterogeneity (17–19),
therapy response (20), and disease-specific survival (21). Although
a wide range of textural features is available, these calculations are
not yet standardized and are subject to variations in acquisition and
reconstruction protocols (15). Furthermore, textural features de-
rived from textural matrices are affected by the low sample size
and the variation in number of bins (NOB) (22,23).
Another challenging aspect of textural analysis is feature selec-

tion and redundancy (24). Here, filtering during preprocessing
(24,25) or machine learning (ML)–driven approaches to feature
selection (26,27) can be incorporated to reduce the number of fea-
tures for predictive analyses. ML approaches have been widely
applied in the field of morphologic tissue characterization using
large-scale radiomic features (24,28). However, these approaches
are still underrepresented in the field of molecular imaging.
In light of the evolving field of texture analysis and radiomic

evaluation of PET images, this study was performed with 3
objectives. The first was to propose ML-driven methods of feature
selection and weight estimation to identify and compare in vivo 11C-
MET PET features, ex vivo features, and patient features of rele-
vance for a 36-mo survival prediction. The second was to establish 4
ML-weighted-feature models to predict 36-mo survival: a model
using in vivo, ex vivo, and patient features (M36IEP); a model using
ex vivo and patient features only (M36EP); a model using in vivo and
patient features only (M36IP); and finally, a model using in vivo
features only (M36I). The third objective was to validate and com-
pare all 4 models with retrospective survival information.

MATERIALS AND METHODS

Patient Data

Seventy patients with histologically verified treatment-naı̈ve glio-

mas based on the WHO 2007 classification were collected from a
preestablished cohort for this retrospective study (29). The patients

were examined by 11C-MET PET between 2000 and 2013. All were
older than 18 y, and all had accessible medical reports with a follow-

up of at least 36 mo. Moreover, the study included only amino acid–
positive cases with a known IHD1 R132H mutational status based on

immunohistochemical staining (Table 1). Days of survival were di-
chotomized with a 36-mo threshold and used as a reference label for

both the model training and the validation phases of this work (Fig. 1).
The study was approved by the local institutional review board. Writ-

ten informed consent was obtained from all patients before the imag-
ing examinations.

PET Acquisition

PET was performed on an Advance PET system (GE Healthcare)
(30) 20 min after injection of 770 6 106 MBq of 11C-MET (mean 6
SD; range, 447–972 MBq) produced in-house by a previously described
method (31). The PET acquisition included a 10-min emission and a

5-min transmission scan. The attenuation- and scatter-corrected emis-
sion data were reconstructed by a standardized 3-dimensional filtered

backprojection algorithm applying a Hanning filter with a 6.2-mm cut-
off. The reconstructed axial matrix size was 128 · 128, with 35 slices

per PET acquisition and a 3.125-mm slice thickness. The full width at
half maximum of the reconstructed images was 5 mm.

Spatial Normalization and Tumor Delineation

Medical images are commonly resampled to a unified isotropic

spatial resolution before radiomic evaluation to standardize voxel size
differences in single or multicenter cohorts (15,32). To support re-

peatability, the PET images were resampled to a 1 · 1 · 1 mm voxel
size. In choosing the target resolution, we considered the sensitivity of

various textural features in a small sample (33,34). To minimize in-
terpolation artifacts, the resampling was performed with the kriging

interpolation (35).
The resampled PET images were transferred to commercially

available software (Hybrid 3D; Hermes Medical Solutions) for tumor
delineation. This process was performed by 2 nuclear medicine

physicians in consensus using semiautomated 3-dimensional isocount
volume-of-interest (VOI) tools. An optional slice-by-slice manual mod-

ifier tool was applied if the tumor boundaries could not be characterized
by the isocount VOI tool. An additional reference background cuboid

VOI was drawn on the contralateral region for TBR calculations. The
coordinates and values of the voxels within the VOIs were exported via

the Hybrid 3D software for further processing.

Feature Extraction

The PET voxel values inside each tumor VOI were normalized to
the mean of the respective reference background VOI to generate a

PET TBR VOI. This step was necessary to correct the individual
tracer metabolism of the normal tissue (36,37). The PET TBRs were

rebinned in 5 different ways considering different NOB and bin size
(BS) configurations. Four binning processes were initiated using

Equation 1 for a cohort-global bin range with a Tmin of 1.0 and a Tmax

of 8.5, with NOB equaling 64, 150, 375, and 512. The corresponding

BS values were 0.12, 0.05, 0.02, and 0.014, respectively:

vbin 5 NOB
v 2 Tmin

Tmax 2 Tmin
; Eq. 1

where v is the original TBR voxel value from a given VOI, vbin is the
binned TBR value, and NOB is 64, 150, 375, and 512. TBRs with less

than a Tmin of 1.0 were excluded from the VOIs. A Tmax of 8.5

TABLE 1
Characteristics of Processed Study Cohort

Characteristic Data

Total patients 70 (100%)

Median age ± SD (y) 48 ± 15

Sex

Male 42 (60%)

Female 28 (40%)

Histologic type

Diffuse astrocytoma 17 (24%)

Oligodendroglioma 22 (31%)

Oligoastrocytoma 13 (19%)

Glioblastoma multiforme 17 (24%)

Pilocytic astrocytoma 1 (,2%)

WHO 2007 grade

I 1 (,2%)

II 21 (30%)

III 31 (44%)

IV 17 (24%)

IDH1 R132H mutation

Positive 35 (50%)

Negative 35 (50%)

Data are n followed by percentage in parentheses, except for age.
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represented the highest TBR in the cohort. The fifth binning technique
applied a fixed BS of 0.05 TBR but with a specific NOB per tumor

(38) as defined by Equation 2.

vbin 5
v 2 VOImin

BS
; Eq. 2

where VOImin is the minimum voxel value of the given VOI with a BS

of 0.05.
Each of the binned PET TBR VOIs was subjected to extraction of

48 in vivo features, including general, histogram, and shape features,
as well as textural features derived from the gray-level cooccurrence

matrix, the gray-level zone-size matrix, and the neighborhood gray-
tone difference matrix (15,23,39). In addition, 3 ex vivo features and 5

patient characteristics were assigned to the in vivo features to generate
a 56-feature vector (48 1 3 1 5) for each tumor (Table 2).

Survival Prediction Model

A model scheme building on all 56 in vivo, ex vivo, and patient
features was established on the basis of the principles of geometric

probability covering algorithms (40). These algorithms model the gauss-
ian distribution of features with mk 2 R56 means and sk 2 R56 deviation

arrays to provide a membership probability for

each of the k 2 fsurvived; did not surviveg
classifier outcomes. In this study, the gaussian

distribution was determined by random boot-
strapping with replacement (41,42). The prob-

ability that a feature vector (w 2 R56) belonged
to k classifier outcomes was characterized by

MPk membership probability functions (Eq. 3).
This study extended the above approach in 2

ways. First, a binary feature selection array
(m 2 f0; 1g56Þ was used to describe which fea-
tures are relevant in the evaluation, and second,
a feature weight array (w 2 R56) was intro-

duced to represent the importance of each se-
lected feature:

MPkðw; mk; sk; m; wÞ 5 +
56

i51

mi wie

ðwi2mk;iÞ2
2s2

k;i

Eq. 3

The predicted label of a feature vector w
was provided by the MPk function with the

maximum probability value (Eq. 4):

argk maxðMPkðw; mk;sk;m;wÞÞ Eq. 4

The above predictive model scheme was

referred to as M36 in this study. Both the
feature selection (m) and the feature weight

(w) arrays were unknown parameters that were
determined by ML approaches.

Model Error Estimation

An estimator was established to character-

ize the receiver-operator-characteristic dis-
tance of the M36 models (Eq. 5) based on

number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives

(FN) (Supplemental Table 1; supplemental
materials are available at http://jnm.snmjournals.org). The measure-

ment compared the model-predicted and reference label values of
input feature vectors using the confusion matrix (43):

e 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
12

TP

TP1 FN

�2

1

�
12

TN

TN1FP

�2
s

: Eq. 5

Feature Selection and Weight Estimation

For each of the 5 binning configurations, m and w were identified in a
hierarchical ML-based approach by minimizing the e model error (Fig.

2). The first ML layer identified relevant features (mÞ through an in-

teractive approach using genetic algorithms (26), thereby modeling

evolutionary processes. The second ML layer then identified the resid-

ual weights ðwÞ based on the content of each input m using the Nelder–

Mead method (44,45). An inherent dependency between the mask and

the weight vectors was maintained in such a way that if a feature was

not selected (mi 5 0), then its weight was zero as well (wi 5 0).
To avoid overfitting, the multilayer ML approach was executed in a

14-fold cross-training scheme over the dataset (46) with each of the 5

binning configurations. In each fold, 8 different ML algorithms were

executed with different genetic algorithm mutation rates managed in

FIGURE 1. Workflow for evaluating glioma cohort. Tumors are manually delineated on 11C-MET

PET images, followed by automated extraction of 48 in vivo features. In addition, 5 patient

characteristics and 3 ex vivo features are collected to establish 56-feature vector for each case.

Extracted features are used for ML cross-training phase, which results in relevant features and

their weights for 36-mo survival. Feature weights for 36-mo-survival predictive model are estab-

lished on basis of ML results. Model is validated with MC cross-validation approach. Reference

dichotomized standard survival labels (did not survive [0], survived [1]) are used during both

training and validation phases.
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parallel by simulated annealing (47). In this way, 112 (14 · 8) fea-

ture-mask and feature-weight variants were generated per binning
configuration. The final feature mask (m) was created by a feature-

level logical OR operator over the 112 feature-mask variants. The
112 feature-weight variants of the given binning configuration were

normalized to the sum of 1.0 and averaged to create the final feature-
weight array (w). The supplemental materials contain a detailed

explanation of the ML algorithm and its parameters.
On the basis of the ML-derived features (m) and their weights (w),

three 36-mo predictive models were established for each of the 5 bin
configurations: M36IEP, M36IP, and M36I. In addition, a binning-in-

dependent model, M36EP, was created.

Predictive Model Validation

To measure the performance of the established models, Monte

Carlo (MC) cross-validation was used (48) with 1,000 iterations. In
each MC iteration, the dataset was randomly separated into a 60%

training dataset (TDS) and a 40% validation dataset (VDS), with

stratified selection and no overlapping (TDS \ VDS 5 /). The ref-

erence gaussian distributions (mk ,sk) of M36IEP, M36EP, M36IP, and
M36I were calculated from the given TDS. The corresponding VDS

samples were subsequently evaluated by the configured models in
each MC iteration. The predicted and respective reference-value pairs

of VDS samples were recorded in a confusion matrix for each model
for performance evaluation.

RESULTS

Feature Selection and Weight Estimation

Based on the averaged weights of the 5 binning-specific ML
executions, the most prominent features were patient features and
ex vivo features, such as age (10.3%), isocitrate dehydrogenase 1
(IDH1) R132H mutational status (8.6%), and WHO 2007 grade
(6.8%). TBR sum (5%), spheric dice coefficient (4.7%), volume
(4.5%), and coarseness neighborhood gray-tone difference matrix
(4.1%) were the most prominent in vivo features (Fig. 3). The

same prominent weights were selected by
ML regardless of the binning configura-
tion; however, individual weights differed
per binning configuration (Supplemental
Figs. 1–4).

Predictive Model Validation

The models with highest area under the
curve (AUC) in their category based on the
MC cross-validation were M36IEP (BS,
0.05), with an AUC of 0.9; M36EP, with
an AUC of 0.87; M36IP (NOB, 150), with
an AUC of 0.77; and M36I (BS, 0.05),
with an AUC of 0.73. The average AUCs
of the 4 model types across the different bin-
ning configurations were 0.9 for M36IEP,
0.87 for M36EP, 0.77 for M36IP, and 0.7 for
M36I. AUC did not significantly differ among
different binning configurations; however, the

TABLE 2
Fifty-Six Extracted In Vivo and Ex Vivo Features and Patient Characteristics Assigned to Each Delineated Lesion

in Feature Vector

Feature category Feature name

In vivo general (6) Minimum, maximum, sum, mean, SD, variance

In vivo histogram (6) Mean, energy, variance, entropy, skewness, kurtosis

In vivo shape (3) Compactness, volume, spheric dice coefficient

In vivo GLCM (17) Inverse difference, inverse difference moment, sum average, sum entropy, difference variance,

difference entropy, information correlation, auto correlation, cluster shade, cluster prominence,
maximum probability, entropy, contrast, dissimilarity, angular second moment, sum-of-squares

variance, correlation

In vivo GLZSM (11) Emphasis on small zone, large zone, low-gray-level zone, high-gray-level zone, small low-gray-level

zone, small high-gray-level zone, large low-gray-level zone, large high-gray-level zone; gray-level

nonuniformity; zone-size nonuniformity; zone-size percentage

In vivo NGTDM (5) Coarseness, contrast, complexity, busyness, texture strength

Ex vivo (3) Histology, WHO 2007 grade, IDH1 R132H mutational status

Patient (5) Age, weight, height, body mass index, Karnofsky score

GLCM 5 gray-level cooccurrence matrix, GLZSM5 gray-level zone-size matrix, NGTDM5 neighborhood gray-tone difference matrix.

Details of listed in vivo features can be found in supplemental materials.

FIGURE 2. Identification of relevant features and their weights specific for 36-mo survival by ML.

Genetic algorithm (GA) and Nelder–Mead (NM) ML methods determine feature-mask (m) and fea-

ture-weight (w) arrays, respectively. Generic M36 predictive model evaluates input feature vector (w)

and provides its survived (1) and did-not-survive (0) membership probabilities (MP). Highest prob-

ability (in current example, “Survived (1)”) is chosen as predicted value. Predicted and reference

labels of w are compared and stored in confusion matrix. Error measurement (e) from confusion

matrix is provided once all feature vectors in training phase are evaluated. e error value is minimized

by ML layers (GA and NM). The above process is performed in iterative cross-training scheme of

14 folds and 8 ML variants in each fold, resulting in 112 feature-mask and feature-weight variants

that are used to identify relevant features and their weights for 36-mo glioma survival.
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largest AUC for models involving in vivo features was achieved
with a binning configuration that had a BS of 0.05 (fixed BS,
variable NOB per tumor), supporting previous results (38).
A detailed comparison of the models by sensitivity, specificity,

accuracy, positive predictive value, negative predictive value, and
AUC is shown in Table 3. Figure 4 compares 2 example patients

with prominent features who did and did not survive the 36-mo
period.

DISCUSSION

This study investigated the relevance of in vivo, ex vivo, and
patient-related features in predicting 36-mo survival for
glioma patients and determined the importance of selected
features by ML. Although all features were selected at least
once during the cross-training phase, the determined feature
weights had a nonuniform distribution (Fig. 3 and Supplemental
Figs. 1–3).
Across all investigated features, gray-level cooccurrence

matrix features such as entropy (0.3%) and angular second
moment (0.3), as well as intensity features such as maximum
TBR (0.5%), appeared to have low importance in predicting 36-
mo survival in patients with amino acid–positive gliomas. In
contrast, patient age, IDH1 R132H mutational status, WHO 2007
grade, TBR sum, spheric dice coefficient, and volume and
coarseness neighborhood gray-tone difference matrix appeared
to be highly important for survival prediction. Our findings
regarding TBR sum support previous reports that identified tu-
mor amino acid metabolism as a prominent feature for survival
prediction (5,29). In addition, we have shown that tumor-shape
features such as volume and spheric dice coefficient further
support the accuracy of survival prediction beyond patient and
ex vivo values.

FIGURE 3. ML-derived weights of 56 in vivo, ex vivo, and patient

features in descending order. Weights reflect relative importance to

one another for predicting 36-mo survival in 11C-MET PET–positive

patients. Weights were determined by averaging 560 (5 binning · 112

models) weight variants derived by ML, executed in cross-training

scheme. Individual weights of each weight variant were normalized

to sum of 1.0 before averaging. BMI 5 body mass index; GLCM 5
gray-level cooccurrence matrix; GLZSM 5 gray-level zone-size ma-

trix; NGTDM 5 neighborhood gray-tone difference matrix.

TABLE 3
Performance Values of Predictive Models Evaluated

in MC Cross-Validation

Binning

configuration Model SENS SPEC ACC PPV NPV AUC

NOB, 64 M36IEP 86% 95% 89% 97% 78% 0.90

M36IP 82% 70% 78% 84% 67% 0.76

M36I 77% 64% 72% 80% 59% 0.70

NOB, 150 M36IEP 88% 95% 90% 97% 81% 0.91

M36IP 81% 74% 79% 85% 67% 0.77

M36I 77% 65% 73% 81% 60% 0.71

NOB, 375 M36IEP 88% 93% 90% 96% 81% 0.91

M36IP 83% 71% 79% 85% 69% 0.77

M36I 77% 61% 72% 79% 59% 0.69

NOB, 512 M36IEP 89% 92% 90% 96% 82% 0.91

M36IP 84% 71% 79% 85% 70% 0.77

M36I 79% 60% 72% 79% 60% 0.69

BS, 0.05 M36IEP 88% 94% 90% 96% 80% 0.91

M36IP 79% 76% 78% 86% 65% 0.77

M36I 76% 69% 74% 82% 61% 0.73

Nonimaging* M36EP 79% 95% 84% 97% 70% 0.87

*M36EP is presented separately, as it is independent from
image binning configurations.

SENS 5 sensitivity; SPEC 5 specificity; ACC 5 accuracy; PPV 5
positive predictive value; NPV 5 negative predictive value.
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Overall, 16 predictive models, built on different combinations
of binning configurations with ML-determined in vivo, ex vivo,
and patient features, were validated in a MC cross-validation
scheme. Our results indicate that the highest AUC (0.9) can be
achieved with M36IEP. The second highest average AUC (0.87)
was for M36EP. M36IP and M36I had an average AUC of 0.77 and
0.70, respectively (Table 3). All our combined M36IEP models
resulted in a sensitivity and specificity of 86%–98% and 92%–
95%, respectively. In contrast, when ex vivo features were
excluded, sensitivity was in the range of 79%–84% and spec-
ificity decreased to 71%–76% (Table 3), thus indicating that ex
vivo features support the identification of patients who are
more likely to survive 36 mo. The inclusion of patient features
appeared to support a higher sensitivity and specificity across
all models.
A literature search demonstrated ML-based glioma predic-

tors; however, these studies relied on MRI-based feature
analysis (Table 4). The highest accuracy (96%) for a survival
prediction model built on MRI, ex vivo, and patient features
was reported by Zhang et al. (49). However, their study was
based on a comparatively small patient cohort (n 5 28) that
included glioblastomas only. Moreover, they used contrast-
enhanced T1-weighted MRI–based radiomic features at 3 dif-
ferent time points during the course of the disease. Nie et al.

(50) reported 89% accuracy for their sur-
vival model across 69 patients, and the ap-
proach of Macyszyn et al. (51) resulted in
76% accuracy (105 patients). Again, both
these studies involved only glioblastomas.
Emblem et al. (52) established 6-mo, as
well as 1-, 2-, and 3-y, survival models
based on contrast-enhanced MRI features,
tumor volume, and patient features for 235
glioma patients in a multicenter study.
They reported 94% sensitivity, 38% speci-
ficity, and an AUC of 0.66 for their 36-mo
survival model. The highest AUC (0.682)
was provided by their 2-y survival model,
with 78% sensitivity and 58% specificity.
Our study differed from the above-cited

works on multiple accounts: it included the
diagnostic, pretherapeutic PET into a com-

bined analysis of in vivo, ex vivo, and patient features. Further-
more, our cohort included not just glioblastoma but various types
of glioma (Table 1). We specifically focused on using a statisti-
cally accurate resampling (35) to address small-sample–related
uncertainties in textural parameters (22,23). Both the feature se-
lection and the feature-weight estimation were ML-driven in a
cross-training scheme to minimize the bias of our models. In
addition, we compared 5 different binning configuration–based
ML executions to investigate their effect on our performance val-
ues. Furthermore, the validation was performed by a MC cross-
validation scheme with a high iteration to properly estimate the
accuracy of our models. Our results outperform previously report-
ed MRI-based results, thus indicating that amino acid PET may
hold a prominent role in glioma survival prediction as an alterna-
tive or addition to MR-only imaging.
Nevertheless, our study was limited in several regards. Al-

though IDH1 R132H mutational status—as one of the essential
biomarkers in the 2016 update of the WHO glioma classifica-
tion—was present, tumor typing was based on the older, 2007,
WHO standard. Furthermore, because the in vivo feature extrac-
tion relied on PET-identifiable VOI analysis, only amino acid–
positive gliomas could be investigated. Last, the current work
was built on single-center studies; thus, the effect of acquisition
and reconstruction variations on our in vivo features could not be

FIGURE 4. Comparison of 2 example patients who did (left) and did not (right) survive 36 mo

from time of primary 11C-MET PET scan. Most prominent features as identified by our study

are presented in center table. Although both patients had WHO 2007 grade 3 disease, remain-

ing features varied considerably, thus indicating need for combined analysis of multiple fea-

tures. Axial slices are from Hybrid 3D software visualized by standard spectral palette and

with overlaid delineated VOIs (red boundary). NGTDM 5 neighborhood gray-tone difference

matrix.

TABLE 4
Studies Correlating Glioma Survival with In Vivo, Ex Vivo, or Patient Features by ML Approaches

Study Cohort Feature source Analysis method Validation method Result

Zhang et al. (49) GBM

(n 5 28)

MRI, ex vivo,

patient

Logistic regression,

SVM, decision tree,

neural network

Leave-one-out

cross-validation

96% ACC

Nie et al. (50) GBM

(n 5 69)

MRI Deep learning Cross-validation 89% ACC

Macyszyn et al. (51) GBM

(n 5 105)

MRI Feature preselection,

SVM

Cross-validation 76% ACC

Emblem et al. (52) Glioma

(n 5 235)

MRI, tumor

volume, patient

SVM Multicenter

cross-validation

94% SENS,

38% SPEC

GBM 5 glioblastoma; SVM 5 support vector machine; ACC 5 accuracy; SENS 5 sensitivity; SPEC 5 specificity.
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evaluated (15). Looking ahead, a logical next step in identifying
key features that correlate with glioma survival would be to extract
features from multicenter PET/MR images. The proposed ML
methods together with the predictive model are highly generic,
as they do not consider any prior knowledge about the modalities
or extracted features. Thus, evaluation of these ML methods for
other cancers can be envisaged.

CONCLUSION

The results of the current study support the application of ML
using in vivo, ex vivo, and patient features to predict survival in
amino acid PET–positive glioma patients.
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