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The importance of 18F-FDG PET in imaging head and neck squamous

cell carcinoma (HNSCC) has grown in recent decades. Because PET

has prognostic values, and provides functional and molecular informa-

tion in HNSCC, the genetic and biologic backgrounds associated with
PET parameters are of great interest. Here, as a systems biology

approach, we aimed to investigate gene networks associated with

tumor metabolism and their biologic function using RNA sequence
and 18F-FDG PET data. Methods: Using RNA sequence data of

HNSCC downloaded from The Cancer Genome Atlas data portal, we

constructed a gene coexpression network. PET parameters including

lesion–to–blood-pool ratio, metabolic tumor volume, and tumor lesion
glycolysis were calculated. The Pearson correlation test was performed

between module eigengene—the first principal component of mod-

ules’ expression profile—and the PET parameters. The significantly

correlated module was functionally annotated with gene ontology
terms, and its hub genes were identified. Survival analysis of the sig-

nificantly correlated module was performed. Results: We identified 9

coexpression network modules from the preprocessed RNA sequence
data. A network module was significantly correlated with total lesion

glycolysis as well as maximum and mean 18F-FDG uptake. The expres-

sion profiles of hub genes of the network were inversely correlated with
18F-FDG uptake. The significantly annotated gene ontology terms of
the module were associated with immune cell activation and aggrega-

tion. The module demonstrated significant association with overall sur-

vival, and the group with higher module eigengene showed better

survival than the other groups with statistical significance (P 5 0.022).
Conclusion:We showed that a gene network that accounts for immune

cell microenvironment was associated with 18F-FDG uptake as well as

prognosis in HNSCC. Our result supports the idea that competition for
glucose between cancer cell and immune cell plays an important role in

cancer progression associated with hypermetabolic features. In the

future, PET parameters could be used as a surrogate marker of HNSCC

for estimating molecular status of immune cell microenvironment.
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Currently, 18F-FDG PET is widely used for staging and mon-
itoring treatment response in head and neck squamous cell carcinoma
(HNSCC) (1). It can be used as an imaging biomarker providing
functional and molecular information such as metabolism, hypoxia,
and proliferation (2). Clinically, 18F-FDG PET plays a great role in
HNSCC because of its high accuracy for staging and its prognostic
value (3). Several PET parameters such as maximum SUV, metabolic
tumor volume (MTV), and total lesion glycolysis (TLG) have been
used for prognostic quantitative markers (4–6).
HNSCC is highly heterogeneous in terms of genetic and molecular

pathogenesis (7). It has hampered the development of new therapeutic
strategies and the improvement of survival in recent decades. Therefore,
understandings of the biologic and genetic background of HNSCC,
which could lead to improved tailoring of treatment modalities, have
received attention in the era of the precision medicine. As PET provides
biologic information in vivo, previous literatures have demonstrated the
significant correlation between gene expression profiles and the PET
parameters (8–10). However, these genetic profiles have focused only
on individual genes and not considered fully the systemic property.
Because it is more evident that biologic processes are derived from
various interactions between many cellular components, systemic gene
network analysis could provide more information about carcinogenesis
and therapeutic intervention (11). To evaluate the systemic gene network
of HNSCC associated with in vivo metabolic characteristics identified by
PET, we used weighted gene coexpression network analysis (WGCNA)
in this study. The WGCNA algorithm takes into account the correlation
between 2 genes as well as the degree of similarity between a pair of
genes in their correlation structure within the rest of the network, so that
it captures a systems perspective of genetic network (12).
The aims of this study were to apply systems biology analysis

using RNA sequencing (RNA-seq) data of HNSCC and corre-
sponding 18F-FDG PET images, and to identify and define a gene
coexpression network that significantly correlated with tumor
metabolism. We identified the sole network module showing high
correlation with 18F-FDG uptake, and it accounted for the function
associated with immune cell microenvironment. From the per-
spective of gene network, we could define the major systemic
genetic background of tumor metabolic feature.

MATERIALS AND METHODS

WGCNA

We used RNA-seq data publicly available in The Cancer Genome

Atlas (TCGA) (13). Detailed RNA-seq data preprocessing is described
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in the supplemental materials (available at http://jnm.snmjournals.org).

Using the WGCNA R/Bioconductor package (12), we constructed

weighted gene coexpression networks from the preprocessed

RNA-seq data. We created a correlation matrix on the basis of

the Pearson correlation coefficient for all pairwise genes across

all samples. The power—the key parameter for weighted network—

was selected to optimize both the scale-free topology and the suf-

ficient node connectivity, and we chose a threshold of 6 in this

study. The correlation matrix was transformed into adjacency ma-

trix (matrix of connection strength) using the power function, and

pairwise topologic overlap between genes was calculated. We iden-

tified network modules using the hierarchical clustering method

with topologic overlap dissimilarity as the distance measure (12).

The modules were detected by the dynamic tree cut algorithm in

the WGCNA package (14), defining a height cutoff value of 0.99,

deep split as 2, and a minimum module size cutoff value of 50.

Genes that were not assigned to any module were classified to the

color gray.

18F-FDG PET/CT Data and Image Processing

In this study, we used 18F-FDG PET/CT data provided by The
Cancer Imaging Archive (15,16). We identified 23 patients who had

both genetic and 18F-FDG PET data available. 18F-FDG PET/CT im-

ages were acquired according to the standard imaging protocol of each

institute. Patients were administered 18F-FDG (6.45 MBq/kg [range,

2.53–12.6 MBq]), and images were acquired 60 min after administra-

tion. PET data were reconstructed by an iterative algorithm (ordered-

subset expectation maximization). The acquisition and reconstruction

parameters such as matrix size were different according to the imaging

protocol of institute.
Patient data were acquired by a publicly available dataset that

removed patient identifiers. The publicly available data were collected

with patients’ informed consent approved by the institutional review

boards of all participating institutions following the 1964 Helsinki

declaration and its later amendments or comparable ethical standards.

To obtain PET imaging parameters, semiautomated quantitative
analyses were performed. First, a primary cancer lesion was identified

and its SUVmax was obtained. Metabolically active tumor was seg-

mented by a threshold value of 40% of SUVmax. The volume of

segmented lesion was measured (MTV). As acquisition and recon-

struction parameters were different, SUVs were corrected by blood-

pool activity. A manually drawn spheric volume of interest on the

ascending aorta was used to measure blood-pool activity. SUVs of

the lesion were divided by SUVmean of the blood pool, which pro-

duced a lesion–to–blood-pool ratio (LBR). Because The Cancer

Imaging Archive data were obtained from multiple centers, SUV

interchangeability may be limited. To overcome this issue, we used

LBR as a parameter for 18F-FDG uptake. For quantitative analyses,

maximum LBR and mean LBR were used as representative parame-

ters of each tumor. Corrected TLG value of a lesion was calculated as

mean LBR · MTV, which reflects both the metabolic activity and the

tumor burden. Image parameters were obtained using the Metavol

package (17).

Correlation Test Between Network Modules and

PET Parameters

RNA-seq data of 23 samples were preprocessed to conduct a
correlation test. To summarize the module expression profile for the

correlation test, we calculated the module eigengene (ME), the first

principal component of the expression matrix of the corresponding

module, for the representation of each network module. The Pearson

correlation test was performed to evaluate associations between each

PET parameter and the ME of each network module. The modules

with a P value under 0.05 were considered significantly correlated

modules. To estimate robustness of the correlation between PET

parameters and the ME, we estimated confidence intervals of the
correlation coefficient using the nonparametric jackknife method.

The Pearson correlation was repeatedly estimated in resampled data
with a sample removed. The gene ontology biologic process terms

were annotated for significantly correlated network module (supple-
mental materials).

Identification of Hub Genes of Significantly

Correlated Module

We calculated gene module membership by testing the correlation
between the individual gene’s expression profile and the ME of its

assigned module. Because genes with high gene module membership
also demonstrate high intramodular connectivity in the network mod-

ule, we considered genes with high gene module membership as hub
genes of the respective module (12). In addition, a trend of the asso-

ciation between hub genes and PET parameters was investigated. We
performed the Pearson correlation test between PET parameters and

gene expression values of the top 20 hub genes of the significantly
correlated module.

Cell Types Enrichment Analysis

To evaluate the relationship between cell types of tumor tissues and

PET parameters, we conducted cell type enrichment analysis using

xCell (18). The xCell is a gene-signature–based method for inferring
cell types of tissue transcriptome profiles. The composite scores of

microenvironment score (the sum of immune and stromal cells) and
immune scores (the sum of immune cells) were also obtained. The

normalized messenger RNA expression data of HNSCC were en-
tered into the xCell tool. Enrichment scores for various cell types

were obtained and correlated with PET parameters using the Pearson
method.

TABLE 1
Demographic and Baseline Clinical Characteristics of

Preprocessed Data

Variable
TCGA HNSCC
data (n 5 490)

Available
data

Sex 490

Female:male 132:358 (26.9%:73.1%)

Age (y) 61.5 ± 12.0 (20.0–90.1) 489

Smoking 490

Never 211 (43.1%)

Ever 279 (56.9%)

Alcohol 479

Never 154 (32.2%)

Ever 325 (67.8%)

Stage 420

1 24 (5.7%)

2 67 (16.0%)

3 77 (18.3%)

4a 240 (57.2%)

4b 11 (2.6%)

4c 1 (0.2%)

Status 211:279 (43.1%:56.9%) 490

Survival time (mo) 21.9 (0.1–213.9) 489
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Survival Analysis and Identification of Network Modules

Related to Tumor Stage

The relationship between PET parameter–correlated network mod-

ules and patients’ overall survival was analyzed using the Cox pro-
portional hazards model. A continuous ME value of the selected

module was used as an input for the Cox model. Additionally, the
subjects were divided into tertiles according to the ME value, each

containing a third of all subjects. Kaplan–Meier survival curves were
depicted to compare overall survival among these 3 groups. The sta-

tistical significance was tested by the log-rank test. We also tested
whether network modules were associated with tumor stage. The

effects of different tumor stages on MEs were compared using 1-way
ANOVA.

RESULTS

The preprocessed RNA-seq data consisted of 5,827 genes from
490 HNSCC samples. The clinical and pathologic characteristics
of the preprocessed data are described in Table 1. Using WGCNA,
we identified 9 coexpression network modules (Fig. 1).
The Pearson correlation test demonstrated that only the blue

module was significantly associated with maximum LBR (P 5
0.010, r520.52; 95% confidence interval,20.46 to20.58), mean
LBR (P 5 0.012, r 5 20.52; 95% confidence interval, 20.51
to 20.58), and corrected TLG value (P 5 0.025, r 5 20.47;
95% confidence interval, 20.41 to 20.53). There was no module
significantly associated with MTV (Fig. 2). The association be-
tween each PET parameter and MEs of the blue module is shown
in Figures 3A, 3B, and 3C, and the network of the blue module is
presented in Figure 3D (Supplemental Fig. 1, high-resolution im-
age). There was not a significant effect of tumor stage on the blue
module (F5 1.85, P5 0.14), whereas the other 3 modules (brown,
red, and pink) showed a trend of association between tumor stage
and MEs (Supplemental Fig. 2).

The blue module was functionally annotated with gene onotology
biologic process terms. The top 10 significantly enriched terms are
shown in Table 2. These terms were mostly associated with immune
cell activation and aggregation. We selected 20 hub genes in order of
high gene module membership from the blue module to evaluate the
trend of correlation between genes’ expression profiles and PET
parameters. The selected hub genes were NCKAP1 L, CD53, SASH3,
DOCK2, PTRPC, TNFRSF1B, CD4, MYO1F, IL10RA, EVI2B,
SELPLG, FERMT3, IKZF1, IRF8, LCP2, WAS, ABI3, GIMAP4,
SPI1, and CYBB. All hub genes showed significant negative corre-
lation with 18F-FDG uptake parameters (maximum and mean LBR),
although most of them showed no significant correlation with MTV
and corrected TLG value (Fig. 3E).
The relationship between 18F-FDG uptake and cell type enrich-

ment in the tumor was evaluated. The maximum and mean LBR
were negatively correlated with enrichment scores of CD81
T cells, Th2 cells, and M1 macrophage. The composite scores,
microenvironment, and immune score were also negatively corre-
lated with the 18F-FDG uptake parameters. Conversely, the M2
macrophage enrichment score was positively correlated with the
18F-FDG uptake parameters (Fig. 4).
We evaluated the association between the blue module and

patients’ prognoses. The univariate Cox analysis demonstrated that
the ME of the blue module was significantly correlated with patients’
overall survival (P5 0.021). Figure 5 shows a Kaplan–Meier survival
curve for the patient groups, and the group with high ME showed
significantly better survival than the other groups (P 5 0.022).

DISCUSSION

In this study, we used a systems biology approach, applying
WGCNA to identify transcriptomic correlates of metabolic features

in HNSCC. A significant gene network
module correlated with 18F-FDG uptake
represented the immune cell microenviron-
ment of the tumor. Furthermore, the module
was associated with patients’ survival. Un-
til now, molecular backgrounds of tumor
metabolism identified by 18F-FDG PET
have not been fully understood, especially
in terms of the systemic property of genes.
Gene expression analyses combined with
in vivo imaging studies have reported that
expression level of various genes such as
glucose transporters or tumor hypoxia–
related genes were closely associated with
18F-FDG uptake in HNSCC (8–10). How-
ever, because of complicated functional
gene–gene interactions, cancer phenotypes
including metabolic features are depen-
dent on systemic variation of gene expres-
sion rather than some individual genes
(19). We successfully captured a gene net-
work module associated with 18F-FDG up-
take in HNSCC.
Our results demonstrated that a tumor

metabolism–associated module represented
immune cell activation and aggregation.
Most cancer lesions are hypermetabolic
and demand a high level of glucose, which
has long been known as the Warburg effect.

FIGURE 1. Gene coexpression network module identification using WGCNA. Clustering den-

drogram of genes of preprocessed RNA-seq data from 490 HNSCC samples is presented. In

dendrogram, each leaf (short vertical line) corresponds to single gene, and each branch is

coexpression module consisting of highly interconnected genes. Below dendrogram, module

colors are displayed together. Total of 9 coexpression network modules were identified, except

gray color, representing genes not assigned to any module.
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The underlying mechanisms of cancer hypermetabolism are com-
plex and depend on several biologic and molecular factors. They
include glucose metabolic pathway enzymes and glucose trans-
porter system as well as cellular factors such as cancer cell dif-
ferentiation (20). Despite the well-known individual molecular
causality of tumor hypermetabolism, it has been hard to know
the most important factor for tumor metabolism identified by
18F-FDG PET because of the complexity of molecular interactions
and networks. Our results of a gene network related to 18F-FDG
uptake could shed new light on an importance of immune cell
activation and aggregation in tumor metabolism, particularly for
HNSCC.
We found that tumor glucose uptake was inversely correlated

with a network module accounting for immune cell activations
in HNSCC. At first glance, this inverse correlation might be
inconsistent with the fact that activated immune cells consume
more glucose (21). However, recent studies have revealed that
cancer metabolism is affected by various cellular processes in the
cancer microenvironment (14,22). In particular, tumor cells are
known to escape immunity by controlling the microenvironment.
One of the most important mechanisms of immune escape is nu-
trient competition in the tumor microenvironment between cancer
cells and T cells (23). Our results also supported this idea of
metabolic competition for immunosuppressive microenvironment
in aggressive cancer. Gene expression profiles of hub genes of the
18F-FDG uptake–related module were inversely correlated with

LBR. This finding suggested that suppression of genes related to
immune cell activation and aggregation could be due to relative
glucose starvation of immune cells in a tumor microenvironment
caused by cancer cell hypermetabolism. Furthermore, we found
the negative correlation between immune cell type enrichment and
glucose metabolism. Specifically, a CD81 T cell in a tumor
microenvironment was negatively correlated with 18F-FDG uptake
in our results. Of note, CD81 T cell is regarded as a key player of
cancer immunity, and its abundance is a positive prognostic
marker (24). Glucose metabolism was also negatively correlated
with M1 macrophage whereas it was positively correlated with M2
macrophage. Macrophages contribute to immune evasion medi-
ated by reducing the cytotoxic M1 macrophage and inducing
M2 macrophages, which have a role in immune suppression
through the production of IL-10 and TGF-b (25). Our results
implied that hypermetabolic HNSCC was associated with micro-
environment appropriated for immune evasion contributed by
T cells and macrophages. The idea of metabolic competition be-
tween cancer cells and immune cells has been also supported by in
vitro and in vivo studies. A study showed that tumor glucose me-
tabolism was negatively correlated with tumor-infiltrating T cells
in squamous cell carcinoma (26). That finding was consistent with
our result of negative correlation between CD81 T cells and
18F-FDG uptake. The study also showed that the low immunother-
apy responsiveness was associated with higher glycolysis and low
tumor-infiltrating T cells (26). According to these results, a

FIGURE 2. Correlation test between coexpression network modules and PET parameters. (A–D) P value of correlation test was shown with bar

plot. Dotted line represents statistical significance (P 5 0.05). Only blue module was significantly correlated with maximum LBR (A), mean LBR (B),

and corrected TLG (D). There was no module significantly correlated with MTV (C). (E) Heat map generated with Pearson correlation coefficients

demonstrated that blue module exhibited negative correlation with all PET parameters. Color scale indicates degree of correlation. LBRmax 5
maximum lesion–to–blood-pool ratio; LBRmean 5 mean lesion–to–blood-pool ratio; TLGcorrected 5 corrected TLG.
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clinical study regarding the relationship between immunother-
apy responsiveness and pretreatment 18F-FDG uptake will be
promising.
The module correlated with 18F-FDG uptake was also associ-

ated with prognosis. We found that hypermetabolism was nega-
tively correlated with the ME of the blue module. Patients with
low blue ME showed poor prognosis compared with those with
high blue ME. To recapitulate the results, cancer hypermetabolism
could affect the suppression of the gene network accounting for
immune cell activation and aggregation in a microenviron-
ment. This relationship could provide important clinical informa-
tion in recent cancer immunotherapy such as anti–PD-1 therapy
(27). Glucose limitation in tumor-infiltrating T cells caused by
competition with cancer cells leads to increased expression of
PD-1, which mediates immunosuppression (28). In addition,

increased PD-1 functionally inhibits glycolysis as well (28,29).
The close association between PD-1 and T cell metabolic reprog-
ramming in a tumor microenvironment induces tumor aggressive-
ness by exhausting T cells, and increased PD-1 can be eventually
associated with prognosis (30,31). In this regard, metabolic char-
acteristics measured by 18F-FDG PET could be used as a surrogate
marker for immune cellular status for monitoring the response of
cancer immunotherapy. Because PD-1 inhibition increases glucose
metabolism of immune cells and reduces cancer cell metabolism
(23,29), 18F-FDG uptake could be used for early treatment re-
sponse evaluation. Recently, several studies showed the feasibility
of applying 18F-FDG PET in lung cancer patients as a tool for
early response monitoring of immunotherapy (32,33). A recent
finding of increased 18F-FDG uptake in lymphoid tissue associated
with immunotherapy response could also support the feasibility of

FIGURE 3. 18F-FDG uptake–related module and its hub genes. (A–C) Scatterplots show association between ME of blue module and each PET

parameter, maximum LBR (LBRmax) (P 5 0.010, r 5 −0.52) (A), mean LBR (LBRmean) (P 5 0.012, r 5 −0.52) (B), and corrected TLG (TLGcorrected)

(P 5 0.025, r 5 −0.47) (C). (D) Coexpression network of blue module was visualized. Note that 300 genes among 666 genes of blue module and their

connections were shown. (E) Heat map generated with Pearson correlation coefficients between 20 hub genes of blue module and PET parameters.

y-axis represents gene symbols, and color scale indicates degree of correlation.
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18F-FDG PET as a valuable biomarker for response monitoring
based on the mechanism of competitive 18F-FDG uptake be-
tween immune cells and cancer cells (34).
This study has some limitations. First, the design of this study

was retrospective and WGCNA was performed using public data,
including small samples with both 18F-FDG PET and RNA-seq data.
The intrinsic limitations of the coexpression network approach are that
the dataset has to be large and contain a good proportion of genes with
significant signals to obtain robust and reproducible results of the
coexpression network computed by correlation between each pair of
genes. Although we successfully found a tumor metabolism–related
module and its biologic function, further study with a well-controlled

prospective design is warranted. Second, PET images were acquired by
multiple centers, limiting the acquisition of interchangeable and precise
PET parameters. Because we used the TCGA and The Cancer Imaging
Archive database, it was an inevitable limitation as a study based on
publicly available data. To overcome this limitation, we used the nor-
malized PET parameter LBR, rather than SUV, to correct factors
affecting PET parameters such as reconstruction. As a future study,
standardized PET images across multiple centers will be a prerequisite
for developing precise PET biomarkers reflecting gene networks.
Third, as an intrinsic limitation of the correlation analysis, our
findings of a relationship between PET parameters and gene net-
works hardly explain causality. In vitro and preclinical models will be

TABLE 2
Top 10 GO Biologic Process Terms of Blue Module

ID Biologic process Count q value

GO:0050865 Regulation of cell activation 90 5.4 · 10−30

GO:0002694 Regulation of leukocyte activation 86 1.1 · 10−29

GO:0051249 Regulation of lymphocyte activation 80 2.9 · 10−29

GO:0007159 Leukocyte cell–cell adhesion 85 2.8 · 10−27

GO:0050867 Positive regulation of cell activation 67 3.1 · 10−26

GO:0002696 Positive regulation of leukocyte activation 65 1.9 · 10−25

GO:0070486 Leukocyte aggregation 79 2.7 · 10−25

GO:0050900 Leukocyte migration 71 2.9 · 10−25

GO:0051251 Positive regulation of lymphocyte activation 61 1.8 · 10−24

GO:0071593 Lymphocyte aggregation 77 1.8 · 10−24

GO 5 gene ontology.

FIGURE 4. Relationship between 18F-FDG uptake and cell type en-

richment in tumor cells. Heat map generated with Pearson correlation

coefficients between PET parameters and enrichment scores for various

cell types, microenvironment scores, and immune scores obtained with

xCell. y-axis represents enrichment scores, and color scale indicates

degree of correlation. Most scores showed negative correlation with

PET parameters; however, M2 macrophage showed positive correlation

with PET parameters.

FIGURE 5. Kaplan–Meier survival curve for overall survival. Subjects

were divided into tertiles of ME value of blue module to compare overall

survival between groups. Group with high ME had significantly better

survival than the 2 other groups (P 5 0.022).
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needed to support the idea whether hypermetabolic cancer cells sup-
press lymphocyte activation. Last, further study is needed for different
types of cancer to identify whether the relationship between 18F-FDG
uptake and the gene network accounting for tumor microenvironment
is universal across multiple tumor types.

CONCLUSION

To our knowledge, the current study is the first study of a
systems biology approach to evaluate gene networks associated
with glucose metabolic features identified by 18F-FDG PET. A
gene coexpression network module accounting for immune cell
aggregation and activation function was significantly correlated
with 18F-FDG uptake and prognosis, and expression level of its
hub genes was negatively correlated with 18F-FDG uptake in the
tumor. This link of gene network and in vivo imaging features
sheds light on the understanding of tumor microenvironment re-
lated to the metabolic competition between cancer cell and im-
mune cell. Hence, we suggest that PET parameters could be used
as a surrogate biomarker for estimating systemic status of gene
networks and tumor microenvironment in the future.
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