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Brain connectivity has been assessed in several neurodegenerative

disorders investigating the mutual correlations between predeter-

mined regions or nodes. Selective breakdown of brain networks
during progression from normal aging to Alzheimer disease dementia

(AD) has also been observed. Methods: We implemented independent-

component analysis of 18F-FDG PET data in 5 groups of subjects

with cognitive states ranging from normal aging to AD—including
mild cognitive impairment (MCI) not converting or converting to AD—

to disclose the spatial distribution of the independent components in

each cognitive state and their accuracy in discriminating the groups.

Results: We could identify spatially distinct independent components
in each group, with generation of local circuits increasing proportion-

ally to the severity of the disease. AD-specific independent compo-

nents first appeared in the late-MCI stage and could discriminate
converting MCI and AD from nonconverting MCI with an accuracy

of 83.5%. Progressive disintegration of the intrinsic networks from

normal aging to MCI to AD was inversely proportional to the conver-

sion time. Conclusion: Independent-component analysis of 18F-FDG
PET data showed a gradual disruption of functional brain connectivity

with progression of cognitive decline in AD. This information might be

useful as a prognostic aid for individual patients and as a surrogate

biomarker in intervention trials.
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Neuronal activity involving different brain regions relies on
dynamic communication through both short- and long-range net-
works establishing temporal or spatial connections (1). Connectivity

can be investigated by identifying significant signal-intensity corre-
lations between a priori–defined volumes of interest as segmented
by brain atlases (2–5) or between regions resulting from statistical
preprocessing (e.g., graph analyses in which brain areas are consid-
ered as nodes). Application of the latter technique to datasets in-
cluding subjects ranging from normally aging individuals to patients
with mild cognitive impairment (MCI) or Alzheimer disease de-
mentia (AD) has revealed a selective breakdown of intrinsic brain
networks during the progression of AD (5,6).
Cognitive impairment does not always progress to overt dementia

but sometimes remains stable after years of follow-up or even
reverts to a normal state (7). Thus, patients with cognitive impair-
ment constitute an ideal control group for studies on the decline
from progressive MCI to AD.
Most phenomena that occur in the real world are mixtures of

different, often relatively independent, processes. Typical exam-
ples are the sounds in a room in which several people are talking
simultaneously (the paradigmatic cocktail party model (8)). Anal-
ogously, a distribution of signal intensities across the brain will
be a mixture of the activations of a large number of independent
neural networks. Under certain conditions, these elementary sig-
nals can be recovered by independent-component analysis (ICA),
a data-driven technique that blindly separates mixed signals into
independent sources without requiring any a priori topographic
assumption.
Submitting functional MRI data to ICA helped disclose a strong

functional architecture in all stages of aging, from normal cognition
to AD (9). The take-over of local systems on long-distance brain
connections speaks in favor of a functional segregation of neuronal
processes. However, it is still not known whether there is a contin-
uum in the intrinsic network modification associated with AD. In a
previous study (10), we reported a continuous loss of order along
the disease-severity axis in the metabolic setup of the brain, as
assessed using 18F-FDG PET and applying a coarse-grain thermo-
dynamic approach. Here, we examine a possible association be-
tween those findings and intrinsic network changes by analyzing
the connectivity dynamics.
The aim of the present study was to use 18F-FDG PET to eval-

uate, first, the spatial distribution of the independent components in
subjects ranging from normally aging individuals to AD patients
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(including MCI converters to AD and MCI nonconverters to AD)
and, second, the accuracy of the independent components in dis-
criminating between 5 such groups of subjects with different con-
ditions. Our hypothesis was that the progressive derangement of
brain connectivity during the course of the disease is already de-
tectable at the MCI stage and that metabolic patterns identified in
MCI patients can help in predicting the speed of conversion to AD.

MATERIALS AND METHODS

Participants

Forty-two cognitively normal elderly subjects, 27 MCI patients who
did not convert to AD, 37 MCI patients who converted to AD more than

2 y after the PET scan, 58 MCI patients who converted to AD within 2 y
of the PET scan, and 54 patients with AD at the time of the PET scan

were included in the study (Table 1). The exclusion criteria for each of

these groups were the same as previously described (10). The study was
approved by the institutional review board, and all subjects gave written

informed consent to undergo 18F-FDG PET in the framework of a long-
term observational study.

MCI Patients

The MCI patients had been referred to our memory clinic for initial
diagnostic assessment of a memory complaint. They underwent a

complete clinical and neuropsychological diagnostic work-up according
to current standards. The baseline evaluation included blood and urine

tests, neuroimaging (MRI), and functional neuroimaging (18F-FDG PET).
All patients underwent extensive neuropsychological testing, investigat-

ing categoric and phonologic verbal fluency, executive functions, visuo-
spatial abilities, attention, and working memory.

Patients were included in the MCI group if they did not have dementia

but showed impairment on a memory test, either with (multidomain
amnestic MCI) or without (single-domain amnestic MCI) involvement

of other cognitive domains. We included only patients who had been
followed up by regular visits for at least 5 y or until they developed AD.

AD Patients

The AD patients were those diagnosed with AD at their first work-
up at our memory clinic after undergoing the same tests as the MCI

patients. The presence of dementia was established by clinical in-
terviews with the patient and caregivers, by questionnaires about their

activities of daily living and their instrumental activities of daily
living, and by their Clinical Dementia Rating Scale scores. The mini–

mental state examination was used to score global cognition. Only

patients with a score of at least 19 (mild dementia) attributable to AD
according to the criteria of the National Institute on Aging and the

Alzheimer’s Association were included in the study.

Cognitively Normal Controls

The control subjects were carefully checked by clinical examination.
The same exclusion criteria as for the MCI and AD patients were used,

with the exception of cognitive complaints. Similarly, only subjects with
a normal score (i.e., .26) on the mini–mental state examination and

with a Clinical Dementia Rating score of 0 were considered. The con-
trols underwent both 18F-FDG PET and MRI, as well as the same

extended neuropsychological testing as the MCI and AD patients (11).

18F-FDG PET Protocol and Preprocessing
18F-FDG PET images were acquired by a Biograph 16 PET/CT

scanner (Siemens). The acquisition lasted 15 min in 3-dimensional

mode. The images underwent the preprocessing steps in the stand-alone
version of the statistical parametric mapping software (SPM8; Well-

come Department of Cognitive Neurology). Spatial normalization was

performed using a customized brain 18F-FDG PET template optimized
for dementia patients (12), and the images were then smoothed

with an 8-mm isotropic gaussian filter to blur individual variations
in gyral anatomy and to increase the signal-to-noise ratio.

Statistical Analysis

Using 1-way ANOVA, we compared the results of the mini–mental

state examination, the auditory verbal learning test (immediate total
recall and delayed recall), and the trail-making test (parts A and B,

assessing verbal memory and executive functions, respectively among
the 3 MCI subgroups).

Statistical Parametric Mapping

The brain PET results from MCI nonconverters were compared on a

voxel-by-voxel basis with those from MCI patients who later converted
to AD using the 2-sample t test of SPM8, implemented in MATLAB

(release 2014a; The MathWorks). The threshold of significance was set at a
P value of less than 0.05, corrected for multiple comparisons with family-

wise error option. Age and sex were considered confounding variables.

ICA

ICA is based on the assumption that the observed variables in a

mixture (the distribution of voxel intensities in PET investigations) are
generated by different, mutually independent, underlying sources. Thus,

the deconvolution (demixing) of the observed signal as an explicit
summation of independent components reveals the hidden structure of

the observed phenomenon. ICA can be applied in the spatial dimension,
as in our case, in which the extracted independent components pointed

out highly connected networks.

TABLE 1
Demographic Data

Group

Education

(y)

Age at

PET (y) MMSE* Sex

Normal aging 10.0 ± 4.1 68.8 ± 9.7 29.1 ± 0.9 12 M, 32 F

Nonconverting

MCI

8.9 ± 3.7 71.9 ± 6.4 26.8 ± 1.5 16 M, 12 F

MCI . 2 y 10.4 ± 5.0 74.7 ± 7.0 26.3 ± 1.6 8 M, 28 F

MCI # 2 y 9.9 ± 4.5 75.5 ± 6.5 25.8 ± 1.9 22 M, 36 F

AD 7.4 ± 4.2 73.4 ± 7.4 19.2 ± 4.0 18 M, 36 F

*Normalized for education
MCI . 2 y 5 MCI converting after more than 2 y; MCI # 2 y 5

MCI converting within 2 y.

Qualitative data are expressed as numbers; continuous data
are expressed as mean ± SD.

FIGURE 1. Topographic representation of clusters in which 18F-FDG up-

take was significantly lower in MCI converters (n 5 95) than in MCI non-

converters (n5 27) (threshold P, 0.05, corrected for multiple comparisons

with familywise error option). Clusters are superimposed on Montreal Neu-

rologic Institute template in coronal (left), sagittal (middle), and transversal

(right) views.
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Spatial ICA of the preprocessed 18F-FDG PET images was
performed using the GIFT toolbox (http://mialab.mrn.org/software/)

as previously described (13). In brief, data from each subject were

submitted to principal-component analysis (PCA) followed by esti-
mation of independent spatial components (8). The number of com-

ponents was set to 20, the intensity in each voxel was converted to a
z score, and the images were visualized at a z threshold of greater

than 3.3 (P , 0.001), creating binary masks. From the resulting
components, those with either pathophysiologic or anatomo-

functional meaning were separately selected in each group,
and each component was named according to its anatomy, allow-

ing for separate solutions. The remaining independent compo-
nents were discarded as statistical noise. The number and voxel

extent of the independent components were correlated to the
variance explained by the first principal component of each

group (10).

PCA

In a previous investigation, PCA—separately applied to the same
experimental groups—highlighted the presence of a first principal

component explaining by far the greater part of the system variance
(10) and being regarded as the degree of global order in brain me-

tabolism. Here, we build on the complementarity of ICA and PCA,
with the former having a mainly local character (a focus on the

enucleation of independent circuits) and the latter a global spectral
character.

Support Vector Machine (SVM) Analysis

The independent-component masks of the AD group, considered to
be the most appropriate reference for the aim of the study, were

segmented and applied to each of the 218 subjects to compare signal
intensity among groups. The 18F-FDG uptake in each of the volumes of

interest pinpointed by independent-component masks was assessed

TABLE 2
Independent Components Identified as Pathophysiologically Significant in Each Group

NA NC MCI MCI . 2 y MCI # 2 y AD

IC Size Regions IC Size Regions IC Size Regions IC Size Regions IC Size Regions

3 2,309 DLFC1MFG

6 907 SMA, premotor,

and BA9

4 2,408 PCC1iPL

(postDMN)

6 3,210 PCC1iPL

(postDMN)

14 813 Basal ganglia 7 1,277 Basal ganglia 19 2,960 Basal ganglia1

thalamic

15 5,083 Primary visual 16 3,117 Primary visual 7 5,346 Primary visual 10 5,721 Primary visual 1&9 8,783 Primary visual

1 5,971 Cerebellum 14 2,679 Cerebellum 4 5,358 Cerebellum 4 5,183 Cerebellum 3 5,178 Cerebellum

7 1,470 L sPL 1 1,756 L sPL1L DLFC1L T

8 891 R sensorimotor 16 1,493 R sensorimotor 19 2,370 Sensorimotor 10 3,588 Sensorimotor

15 1,702 Sylvian temporal 3 4,161 Sylvian temporal 3 4,464 Sylvian temporal 8 3,121 Sylvian temporal

1 1,038 L DLFC

2 1,700 iPL1O

12 787 VLFC

9 4,691 R iPL1R T 5 5,190 R iPL1R T 5 4,466 iPL1R T

17 2,922 R iPL1R O1R T 15 4,000 R iPL1R O

12 1,748 Thalami

13 2,231 L O

1 1,129 R MTL 6 1,357 MTL

2 2,565 VLFC 18 3,888 VLFC

6 4,427 sPL 13 5,119 sPL

12 3,700 PCC 7 3,343 PCC1PC

8 1,894 O

9 4,281 L sPL1PC1L T

13 1,526 DLFC

14 2,978 L T

16 2,959 L T

Voxel extent 17,491 16,594 29,706 43,727 51,740

Number 9 9 9 13 14

NA 5 normal aging; NC 5 nonconverting; MCI . 2 y 5 MCI converting after more than 2 y; MCI # 2 y 5 MCI converting within 2 y; IC 5 independent component;

DLFC 5 dorsolateral frontal cortex; MFG 5 medial frontal gyrus; SMA 5 supplementary motor area; BA 5 Brodmann area; PCC 5 posterior cingulate cortex; iPL 5

inferior parietal lobule; postDNM 5 posterior default-mode network; L 5 left; sPL superior parietal lobule; T 5 temporal; R 5 right; O 5 occipital; VLFC 5 ventrolateral

frontal cortex; MTL 5 mesial temporal lobe; PC 5 precuneus.
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in all 5 groups using an in-house–created MATLAB-based script that auto-

matically processed mean 18F-FDG uptake intensities (14). Mean uptake
values for the volumes of interest associated with the selected independent

components in normally aging individuals were analyzed by repeated-
measures regression to correct the values in each subject for the effect

of age and sex. The corrected values then underwent SVM analysis to
discriminate, first, normally aging individuals from all patients with

AD pathology (thus also including MCI converters); second, MCI
nonconverters from all patients with AD pathology; and third, MCI

nonconverters from normally aging individuals. In the first and second

comparisons, we considered MCI converters as being affected by AD
pathology, in line with the concept that AD pathology is present in the

predementia stages (15). Stepwise selection was applied to search for
the best sets of components in an SVM model. The performance of each

model was evaluated by computing the receiver-operating-characteristic
curve and the relevant area under the curve, as well as the sensitivity,

specificity, and accuracy associated with the best point on the curve,
along with their confidence intervals. All these parameters were eval-

uated after leave-one-out cross-validation, where each subject was classi-
fied by a model fitted to all remaining subjects. Each model was also

applied to the groups excluded from the training set. For example, the first
model, based on the contrast between normal aging and all AD, was then

applied to nonconverting MCI. SVM, applied by radial basis function
kernel, and following receiver-operating-characteristic curve analysis

and accuracy measurements, was performed using the Statistics Toolbox
of MATLAB release 2015b.

RESULTS

Demographic data are reported in Table 1.
The results of the mini–mental state examination (P , 0.05);

the Rey auditory verbal learning test, immediate total recall (P ,

0.005); and the Rey auditory verbal learning
test, delayed recall (P, 0.001), showed sig-
nificant changes among the 3 MCI groups,
with a progressive decline from MCI non-
converters to within-2-y MCI converters.
On the other hand, no significant changes
were found for either part A or part B of
the trail-making test, although there was a
trend toward higher (worse) scores for MCI
converters.

Statistical Parametric Mapping

Statistical parametric mapping con-
firmed in all comparisons the well-known
differences between normal aging and
MCI or AD (unpublished results). When
MCI nonconverters were compared with
MCI converters, highly significant hypo-
metabolism (familywise error–corrected
P , 0.001 at both voxel and cluster lev-
els) was found bilaterally in the latter
group both in the temporoparietal cortex
and in the posterior cingulate cortex
(Fig. 1).

ICA

Because none of the negative indepen-
dent components had any pathophysiologic
significance, we selected and discussed only
positive independent components, displayed
by group in Supplemental Figures 1–5 (sup-

plemental materials are available at http://jnm.snmjournals.org).
Table 2 reports the independent components obtained when ICA

was applied to the 5 groups.

Briefly, the number of independent components progressively
increased from 6 in control subjects to 9 in both MCI non-
converters and after-2-y MCI converters, 13 in within-2-y MCI
converters, and 14 in AD patients. Also, the number of voxels
composing the independent components progressively increased
from control subjects (17,491) to AD patients (51,740). We
highlight here only the independent components with patho-
physiologic significance, and the brain regions included in
them (Table 2).

PCA

The decrease in global order (revealed by l1, the first principal
component [index of global connectivity]) scaled well with the
onset of local neural circuits (revealed by independent compo-
nents). There was a highly significant inverse correlation between
the percentage of variance explained by l1 and the extent of the
independent components in each group (r 5 0.975; P , 0.005)
and between l1 and their number (r 5 0.961; P , 0.009) (Fig.
2A). When these were compared with the severity of cognitive
impairment, the correlation was positive (r 5 0.97; P , 0.007),
whereas the mean extent of the independent components in each
group showed a constant increase toward AD, with the exception
of MCI nonconverters, whose independent components were rel-
atively small (Fig. 2B).

SVM Analysis

The 14 volumes of interest drawn from AD-related ICA masks
were the input for SVM analysis. SVM analysis highlighted the left

FIGURE 2. (Left) For each severity class, negative correlations between percentage of variance

explained by first principal component (l1) and generation of local circuits expressed as total

independent-component extent in voxels (top) and number of independent components (bottom).

(Right) Relations between disease severity class and average independent-component extent

(top) and number of independent components (bottom). MCI . 2 y 5 MCI converters after more

than 2 y; IC 5 independent component; MCI # 2 y 5 MCI converters within 2 y; NA 5 normally

aging individuals; MCI NC 5 MCI nonconverters.
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temporal cortex as the most accurate independent component in
distinguishing normal aging and nonconverting MCI from all AD
(Table 3). The accuracy of the discrimination was highest with 4
independent components, then remaining stable or decreasing (be-
cause of overfitting). A set of 4 regions, namely the right and left
sensorimotor cortices, right and left precuneus/posterior cingulate
cortices, right and left sylvian temporal cortices, and left temporal
cortex (Fig. 3), yielded the highest accuracy both when the compar-
ison was between normal aging and all AD and when the compar-
ison was between nonconverting MCI and all AD. Table 3 shows the
percentage distribution of the subjects in each of the 5 groups,
according to the binary classification of each model. In each SVM
model, the percentage of subjects in the AD class (thus also includ-
ing MCI converters) increased with illness severity. The receiver-
operating-characteristic curves showed a high ability to discriminate
controls from all AD patients (area under the curve, 0.931) and to
discriminate MCI nonconverters from all AD patients (area under the
curve, 0.894) but a rather poor ability to discriminate MCI non-
converters from controls (area under the curve, 0.65) (Fig. 4).

DISCUSSION

ICA identified spatially distinct clusters of voxels with mean-
ingful pathophysiologic value in each group, allowing us to
uncover the spatial distribution of the independent components
in each cognitive state and to assess the accuracy of ICA in
discriminating between groups. The hypothesis of a progressive
disintegration of brain connectivity during the course of the
disease was proven in terms of the generation of new local
circuits that progressively replaced the brain-as-a-whole mean
field detected in a previous study (10).

With increasing disease severity, the shared portion of brain
metabolism (l1) loses relative importance with respect to local
distinct neural circuits, which increase in both number and extent.
Degradation of functional connectivity as AD progresses is a loss
of integration: the brain becomes increasingly segmented into in-
dependent metabolic areas.
Disintegration of the intrinsic networks that characterize

normal aging was progressively more severe with the transition
from nonconverting MCI to AD, with the extent of the in-
dependent components being inversely proportional to time
from conversion. Neurodegenerative processes affect modular
networks rather than isolated regions (16). Long-distance in-
terregional metabolic correlations are impaired by the anatomo-
functional progression of neuronal and white matter fiber
degeneration (17), causing local compensatory networks to take
over and increasing the anatomic and functional segregation of
brain processes.
The progressive disintegration of the giant component that

accounts for the main whole-brain connectivity present in
normal aging was disclosed by ICA, which identified in all
groups a specific set of 18F-FDG PET–derived components
whose pattern agreed with the metabolic decay from normal
aging to MCI to AD.
Independent components, including the primary visual cortex

and cerebellum, are present in all groups. Therefore, they are not
implicated in the functional pattern of cognitive decline. This
confirms well-known findings and supports the suitability of
choosing the cerebellum as a normalizing factor in radionu-
clide imaging of brain function in AD (18).
The medial frontal gyrus and dorsolateral frontal cortex

(representing the anterior portion of the default-mode network),

TABLE 3
Discriminant Models

NA vs. (converting MCI1AD) Nonconverting MCI vs. (converting MCI1AD)

1 component 4 components 1 component 4 components

Parameter Exp. CI Exp. CI Exp. CI Exp. CI

Model performance

Sensitivity 75.8 70.1–82.7 90.1 85.9–95.3 81.9 75.7–88.6 83.2 77.2–89.2

Specificity 83.3 72.1–94.6 88.1 78.3–97.9 77.8 62.1–93.5 85.2 71.8–98.6

Accuracy 77.5 71.6–83.4 90.0 85.8–94.3 81.3 75.5–87.0 83.5 78.0–89.0

ROC AUC 85.5 79.3–90.6 93.1 88.0–95.7 87.2 80.4–92.7 89.4 83.3–93.3

Within-group classification NA AD NA AD NC AD NC AD

NA 81.0 19.0 92.9 7.1 81.0* 19.0* 88.1* 11.9*

Nonconverters 66.7* 33.3* 88.2* 14.8* 85.2 14.8 96.3 3.7

Early MCI 29.7 70.3 18.9 81.1 35.1 64.9 29.7 70.3

Late MCI 27.6 72.4 19.0 81.0 29.3 70.7 20.7 79.3

AD 13.0 87.0 14.8 85.2 13.0 87.0 14.8 85.2

*Not involved in training step.
Exp. 5 expected value; CI 5 confidence interval; ROC AUC 5 area under receiver-operating-characteristic curve; NA 5 normal aging.

Discriminant models are as evaluated by leave-one-out cross-validation considering partitions into two contrasting groups: NA vs. all

AD and nonconverting MCI vs. all AD. Linear discrimination was applied to best discriminant region (1 component), which in both cases

was left temporal cortex. Four-component models were based on SVM method and involved sensorimotor cortex, left temporal cortex,
posterior cingulate cortex/precuneus, and sylvian temporal cortex. Two-level discrimination as obtained by each model for each group is

reported (within-group classification). Data are percentages.
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as well as the supplementary motor cortex, are incorporated in
independent components peculiar to normal aging. The anterior
portion of the default-mode network is thus disintegrated in all
patient groups, including MCI nonconverters. The disappear-
ance of the anterior default-mode network in MCI nonconverters
is intriguing and may point to the involvement of anterior frontal
regions in a variety of conditions—ranging from late-life de-
pression to cerebrovascular disease—that affect this network.
However, Di et al. (19) reported that the absence of the anterior
part of the default-mode network in PET investigations but not
in functional MRI investigations was due to differences in the
temporal scales of PET and MRI.
On the other hand, among the main components of the posterior

portion of the default-mode network, the posterior cingulate cortex
and the inferior parietal lobule belong to the same independent
component in normal aging and nonconverting MCI. This in-
dependent component is disintegrated in MCI converters and in
AD patients, in whom the posterior cingulate cortex stands as an
independent component alone or in association with the precuneus.
This agrees with the disappearance of the default-mode network in
AD and with the knowledge that metabolic changes in the
posterior cingulate cortex and precuneus are indeed markers of
AD pathology (20).
In line with this interpretation, the dorsolateral frontal cortex,

either alone or in association with the superior parietal lobule or

temporal cortex, is embedded in independent components found in
all MCI patients, either converting or not. Thus, the dorsolateral
frontal cortex may be considered a correlate of cognitive impair-
ment not specifically linked to AD pathology.
Surprisingly, the temporal cortex close to the sylvian fissure

also was embedded in an independent component in all patients
with cognitive deficit, including MCI nonconverters, and hence
could be considered a correlate of memory deficit independent of
AD pathology, possibly resulting from an aspecific temporal lobe
atrophy shared by different conditions (21).
The temporal cortex and inferior parietal lobule in the right

hemisphere are aggregated in an independent component in all groups
progressing to AD and in AD itself and thus are more related to the
specific AD signature, independent of the severity of the disease.
Three independent components characterize the late-MCI stage,

namely those including the lateral occipital cortex bilaterally, the left
superior parietal cortex, the temporal cortices, the precuneus, and
the dorsolateral frontal cortex. The spreading of functional deficit to
these association cortices follows the progressive-disconnection
hypothesis as proposed by the classic model of Braak and Braak
(22). Furthermore, the posterior cingulate cortex (either with or
without the precuneus), ventrolateral frontal cortex, superior parietal
lobe, and medial temporal lobe are the independent components
specific to the late stage of the disease (MCI converters within
2 y and AD).
The final metabolic signature of the definitive conversion to AD

are two independent components including the left temporal cortex.
However, the full-AD stage includes several independent compo-
nents: right and left precuneus/posterior cingulate cortex, medial
temporal lobe, ventrolateral frontal cortex, inferior parietal lobule,
temporal sylvian cortex, and right temporal and occipital lateral
cortex.
Beyond the pathophysiologic significance of these independent

components in AD, two further observations have to be made. The
first is that this study can be considered prospective because all 3
groups of MCI patients were investigated by 18F-FDG PET at a time
when the neuropsychological assessments showed similar levels of
cognitive deficit (baseline), with an expected decline in memory
performance from MCI nonconversion to MCI conversion within
2 y. Thus, the metabolic pattern at baseline was predictive of conver-
sion to AD and was associated with the conversion time. The inclusion

FIGURE 3. Topographic representations of independent components

identifying sensorimotor cortex (A), left temporal cortex (B), posterior

cingulate cortex/precuneus (C), and sylvian temporal cortex (D) on brain

surfaces. Regions obtained from ICA have been superimposed on Mon-

treal Neurologic Institute template in coronal (left), sagittal (middle), and

transversal (right) views.

FIGURE 4. Receiver-operating-characteristic curves obtained by SVM

classifier as applied to 3 different datasets.
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of both converting and nonconverting MCI patients adds clinical value
to the analysis since these intermediate classes are the most relevant
targets for a proper and timely diagnosis and for subsequent
management. In the present study, the voxel-based analysis
found a highly significant metabolic difference in the posterior
cingulate and temporal and parietal cortices between these two
groups (Fig. 1). Furthermore, this difference was confirmed by
SVM analysis, which found that analogous regions separated
nonconverting MCI from all AD with an accuracy of 83.5%
(Table 3). The independent component aggregating the poste-
rior cingulate cortex and the inferior parietal lobule, represent-
ing the posterior default-mode network, is considered to be a
hub of functional connectivity sensitive to synaptic disconnec-
tion (23) and was found in an MRI ICA study to best predict
conversion from stable MCI to progressing MCI (24).
Another observation that has to be made is that 18F-FDG PET

uptake in the independent components of AD patients showed
fairly good power in discriminating normal aging and noncon-
verting MCI from AD. This observation confirms the utility of
such data-driven methodology to uncover correlations that have
pathophysiologic meaning (Table 3). Several studies have imple-
mented automated image-based classification methods to differ-
entiate AD and MCI patients from controls and have found such
methods to have a statistical accuracy of 90% in discriminating
AD patients from controls (25–27). When MCI patients who
later converted to AD were investigated by unimodal bio-
markers, the reported ability to discriminate from controls
ranged from 80% (28) to 91% (29). In the present study, the
independent components derived by the AD dataset showed an
accuracy of 90% in discriminating controls from the entire co-
hort with AD pathology. Moreover, the weak discriminatory
power (area under the curve, 0.65) between controls and MCI
nonconverters indicates a strong similarity between these two
groups, providing functional support for the lack of conversion
observed clinically in the latter group.
When the analyses were modeled on the two extreme classes

(normal aging and AD), the patients of the intermediate groups were
progressively assigned to the AD class according to disease severity.
The same held true when the analyses were modeled on non-
converting MCI and AD (Table 3), confirming the reliability of the
present approach.
Our results are consistent with an MRI study performed by

Pereira et al. (30) that found in two large, multicenter cohorts a
progressive degradation in the connectivity of brain functional net-
works in patient groups having the same characteristics as in our
study, including MCI converters followed up for 1 and 3 y. The most
striking similarity with our study was the finding of a progressive
increase in modularity with severity of the disease, suggesting a
degradation of whole-brain networks into segregated components.
This consistency is even more remarkable if we consider that Pereira
et al. used a different data analysis strategy (graph analysis) and,
more important, a different biologic observable (MRI).
Some of the independent components found in the present

study could be superimposed with those found by Laforce et al.
(31), who performed one of the few investigations implementing
ICA in 18F-FDG PET. In that study, independent components
including the frontotemporal cortex, right and left occipitopar-
ietal cortex, posterior cingulate–precuneus–superior parietal cor-
tex, and right and left cerebellum were identified in 54 AD
patients. In contrast, only one study attempting to use indepen-
dent components to distinguish between controls and AD pa-

tients (who had been recruited within the Alzheimer Disease
Neuroimaging Initiative) could discriminate the two groups with
an accuracy of 91% (32).
Unlike multicenter studies, the diagnostic procedures in this

investigation were uniform since they were performed by the same
clinical group. Additionally, all 18F-FDG PET scans were per-
formed using the same camera, minimizing the likelihood that
inhomogeneous subject samples and camera acquisitions could have
increased the variability of the data or reduced the robustness of the
results. Another strength of this study was the long follow-up time
(minimum, 5 y) available for MCI nonconverters, making it unlikely
that our group included any late converters.
The progressive increase in the number of independent

components with disease severity is the functional consequence
of the loss of relevance of the brain-as-a-whole component that
we observed in our previous work (10). The degradation of the
average correlation field, encompassing the entire brain, resulted
in creation of local (and largely autonomous) networks. The pro-
gressive loss of connectivity of brain metabolism caused by AD
can thus be interpreted not as a loss of local correlation inside a
functional network but as a loss of coordination among networks
themselves. Furthermore, in neurodegenerative disease, ICA-
derived patterns not only can be of high diagnostic utility but
also can give mechanistic insight into the etiology of the various
disorders (13).
From a methodologic point of view, it is worth noting that the

present results were achieved thanks to the complementary
properties of PCA and ICA. PCA emphasizes the correlation
between different variables (brain regions, bins of a spectrum) in
time or space. A latent physical process is considered a global-
order parameter (in physical terms, a force) imposing a
correlation on otherwise independent pieces of information.
The contemporaneous presence of independent forces shaping
the observed system allows us to consider each variable as a
weighted sum of the same hidden-order parameters (principal
components) acting on the different parts of the system. For
ICA, the signature of an elemental signal is its multimodality.
For PCA, the strength of each elemental signal is the degree of
correlation it imposes on the whole system. This difference
makes ICA dissect the system into separate local correlation
circuits (networks), whereas PCA tries to recollect the com-
plexity of the system into the minimum number of orthogonal
components acting on all the elements (even though with
different strengths). This implies that although ICA is, by
definition, masked to global mean field effects (size compo-
nents) shared by the entire system, PCA is by far less sensitive in
catching the presence of local networks. Here, we have shown
the added value of comparing the ICA and PCA pictures to
disclose the connectivity dynamics of brain metabolism.

CONCLUSION

18F-FDG PET is a robust tool for predicting the long-term
fate of patients presenting with amnestic MCI, including
whether they will eventually convert to AD. As such, it is a
valuable tool not only for diagnosis but also for prognosis. ICA
and PCAwere highly accurate in discriminating among groups,
documented the progressive disintegration of connectivity net-
works from a healthy brain to AD, and might be proposed as a
surrogate biomarker with predictive value for interventional
trials.
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