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Adequate prediction of tumor response to neoadjuvant chemo-
radiotherapy (nCRT) in esophageal cancer (EC) patients is important

in a more personalized treatment. The current best clinical method

to predict pathologic complete response is SUVmax in 18F-FDG PET/

CT imaging. To improve the prediction of response, we constructed
a model to predict complete response to nCRT in EC based

on pretreatment clinical parameters and 18F-FDG PET/CT–derived

textural features.Methods: From a prospectively maintained single-

institution database, we reviewed 97 consecutive patients with
locally advanced EC and a pretreatment 18F-FDG PET/CT scan be-

tween 2009 and 2015. All patients were treated with nCRT (carbo-

platin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed
clinical, geometric, and pretreatment textural features extracted

from both 18F-FDG PET and CT. The current most accurate pre-

diction model with SUVmax as a predictor variable was compared with

6 different response prediction models constructed using least abso-
lute shrinkage and selection operator regularized logistic regression.

Internal validation was performed to estimate the model’s perfor-

mances. Pathologic response was defined as complete versus incom-

plete response (Mandard tumor regression grade system 1 vs. 2–5).
Results: Pathologic examination revealed 19 (19.6%) complete and 78

(80.4%) incomplete responders. Least absolute shrinkage and selec-

tion operator regularization selected the clinical parameters: histologic

type and clinical T stage, the 18F-FDG PET–derived textural feature long
run low gray level emphasis, and the CT-derived textural feature run

percentage. Introducing these variables to a logistic regression

analysis showed areas under the receiver-operating-characteristic
curve (AUCs) of 0.78 compared with 0.58 in the SUVmax model. The

discrimination slopes were 0.17 compared with 0.01, respectively.

After internal validation, the AUCs decreased to 0.74 and 0.54, re-

spectively. Conclusion: The predictive values of the constructed
models were superior to the standard method (SUVmax). These re-

sults can be considered as an initial step in predicting tumor re-

sponse to nCRT in locally advanced EC. Further research in refining

the predictive value of these models is needed to justify omission of

surgery.
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Esophageal cancer (EC) is one of the most aggressive tumors,
with early recurrences even after radical surgery. The standard
treatment in locally advanced (T1/N1–3/M0 and T2–4a/N0–3/
M0) resectable EC is neoadjuvant chemoradiotherapy (nCRT) fol-
lowed by a radical esophagectomy. In the Dutch CROSS (Chemo-
Radiotherapy for Oesophageal cancer followed by Surgery Study)
trial, nCRT improved the 5-y overall survival rate from 34% to
47% (1). Not all patients benefit from nCRT; 29% of the patients
in the CROSS trial had a complete response, 52% had a partial
response, and even 18% had no tumor response (1). For complete
responders, surgical intervention might not be beneficial and a
wait-and-see policy might suffice. Hence, adequate response pre-
diction is important in developing personalized treatment in EC.
Moreover, accurate response prediction may be relevant in patient
counseling in future clinical trial strategies based on personalized
treatment. So far, response prediction showed only promising re-
sults with functional imaging of tumor viability with 18F-FDG
PET and recently with diffusion-weighted MRI (2–4). Traditional
image-derived indices used in PET rely on quantification of lesion
SUVs and overall tumor volume, which have been shown to be
important factors for patient outcome and treatment response
(5,6). Although useful, these parameters omit available information
related to the spatial distribution and specific features regarding
intratumor radiotracer accumulation. This may limit the possibility
to further characterize the biologic behavior of the tumor, based on
hypoxia-induced heterogeneity and genomic instability. Intratu-
moral heterogeneity is correlated with aggressive tumor behavior
and a decreased response due to expression of specific receptors
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with high cellular proliferation and angiogenesis (7–9). Hence, even
small tumor biopsies lack complete molecular characterization due to
spatial heterogeneity. A novel approach is to quantify spatial hetero-
geneity of metabolism and tissue density characterized by 18F-FDG
uptake and Hounsfield units with textural features. The concept of
textural analysis is based on the spatial arrangement of voxels in a
predefined volume of interest (VOI). This spatial intratumoral hetero-
geneity can be depicted from different spatial interrelationships on
18F-FDG PET/CT scans. Therefore, 18F-FDG PET/CT textural fea-
tures have been proposed to be valuable in response prediction (10–
15). The aim of this study was to develop a model to predict complete
response to nCRT in locally advanced EC based on pretreatment
clinical predictors and 18F-FDG PET/CT–derived textural features.

MATERIALS AND METHODS

Patients

In this retrospective study, potentially curatively resectable EC
patients were consecutively selected who underwent nCRT followed

by esophagectomy between December 2009 and March 2016. Patients
with fewer than 4 courses of chemotherapy, with missing 18F-FDG

PET/CT or with incomplete medical records, were excluded, yielding
a total of 97 patients. In line with the rules of the Dutch National Health

Sciences, our Institutional Review Board approved this retrospective
study, and the requirement to obtain informed consent was waived.

Data were obtained from a prospectively maintained single-institution
database including patient characteristics, tumor- and treatment-

related data, and follow-up data. All patients were clinically staged
with esophagoscopy and biopsy, endoscopic ultrasonography with fine-

needle aspiration if indicated, and whole-body integrated 18F-FDG PET/

CT. Patients were staged according to the seventh edition of the TNM
system maintained by the American Joint Committee on Cancer (16) and

discussed in the hospital’s multidisciplinary esophageal tumor board.

Imaging

PET/CT imaging was performed with an integrated 18F-FDG PET/
CT system (Biograph mCT 4–64 PET/CT; Siemens). Patients fasted

for at least 6 h before PET/CT, with no restrictions on drinking water.
Serum glucose levels were measured before 18F-FDG administration

with a weight-based dose of 3 MBq/kg. Sixty minutes after tracer
injection, patients were scanned in treatment position. An inspiration

breath-hold low-dose CT for attenuation correction was performed, and
PET acquisitions were obtained in the caudal–cranial direction with a

field of view of 500 · 500 · 500 mm, 3-dimensional setting, 2–3 min
per bed position, matrices of 512 · 512 (0.98 · 0.98 mm pixel size),

and 2-mm slice thickness. Image data were reconstructed according to
guidelines of the European Association of Nuclear Medicine (17).

Radiotherapy treatment planning including target volume delineation
and CT texture analysis was performed on a 16- or 64-multidetector row

spiral CT machine (Somatom Sensation 16 or 64; Siemens Medical
Systems). A CT thorax/abdomen scan was obtained in the cranial–

caudal direction with matrices of 512 · 512 (0.98 · 0.98 mm pixel
size) and a 3-mm slice thickness.

Treatment and Pathology

On the basis of the experiences and the good results of the CROSS

study, in which our institute had participated, our multidisciplinary tumor
board decided to continue nCRT according to the CROSS schedule. This

treatment consisted of weekly intravenously administered paclitaxel

FIGURE 1. (A) Manual delineation of gross tumor volume on planning CT. (B) Coregistration of low-dose CT (lava colormap) to radiotherapy planning CT

(gray scale colormap). (C) Overlay of PET image (lava colormap) onto radiotherapy planning CT (gray scale colormap). (D) Cropping of PET VOI. (E) Feature

extraction: (I) assessment of tumor shape by means of geometry features, (II) global assessment of tonal distribution by means of first-order textural

features, (III) assessment of pairwise arrangement of voxels by means of gray level co-occurrence matrix, (IV) assessment of alignment of voxels with the

same intensity by means of gray level run-length matrix, (V) assessment of characteristics of homogeneous zones by means of gray level size-zone matrix.
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(50 mg/m2) and carboplatin (areas under the receiver-operating-

characteristic curve [AUC], 2 mg�min�mL21) during 5 wk with con-
current external radiotherapy (41.4 Gy in 23 fractions, 5 d per wk) (1).

Transthoracic esophagectomy with 2-field lymphadenectomy was per-
formed within 6–8 wk after completion of nCRT. The resected spec-

imens were examined according to a standard protocol (18). Resection
margins were defined according to the definitions of the College of

American Pathologists as microscopic tumor-free (R0: . 0 mm) or

tumor-positive (R1). Pathologic response was assessed by 2 expert

gastrointestinal pathologists according to the Mandard tumor regres-
sion grade (TRG) (19), ranging from complete response (TRG 1)

without viable tumor cells left, to partial response (TRG 2–4) with
viable tumor cells left, to no response at all (TRG 5).

VOI

Textural analysis was performed on a VOI incorporating the gross

tumor volume for radiation treatment planning. Tumor delineation was
performed manually with consensus between 3 experienced radiation

oncologists on axial planes of the radiotherapy planning CT, to enclose
3-dimensional coverage of the entire tumor. Involved lymph nodes

were not included into the VOI, because these lesions are too small
(,10 cm3) for reliable textural analysis (20). The gross tumor volume

was rigidly registered to the 18F-FDG PET/CT data series (RTx Work-
station 1.0; Mirada Medical). Erroneous registrations were manually

adjusted after consensus of the collaborating investigators.

Tonal Discretization
18F-FDG PET/CT imaging data and VOI delineations were loaded into

Matlab 2014b (MathWorks; an interactive image processing environment)

for processing and analyses. The SUV, for semiquantitative analysis of
metabolism, was corrected for individual variations in serum glucose level

and was discretized to reduce the continuous scale to a finite set of values
and to reduce noise throughout the entire study in increments of 0.5 g/mL

according to Doane’s optimal bin width (21). Similarly, the Hounsfield
unit scale for quantitative analysis of tumor density was discretized in

increments of 30 Hounsfield units for textural analysis.

TABLE 1
Patient Characteristics

Characteristic n %

Sex

Male 82 84.5

Female 15 15.5

Age

,70 y 78 80.4

$70 y 19 19.6

Histology

AC 88 90.7

SCC 9 9.3

Tumor grade

Missing 6 6.2

G1 49 50.5

G3 42 43.3

EUS tumor length

,5 cm 37 40.2

$5 cm 58 59.8

Localization

Mid 4 4.1

Distal 62 63.9

GEJ 31 32.0

nCRT cycles

4 18 18.6

5 79 81.4

Circumferential resection margin*

R0 90 92.8

R1 7 7.2

Proximal resection margin*

R0 96 99.0

R1 1 1.0

Mandard TRG

1 19 19.6

2 23 23.7

3 37 38.1

4 15 15.5

5 3 3.1

*Tumor-free (R0) resection margin defined according to criteria

of College of American Pathologists as . 0 mm.

AC 5 adenocarcinoma; SCC 5 squamous cell carcinoma;
EUS 5 endoscopic ultrasonography; GEJ 5 gastroesophageal

junction; TRG 5 tumor regression grade.

TABLE 2
Staging According to Seventh Edition of TNM System

Maintained by American Joint Committee on Cancer (16)

Characteristic n %

cT stage

cT1 2 2.1

cT2 16 16.5

cT3 74 76.3

cT4a 5 5.2

cN stage

cN0 21 21.7

cN1 45 46.4

cN2 28 28.9

cN3 3 3.1

ypT stage

ypT0 19 19.6

ypT1 13 13.4

ypT2 13 13.4

ypT3 52 53.6

ypN stage

ypN0 63 65.0

ypN1 18 18.6

ypN2 10 10.3

ypN3 6 6.2

cT/N 5 clinical tumor/nodal stage; ypT/N 5 pathologic tumor/

nodal stage after nCRT.
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Candidate Predictors

For each patient, a total of 88 parameters were evaluated, including 7
clinical parameters; 16 geometry features; the glycolytic volume based

on tumor volume and SUVmean; and 19 first-order, 24 second-order, and
22 higher order textural features extracted from 18F-FDG PET and CT

(supplemental materials [available at http://jnm.snmjournals.org]).
First-order textural features are statistics based on the gray level distri-

bution of the image but do not consider relative positions of gray levels.
Second- and higher order textural features do consider relative positions

of gray levels and therefore allow quantification of heterogeneity. For
various spatial interrelationships, frequency distributions (Fig. 1) were

obtained—that is, the gray level co-occurrence (spatial dependence) ma-
trix for pairwise arrangement of voxels (extracted with a pixel-to-pixel

distance equal to 1) (22), the gray level run-length matrix for alignment of
voxels with the same intensity (23), and the gray level size-zone matrix for

characteristics of homogeneous zones (24). Directional voxel analysis was
performed in 3 dimensions with a connectivity of 26 voxels and analysis in

13 angular directions. All second- and higher order textural features are
weighted averages of these matrices to express the relative importance of

their properties. All extracted textural features were normalized to the

range [0,1].

Statistical Analysis

Statistical analysis was performed with R 3.2.2 open-source soft-

ware using the glmnet package (version 2.0–2) and the rms package
(version 4.4–0), available from the Comprehensive R Archive Net-

work (http://www.r-project.org).

Because textural feature values may be subject to interobserver

variability in the delineation of the tumor, the original delineations were

uniformly eroded by ball-shaped structuring elements with radii of 1

and 2 voxels. For each delineation, textural features were extracted and

the stability of each feature was evaluated with the intraclass correlation.

Only stable features (intraclass correlation . 0.7) were considered for

further analysis. Predictors were then selected by a univariable logistic

model with a response variable labeling complete (Mandard TRG 1) and

incomplete response (Mandard TRG 2–5). All potential predictors that

met the Akaike information criterion (AIC) were considered significant.

To discourage overfitting, the AIC is based on rewarding goodness of fit

and penalizing the complexity of the model. The AIC requires x2 .
2�df—that is, when considering a predictor with one degree of freedom

df, this implies an a 5 P(x2 $ 2) 5 0.157 (25).

Significant predictors were used to construct 6 multivariable
logistic regression models for comparison with current most accurate

prediction model with SUVmax as predictor variable (model 1). These

models were constructed by introducing clinical parameters (model

2); clinical parameters and geometry features (model 3); clinical pa-

rameters, geometry features, and PET textural features (model 4); clin-

ical parameters, geometry features, and CT textural features (model 5);

and clinical parameters, geometry features, and PET/CT textural fea-

tures (model 6) to a least absolute shrinkage and selection operator, a

technique for L1-norm regularization. By increasing the shrinkage pa-

rameter l, the regularization shrinks the estimated coefficients and ex-

cludes variables when they become zero. The l-value that minimized

TABLE 4
Estimates of Model Performance for the Prediction Models

Goodness of fit Discrimination Calibration Validation

Model −2LLH AIC R2 AUC DS Intercept Slope HLp R2 boot AUC boot

1 94.46 98.46 0.02 0.58 0.01 2.09 2.46 0.75 0.00 0.54

2–3 81.80 87.80 0.22 0.71 0.14 −0.04 0.94 1.00 0.17 0.70

4 80.59 88.59 0.23 0.71 0.15 −0.15 0.87 0.45 0.17 0.69

5 79.82 87.82 0.24 0.79 0.16 −0.14 0.86 0.42 0.18 0.76

6 78.03 88.03 0.27 0.78 0.17 −0.22 0.81 0.46 0.18 0.74

−2LLH 5 −2 loglikelihood; R2 5 Nagelkerke R2; DS5 discrimination slope; HLp5 Hosmer–Lemeshow P value; boot 5 internal validated

with bootstrapping.

TABLE 3
Estimated Regression Coefficients of Prediction Models for Pathologic Complete Response Without Optimism Correction

Model 1 Model 2–3 Model 4 Model 5 Model 6

Variable Coefficient SE P Coefficient SE P Coefficient SE P Coefficient SE P Coefficient SE P

Intercept −0.88 0.50 0.08 −0.42 0.50 0.39 −0.86 0.65 0.19 −1.15 0.72 0.11 −1.83 0.91 0.04

SUVmax −1.72 1.45 0.24

Histology

AC 1.00 1.00 1.00 1.00

SCC −1.70 0.61 0.01 −1.47 0.65 0.02 −1.89 0.64 0.00 −1.63 0.67 0.02

cT stage

cT1 & cT2 1.00 1.00 1.00 1.00

cT3 & cT4a 2.03 0.78 0.01 1.98 0.80 0.01 2.27 0.81 0.00 2.23 0.83 0.01

LRLGLe-PET 0.56 0.55 0.31 0.71 0.59 0.23

RP-CT 0.01 0.01 0.15 0.02 0.01 0.10
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the 10-fold cross-validated mean squared error was repeatedly deter-

mined with 100 repetitions. The optimal l-value was robustly deter-
mined by averaging over these obtained l-values. The selected variables

were fitted to the data with a logistic regression.
The model’s calibration was evaluated using visual inspection of

calibration plots and the Hosmer–Lemeshow test. The model’s per-
formance was quantified in terms of discrimination with the AUC and

the discrimination slope. The goodness of fit was evaluated with the
22 loglikelihood and the Nagelkerke R2. The model was internally

validated by a bootstrap approach with 2,000 repetitions. Bootstrapping
allowed for obtaining the optimism-corrected measures for model per-

formance and for shrinkage of the estimated regression coefficients
using the optimism-corrected slope.

RESULTS

Patients and Treatment

Patients characteristics are shown in Tables 1 and 2. Seventy-nine
patients (81.4%) received the complete nCRT regimen (all patients
received the full radiotherapy dose). Resection with curative intent
was performed within a mean time of 56 (SD, 14) d after comple-
tion of nCRT. R0 resection was achieved in 90 (92.8%) patients and
R1 resection in 7 (7.2%) patients, all with positive circumferential
resection margins and one with a positive proximal resection mar-
gin. Pathologic findings revealed complete response in 19 patients
(19.6%) and incomplete response in 78 patients (80.4%).

Model Development

For the preselection, 144 of the 147 (97.3%) variables were
found to be robust for contour variations. These variables were
introduced to univariable logistic regression analysis, resulting in
24 significant variables predictive for response, including 4 clinical
parameters; 0 geometry features; 1 first-order, 8 second-order, and 5
higher order PET textural features; and 1 first-order, 1 second-order,
and 4 higher order CT textural features. All constructed prediction
models performed significantly better than model 1 (based on
SUVmax). The introduction of only significant clinical parameters
to the least absolute shrinkage and selection operator regularization

process resulted in the selection of histologic type and clinical
T-stage (model 2). These variables were selected in each subse-
quently constructed model. Compared with model 1, the AUC
improved from 0.58 to 0.71, the discrimination slope improved
from 0.01 to 0.14, and the AIC decreased (DAIC 5 10.66). For
model 3, no additional variables were selected compared with
model 2, because no geometry features were significant at the
univariable logistic regression analysis. For model 4, the PET tex-
tural feature long run low gray level emphasis (LRLGLe-PET) was
selected. Adding this variable did slightly improve the discrimina-
tion and the likelihood compared with models 2 and 3, but resulted
in a higher AIC (DAIC 5 20.79). After internal validation, the
AUC was equal to 0.69. For model 5, the CT textural feature run
percentage (RP-CT) was selected. Although the AIC was almost
equal compared with models 2 and 3 (DAIC520.02), adding this
variable improved the discrimination slope to 0.16 and the AUC
remarkably to 0.79. This also persisted after internal validation
(AUC 5 0.76). Finally, entering all variables to the modeling pro-
cess resulted in the selection of all above-mentioned variables
(model 6). Model 6 had the best goodness of fit, but not the lowest
AIC (DAIC 5 20.23, 0.56, and 20.21 compared with models
2–3, 4, and 5, respectively). The AUC slightly decreased to 0.78,
whereas the discrimination slope was increased to 0.17. After in-
ternal validation, the AUC decreased to 0.74. The model regression
coefficients and the corresponding model performance measures
are shown in Tables 3 and 4, respectively. Figure 2 gives the values
of the selected textural features and their corresponding frequency
distributions for a complete and a nonresponder. For the selected
textural features, the range of values to reproduce the normaliza-
tion process and the found intraclass correlations for quantifying
contouring robustness are given in the supplemental materials.

DISCUSSION

An adequate method to predict pathologic complete response
after nCRT has not yet been defined in EC patients. In person-
alized treatment, accurate response prediction will lead to a paradigm
shift with omission of surgical treatment in complete responders or
prevention of unnecessary nCRT in nonresponders. Response evalu-
ation of nCRT is commonly based on tumor metabolic response
measured by SUVmax with 18F-FDG PET, but with a low sensitivity
and specificity of 67% and 68%, respectively (26). The current study
is, to our knowledge, the first in predicting complete response with
18F-FDG PET/CT–derived textural features in a homogeneous group
of EC patients treated according to the CROSS regimen. We demon-
strated that all constructed prediction models showed significant im-
provement compared with predictions based on SUVmax alone and
may therefore be considered as an initial step in predicting response.
In this study, the most predictive textural features were LRLGLe-

PETand RP-CT. LRLGLe-PET depends on long runs (coarse texture)
with low gray levels and was higher (i.e., low and homogeneous 18F-
FDG uptake) for complete responders and lower (i.e., high and het-
erogeneous 18F-FDG uptake) for incomplete responders, possibly due
to tumor hypoxia and necrosis. RP-CT measures the homogeneity of
runs (fine texture) and was higher in complete responders. In univari-
able logistic regression, high LRLGLe-PET and RP-CT values were
associated with squamous cell carcinoma (P 5 0.12 and 0.13, re-
spectively), confirming the higher complete response rates in squa-
mous cell carcinoma (1).
The clinical value of SUVmax was limited, possibly because it is

extracted from a single voxel and does not characterize the total

FIGURE 2. Example of values of selected textural features and their

corresponding frequency distributions for complete and nonresponder.

GLRLM 5 gray level run-length matrix.
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18F-FDG uptake. This causes a high dependency on the quality of
the PET images (including noise) and the voxel size, which in-
duces a low reproducibility.
Several studies focused on response prediction in EC using 18F-

FDG PET/CT–derived textural features (Table 5). Van Rossum
et al. concluded that 18F-FDG PET–derived textural features pro-
vide statistical value (14), but this does not translate into a clini-
cally relevant benefit, which is in line with our findings. Van
Rossum et al. performed only 18F-FDG PET textural analysis,
whereas this study demonstrates the additional value of CT tex-
tural analysis. Other studies demonstrated promising findings but
are hampered by several limitations, including small patient co-
horts with heterogeneous treatment schedules, lack of multivari-
able analyses, and a substantial chance of model overfitting due to
the lack of optimism correction (11–13,15).
A limitation of this study is the absence of external validation,

which is essential for implementation into clinical practice.
Moreover, the following factors that affect textural analysis should
be considered. Changing the bin width influences the quantization
noise and has a crucial effect on textural features (27). Although
only an indication, we used Doane’s optimal bin width to discretize
the SUVs and Hounsfield units (21). Moreover, respiratory gated
PET/CT acquisitions could be considered to reduce respiration-in-
duced smearing and contrast degradation (28).

The constructed prediction model may serve as a basic model,
which can be extended with new features for usage for other
applications. The current constructed model might be helpful toward
a safe decision in postponing a burdensome surgical procedure in
patients with a doubtful adequate physical condition after nCRT. In
patients treated with definitive chemoradiotherapy, detection of
nonresponders might allow additional treatments when available,
whereas in complete responders an adjusted follow-up might be
justified, to identify candidates for salvage surgery.
Up to now, the authors do not consider the predictive value of the

constructed model high enough to justify the omission of surgery
after nCRT in EC. A potential approach to improve the constructed
basic prediction models could be (a) adding interim- or posttreatment
textural analysis. Studies investigating both pre- and posttreatment
textural analysis mainly reported posttreatment textural features to
be associated with response (12,14,15). We performed a posttreat-
ment textural analysis in patients with a posttreatment PET/CT scan
(n 5 20) and found 21 significant textural features for response in
univariable regression analysis. However, posttreatment textural analy-
sis suffers from radiation-induced esophagitis, which complicates de-
lineation of the primary tumor and creates difficulties with tumor
delineation in complete responders. (b) Texture could be characterized
with more specific PET tracers such as 18F-fluoroerythronitroimida-
zole (quantifying hypoxia) (29) or 18F-fluorothymidine (targeting

TABLE 5
Current Literature Describing 18F-FDG PET Texture Analysis in Response Prediction in EC

Study n Type nCRT

Timing

PET/CT Outcome Reported entered variables

Tixier et al. (13) 41 AC, SCC 60 Gy 1 cisplatin

or carboplatin/

fluorouracil

Pre-nCRT CR vs. PR vs.

NR (32)

Pre-local homogeneity, pre-local entropy,

pre-coarseness, pre-intensity variability,

pre-size-zone features

Hatt et al. (11) 50 AC, SCC 60 Gy 1 cisplatin/

fluorouracil

Pre-nCRT CR 1 PR vs.

NR (32)

Pre-MATV, pre-entropy,

pre-homogeneity, pre-dissimilarity,

pre-intensity variability, pre-zone

percentage

Tan et al. (12) 20 AC, SCC 50.4 Gy 1
cisplatin/

fluorouracil

Pre- and
post-nCRT

TRG 1 1 2 vs.
3–5 (19)

DSUVmax, SUVmax ratio,
DSUVmean, pre-skewness,

post-inertia, post-correlation,

post-cluster prominence

Zhang et al. (15) 20 AC, SCC 50.4 Gy 1
cisplatin or

carboplatin

Pre- and

post-nCRT

TRG 1 1 2 vs.

3–5 (19)

Post-orientation, tumor involves

GEJ, DInertia, post-energy,

post-entropy, Dskewness

Van Rossum
et al. (14)

217 AC 45 or 50.4 Gy 1
fluoropyrimidine

with either a

platinum

compound or a
taxane

Pre- and
post-nCRT

TRG 1 vs. 2–4 (33) EUS tumor length, cT stage,
induction chemotherapy,

post-nCRT endoscopic biopsy,

subjective PET assessment,

post-nCRT TLG, pre-cluster shade,
Drun percentage, DGLCM entropy,

post-nCRT roundness

Current study 97 AC, SCC 41.4 Gy 1
carboplatin/

paclitaxel

Pre-nCRT TRG 1 vs. 2–5 (19) Histology, cT stage,

pre-LRLGLe-PET, pre-RP-CT

AC5 adenocarcinoma; SCC5 squamous cell carcinoma; CR5 complete response; PR5 partial response; NR5 no response; MATV5
metabolically active tumor volume; GEJ5 gastroesophageal junction; EUS5 endoscopic ultrasonography; cT5 clinical T stage; TLG5 total
lesion glycolysis; GLCM 5 gray level co-occurrence matrix.
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cellular proliferation) (30) or by other functional imaging modal-
ities including the apparent diffusion coefficient in diffusion-
weighted MRI (4). (c) Moreover, biologic markers have shown
to be potential molecular markers in individualizing EC treatment
and may be incorporated to improve prediction models (31).

CONCLUSION

The constructed models are a valuable initial step in predicting
response to nCRT in locally advanced EC. Adding the 18F-FDG
PET–derived textural feature LRLGLe-PET and RP-CT to a model
with the clinical parameter histologic type and clinical T-stage is
potentially predictive and was more accurate than response prediction
based on SUVmax. These models may serve as basic models in de-
termining clinical complete responders and can be extended with new
features for usage for other applications.
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