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PET-based radiomics have been used to noninvasively quantify the
metabolic tumor phenotypes; however, little is known about the

relationship between these phenotypes and underlying somatic

mutations. This study assessed the association and predictive

power of 18F-FDG PET–based radiomic features for somatic muta-
tions in non–small cell lung cancer patients. Methods: Three hun-

dred forty-eight non–small cell lung cancer patients underwent

diagnostic 18F-FDG PET scans and were tested for genetic mutations.
Thirteen percent (44/348) and 28% (96/348) of patients were found

to harbor epidermal growth factor receptor (EGFR) or Kristen rat

sarcoma viral (KRAS) mutations, respectively. We evaluated 21 im-

aging features: 19 independent radiomic features quantifying phe-
notypic traits and 2 conventional features (metabolic tumor volume

and maximum SUV). The association between imaging features and

mutation status (e.g., EGFR-positive [EGFR1] vs. EGFR-negative)

was assessed using the Wilcoxon rank-sum test. The ability of each
imaging feature to predict mutation status was evaluated by the

area under the receiver operating curve (AUC) and its significance

was compared with a random guess (AUC 5 0.5) using the Noether
test. All P values were corrected for multiple hypothesis testing by

controlling the false-discovery rate (FDRWilcoxon, FDRNoether) with a

significance threshold of 10%. Results: Eight radiomic features and

both conventional features were significantly associated with EGFR
mutation status (FDRWilcoxon 5 0.01–0.10). One radiomic feature

(normalized inverse difference moment) outperformed all other fea-

tures in predicting EGFRmutation status (EGFR1 vs. EGFR-negative,

AUC 5 0.67, FDRNoether 5 0.0032), as well as differentiating between
KRAS-positive and EGFR1 (AUC 5 0.65, FDRNoether 5 0.05). None

of the features was associated with or predictive of KRAS muta-

tion status (KRAS-positive vs. KRAS-negative, AUC 5 0.50–0.54).
Conclusion: Our results indicate that EGFR mutations may drive

different metabolic tumor phenotypes that are captured in PET im-

ages, whereas KRAS-mutated tumors do not. This proof-of-concept

study sheds light on genotype–phenotype interactions, using
radiomics to capture and describe the phenotype, and may have

potential for developing noninvasive imaging biomarkers for so-

matic mutations.
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Non–small cell lung cancer (NSCLC) accounts for more than
80% of lung cancers and affects more than 220,000 people in the

United States. It is the leading cause of cancer-related death, with

a 5-y survival rate of only approximately 15% (1). Advances in

cancer genomics have demonstrated that NSCLC is driven by

somatic mutations in key oncogenes, such as epidermal growth

factor receptor (EGFR) and Kristen rat sarcoma viral (KRAS)

(2,3). These discoveries have led to the use and regulatory ap-

proval of EGFR-specific tyrosine kinase inhibitors for treatment of

patients who harbor an EGFR mutation (4–6). Furthermore,

KRAS mutants have been found to respond poorly to both tyrosine

kinase inhibitors and conventional cisplatin-based chemotherapy,

resulting in poor treatment outcomes (7,8). Therefore, given the

driving force of mutation status in the efficacy of NSCLC thera-

pies, identification of mutation status is crucial for selecting the

most effective treatments, and ultimately, dictating patient out-

comes. The current standard of care uses molecular testing to

identify mutation status based on biopsies of tumor tissue or sur-

gical resection; however, molecular testing can be limited by

invasive procedures, long processing times, sampling error, and

tissue samples that are not always readily available (9–11).
Noninvasive 18F-FDG PET/CT is increasingly used for imaging

of glucose metabolism and is part of the standard initial workup for

NSCLC patients in the United States (12,13). Furthermore, the

metabolic tumor phenotype captured in PET images may be an

indication of the underlying biology associated with somatic muta-

tions. For example, a mutation in EGFR activates the Akt signaling

pathway, which promotes glucose consumption in tumor cells for

their continuous growth and survival (14,15). In addition, increased

glucose transport and glycolysis have been observed in KRAS-mutated

colorectal and pancreatic cancer cell lines (16,17). Thus, previous

studies have investigated the associations between these mutations

and SUV measures from PET images; however, there have been

conflicting findings (18–22). These inconsistent reports may be

due to the fact that simple SUV measures fail to capture the spatial

relationships between image voxels, which may be more informa-

tive of the biology of these mutations and describe the degree of

tumor heterogeneity (23,24). Highly heterogeneous tumors are often
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TABLE 1
Patient Characteristics

Characteristic EGFR1 KRAS1 Total

No. of patients 44 96 348

Sex

Male 9 (20%) 34 (35%) 134 (39%)

Female 35 (80%) 63 (65%) 214 (61%)

Age (y)

Median 61 67 65

Range 34–88 46–84 34–93

Ethnicity

Caucasian 38 (86%) 91 (95%) 316 (91%)

African American 2 (5%) 4 (4%) 21 (6%)

Hispanic 2 (5%) 1 (1%) 4 (1%)

Asian 2 (5%) 0 (0%) 6 (2%)

Not reported 0 (0%) 0 (0%) 1 (0%)

Smoking history

Current/former 24 (55%) 93 (97%) 286 (82%)

Never 20 (45%) 3 (3%) 62 (18%)

Primary site

Upper lobe 28 (64%) 57 (59%) 215 (62%)

Middle lobe 1 (2%) 12 (13%) 27 (8%)

Lower lobe 14 (32%) 24 (25%) 98 (28%)

Overlapping lesion 1 (2%) 1 (1%) 2 (1%)

Clinical stage

I 15 (34%) 30 (31%) 102 (29%)

II 4 (9%) 11 (11%) 44 (13%)

III 16 (36%) 36 (38%) 144 (42%)

IV 9 (21%) 19 (20%) 58 (16%)

Tumor grade

Well differentiated 4 (9%) 8 (8%) 32 (9%)

Moderately differentiated 19 (43%) 25 (26%) 107 (31%)

Poorly differentiated 13 (30%) 36 (38%) 126 (36%)

Not determined 8 (18%) 27 (28%) 83 (24%)

Histology

Adenocarcinoma 36 (82%) 84 (88%) 251 (72%)

Squamous cell carcinoma 0 (0%) 2 (2%) 31 (9%)

Non–small cell lung carcinoma NOS 7 (16%) 10 (10%) 60 (17%)

Other 0 (0%) 0 (0%) 7 (2%)

No pathology report 1 (2%) 0 (0%) 3 (1%)

PET/CT scanners

GE Discovery

ST 13 (30%) 21 (22%) 81 (23%)

STE 16 (36%) 36 (37%) 135 (39%)

LS 2 (5%) 3 (3%) 12 (3%)

RX 6 (14%) 13 (14%) 46 (13%)

Siemens Biograph

mCT 5 (11%) 15 (16%) 43 (13%)

True Point 1 (2%) 3 (3%) 9 (3%)

Phillips Gemini TF 0 (0%) 5 (5%) 14 (4%)

Unspecified 1 (2%) 0 (0%) 8 (2%)

NOS 5 not otherwise specified.

Other histology includes carcinoid tumor (n 5 4), adenosquamous carcinoma (n 5 4), sarcomatoid carcinoma (n 5 2), undefined
NSCLC (n 5 3), and mixed NSCLC and small cell lung cancer (n 5 1).
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associated with poor prognosis because resistance to therapy can
develop in subpopulations of tumor cells (25,26). Therefore, accu-
rate quantification of tumor heterogeneity from PET images may
provide important information for the identification of mutation
status and precision medicine. Heterogeneity in the tumor phe-
notype can be quantitatively described through radiomic features
(23,27,28), which use advanced mathematic models to quantify
the spatial relationship between image voxels (29).
In this proof-of-concept study, we assessed the associations

between PET radiomic features with somatic mutations and their
ability to predict mutation status in 348 NSCLC patients. To our
knowledge, this is the first study to investigate the relationship
between somatic mutations and the metabolic phenotype, which
may provide valuable information for developing noninvasive
imaging biomarkers to complement molecular testing in de-
termining mutation status.

MATERIALS AND METHODS

Patient Imaging

This retrospective study was conducted under a Dana-Farber/Harvard

Cancer Center Institutional Review Board–approved protocol. This
study included 348 patients with NSCLC who underwent a diagnostic
18F-FDG PET/CT scan before treatment between September 2003 and
December 2013. Patient characteristics are shown in Table 1.

Patients were injected with 344–921 MBq (9.3–24.9 mCi) of
18F-FDG and scanned approximately 65 min after injection on Discovery

(GE Healthcare), Biograph (Siemens AG), or GEMINI TF (Philips)
PET/CT scanners (Table 1). Attenuation correction was performed on

the PET images using the corresponding CT images. The acquisition
time was 3–5 min per bed position for a whole-body scan.

Mutation Status Analysis and Patient Classification

Tissue samples of primary tumors were acquired through biopsy or
surgical resection. Somatic mutations were tested using a polymerase

chain reaction–based method or PROFILE Oncomap (30). The nucle-
otide sequence encoding the kinase domain (exons 18–24) of EGFR

and exons 2–3 of KRAS were analyzed by a polymerase chain
reaction–based method and capillary gel electrophoresis. PROFILE

Oncomap is a mass spectrometry genotyping technique that analyzes
more than 470 unique mutations in 41 oncogenes. Fifty-one percent

(178/348) of patients had their mutation status identified by polymerase
chain reaction and 49% (170/348) using PROFILE Oncomap.

Of the 348 patients who were tested for EGFR mutations, 44
patients tested positively for an EGFR mutation (EGFR1), whereas

304 patients were EGFR-negative (EGFR–). Among the 44 EGFR1
patients, 19 (43%) and 2 (5%) had a L858R or L861Q substitution

mutation in exon 21, respectively. Two (5%) patients had a G719C and
2 (5%) had a G719S substitution mutation in exon 18. A deletion

mutation in exon 19 was found in 19 (43%) EGFR1 patients. Three

hundred seventeen patients were tested for KRAS mutations. Al-
though 96 patients harbored a KRAS mutation (KRAS-positive

[KRAS1]), 221 patients were KRAS-negative (KRAS–). Of the 96
KRAS1 patients, 47 (49%), 48 (50%), and 1 (1%) had a substitution

mutation in exon 1, 2, or 3, respectively.
One hundred eighty-five patients tested negatively for EGFR and

KRAS mutations (EGFR– and KRAS–). Thirty-one patients were
tested only for an EGFR mutation, but not KRAS, because of the lack

of medical necessity. In this study, we performed 3 comparisons: EGFR1
versus EGFR–, EGFR1 versus KRAS1, and KRAS1 versus KRAS–.

A subset analysis was also performed on patients with adenocarcinoma
histology (251 patients). Of these 251 patients, 36 and 84 patients

harbored EGFR and KRAS mutations, respectively.

PET Feature Extraction and Selection

The metabolic tumor volume (MTV) was delineated on PET
images with a fixed SUV threshold of 2.5. A nuclear medicine board-

certified radiologist was masked from the mutation data and reviewed
the delineations of all 348 MTVs. All radiomic features were

implemented in MATLAB (The MathWorks Inc.) and computed within
the MTV. Before computation of the radiomic features, the image voxel

intensities were resampled into equally spaced bin widths of 0.1 (31).
In total, 68 radiomic features were extracted from the PET images,

including 7 shape features (29), 13 histogram-based features (29), and
48 texture features. The texture features included 22 gray level cooc-

currence matrix (32), 11 run length matrix (33), 10 size zone matrix
(34), and 5 neighborhood gray-tone difference matrix (35) features

(Supplemental Table 1; supplemental materials are available at http://
jnm.snmjournals.org). In addition, 5 conventional features (MTV,

SUVmax, SUVpeak, SUVmean, and SUVtotal) were computed for com-
parison with the radiomic features.

Radiomics Feature Selection

The Spearman correlation coefficient (R) was used to assess the
correlation between all radiomic and conventional features in R soft-

ware (version 3.2). Feature pairs with a jRj greater than 0.95 were
considered to be highly correlated and likely to provide redundant rather

than complementary information about the mutation status. Features
with the highest average jRj were excluded. As a result, 21 features

(19 radiomic [1 shape feature, 3 histogram-based features, and 15 tex-
ture features] and 2 conventional) were included in the analysis. The

selected features are shown in Table 2. All other 51 features were

correlated to at least 1 of these 21 features with an R greater than
0.95 (Supplemental Figs. 1 and 2). A Pearson correlation coefficient

was used to assess the correlation between the selected 21 features,
which ranged from 0.05 to 0.95 as shown in Supplemental Figure 2.

Data Analysis

The association of PET features with mutation status was evaluated

by comparing the distribution of each feature within the following
groups: EGFR1 versus EGFR–, KRAS1 versus KRAS–, and EGFR1
versus KRAS1. The Wilcoxon rank-sum test was used to determine

whether there was a significant difference in the feature values between
each mutation status. All P values were corrected for multiple hypoth-

esis testing using the Benjamini–Hochberg method (false-discovery rate
[FDR]) (36) (FDRWilcoxon), with a significance threshold of 10%.

Univariate analysis was performed with R software (version 3.2)
using the pROC and survcomp packages from Bioconductor (37). We

evaluated the performance of each feature in classifying patients according
to their mutation status (i.e., EGFR1 from EGFR–, KRAS1 from KRAS–,

and EGFR1 from KRAS1). The performance was quantified using the
AUC. The AUC is interpreted as the probability of correctly classifying

the patients into different mutation categories and ranges from 0.5 to
1.0, where a value of 0.5 indicates a random guess and a value of 1.0

indicates a perfect classification. The Noether test was used to determine
whether the AUCs were significantly greater than 0.5. P values were

FDR-corrected (FDRNoether), with a significance threshold of 10%.
To assess whether the radiomic features significantly outperformed

the conventional features in predicting mutation status, the receiver-
operating-characteristic (ROC) curves of the radiomic features with

the highest AUCs were compared with the ROC curves of MTV and
SUVmax using a bootstrap test (38). P values of less than 0.05 were

considered statistically significant.

RESULTS

This study assessed the association of PET-based radiomic
features with NSCLC mutation status and evaluated their ability to
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predict mutation status in a large patient cohort. Of 348 patients
who were tested for somatic mutations, 13% (44/348) of patients
were EGFR1, whereas 28% (96/348) of patients were KRAS1
(Table 1). Most patients in the total cohort were women (61%),
Caucasian (91%), and current/former smokers (82%) and had ad-
enocarcinoma (72%). Approximately 40% and 60% of patients in
the total cohort were overall stage I/II and stage III/IV, respectively.

We observed that patients who harbored an EGFR mutation
(EGFR1) generally had smaller and more compact tumors with
lower 18F-FDG uptake than EGFR– (Figs. 1 and 2).
The total set of PET features extracted from the tumor volume

was reduced to a small subset of descriptive features using an
unsupervised selection method that reduced redundancy among
the features. This method resulted in 21 features (19 radiomic and

TABLE 2
Description of Selected PET-Based Features That Were Included in Analysis

Feature type Feature Description

Conventional Metabolic tumor volume (MTV) Volume of the tumor region with SUV . 2.5

Maximum standardized uptake values

(SUVmax)

SUVmax of the voxels within the tumor

region

Shape Compactness How closely and firmly united the tumor is

Histogram Minimum standardized uptake value

(SUVmin)

Minimum SUV of the voxels within the tumor

region

Skewness Measures the degree of asymmetry of the

tumor SUV distribution

Kurtosis Measures the flatness of the tumor SUVs

distribution (or how heavy-tailed or light-
tailed the distribution is) relative to a

normal distribution

Gray level cooccurrence

matrix (GLCM)

Maximum probability (MaxProb) Determines how likely the most

predominant SUV voxel pair occurs

Information measure of correlation

(InfoCorr)

Measures the relationship between tumor

voxels

Normalized inverse difference (InvDiffnorm) Measures tumor smoothness

Normalized inverse difference moment
(InvDiffmomnor)

Measures tumor homogeneity

Inverse variance (InverseVar) Inverse of the variability of the tumor voxel
SUVs

Gray level run length matrix
(GLRLM)

Long run emphasis (LRE) Measures coarse tumor textures

Run percentage (RunPct) Measures homogeneity of the tumor and the

distribution of runs in a specific direction

Long run low gray emphasis (LRLGE) Measures the joint distribution of low SUVs
and long runs within the tumor

Gray level size zone matrix
(GLSZM)

Small zone emphasis (SZE) Measures fine tumor textures

Large zone emphasis (LZE) Measures coarse tumor textures

Size zone variability (SZV) Measures the similarity of the zones

throughout the tumor

Low gray small zone emphasis (LGSZE) Measures the joint distribution of low SUVs

and small zones within the tumor

Low gray large zone emphasis (LGLZE) Measures the joint distribution of low SUVs

and large zones within the tumor

Neighborhood gray tone

difference matrix (NGTDM)

Busyness Measures the change in SUV between

multiple tumor voxels and their
surroundings

Complexity Measures the high level contents (e.g.,
edges and lines)
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2 conventional) that were analyzed for their associations with and
predictive power for mutation status.

Comparison of PET Features Between Mutations

To assess the associations between PET features and mutation
status, we compared the distribution of values of each feature
between the following groups: EGFR1 versus EGFR–, EGFR1
versus KRAS1, and KRAS1 versus KRAS– (Fig. 2). A significant
difference between the medians of the feature values for each
mutation status indicated an association between the feature and
mutation. Significant associations with 8 radiomic features (com-
pactness, SUVmin, MaxProb, InvDiffmomnor, long run low gray
emphasis, size zone variability, low gray size zone emphasis, and
busyness), as well as both conventional features (MTV, SUVmax)
and EGFR mutation status was observed (EGFR1 vs. EGFR–,
FDRWilcoxon 5 0.01–0.10). A significant association was found in
the radiomic feature normalized inverse difference moment
(InvDiffmomnor) between EGFR1 and KRAS1 (FDRWilcoxon 5
0.08). None of the features was found to be significantly different
between KRAS1 and KRAS– (FDRWilcoxon $ 0.92). Compactness
was significantly associated with the EGFR mutation (EGFR1 vs.
wild-type [WT], FDRWilcoxon 5 0.08) (Supplemental Fig. 3). KRAS
mutants demonstrated no distinctive imaging features. In particular,
none of the PET features was significantly associated with the
KRAS mutation (FDRWilcoxon $ 0.67) (Supplemental Fig. 3).

Prediction of Mutation Status

The 21 PET features were evaluated for their ability to predict
mutation status and were assessed by the AUC. Eight radiomic
features (compactness, SUVmin, MaxProb, InvDiffmomnor, long
run low gray emphasis, size zone variability, low gray size zone
emphasis, and busyness) and both conventional features (MTV,
SUVmax) were predictive of EGFR mutation status, with AUCs
ranging from 0.59 to 0.67 (FDRNoether 5 0.0032–0.09) (Fig. 3).
The radiomic feature InvDiffmomnor (AUC 5 0.67, FDRNoether 5
0.0032) had the highest AUC for discriminating EGFR1 from
EGFR–, and long run low gray emphasis (FDRNoether 5 0.06)
and busyness (FDRNoether 5 0.09) had AUCs of 0.59. Five radio-
mic features, including compactness, MaxProb, InvDiffmomnor,
size-zone-variability, and low gray size zone emphasis, were able
to significantly discriminate EGFR1 from the EGFR-KRAS WT

(AUC5 0.61–0.67, FDRNoether 5 0.003–0.04) (Supplemental Fig.
4). In addition, conventional features MTV and SUVmax were
significantly predictive of EGFR1 and WT differentiation (AUC 5
0.62–0.64, FDRNoether 5 0.01–0.02). InvDiffmomnor outperformed
all other measures in EGFR mutation prediction.
Only 1 radiomic feature, InvDiffmomnor (AUC 5 0.65,

FDRNoether 5 0.05), was able to significantly differentiate EGFR1
from KRAS1 (Fig. 3). In particular, none of the conventional PET
features was able to differentiate EGFR1 from KRAS1 (AUC 5
0.56–0.60, FDRNoether $ 0.29). All other features had AUCs rang-
ing from 0.50 to 0.61 (FDRNoether$ 0.29) for EGFR1 and KRAS1
discrimination. None of the features was significantly predictive of
KRAS mutation status (KRAS1 vs. KRAS–, AUC , 0.55,
FDRNoether $ 0.92) (Fig. 3) or discriminating KRAS1 from WT
(AUC 5 0.50–0.57, FDRNoether $ 0.65) (Supplemental Fig. 4).
The predictive performances of the significant radiomic features

and conventional features for mutation status were compared directly
to assess the value of radiomics over conventional features. The
radiomic feature InvDiffmomnor significantly outperformed the
conventional feature MTV in differentiating EGFR1 from EGFR–
(P 5 0.02) but did not significantly outperform the conventional
feature SUVmax (P 5 0.14).
In patients with only adenocarcinoma histology, InvDiffmom-

nor (AUC5 0.66, FDRNoether 5 0.01) was observed to outperform
all other features (AUC # 0.64, FDRNoether $ 0.03) in differenti-
ating EGFR1 from EGFR– (Supplemental Fig. 5), as observed
with the full cohort. Adenocarcinoma EGFR mutants had a sig-
nificantly higher SUVmax than WTs (FDRWilcoxon 5 0.06).

DISCUSSION

Identifying mutation status in NSCLC patients is an important
component of selecting an optimal treatment plan for the patient.
Clinically, a patient’s mutation status is identified using molecular
testing based on pathologic examination of tumor tissues; however,
these data may not always be readily available for all patients. We
hypothesized that the genotype of tumors may be reflected in the
phenotype that is captured in medical images. PET imaging is com-
monly used in the clinic for cancer management and can provide a
noninvasive depiction of the tumor metabolic phenotype. We in-
vestigated the association between somatic mutations and 19

novel PET radiomic features and 2 conven-
tional features (MTV and SUVmax) in 348
NSCLC patients. We observed that radio-
mic features are strongly associated with
EGFR mutation status and could signifi-
cantly discriminate EGFR1 from EGFR–
and EGFR1 from KRAS1.
We found that EGFR mutants demon-

strated distinctive imaging features com-
pared with tumors without an EGFR
mutation. For example, the metabolic re-
gion of EGFR1 tumors was smaller and
had a lower SUVmax than EGFR– tumors.
Because of their low SUV uptake and
smaller MTV, our results are consistent
with the notion that EGFR mutants tend
to be more indolent than other lung cancer
types (39,40). In addition, 8 radiomic fea-
tures were significantly associated with
and predictive of EGFR mutation status,

FIGURE 1. From left to right are patients with EGFR mutation, KRAS mutation, and EGFR– and

KRAS– tumors. Stage I and III tumors are shown in top and bottom rows, respectively. Arrows

indicate locations of lung tumors.
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where InvDiffmomnor was the most predictive for EGFR mutation
status and significantly outperformed the conventional measure
MTV (P # 0.02). Furthermore, InvDiffmomnor was also found
to outperform all other PET-based features in predicting EGFR
mutations in patients with adenocarcinoma histology and was also
predictive for differentiating EGFR1 from KRAS1 (Supplemen-
tal Fig. 5). However, only 5 features were shown to significantly
discriminate EGFR1 from WT (Supplemental Figs. 3 and 4). This
may be due to the fact that only 31 patients were tested only for

EGFR mutations, but not KRAS mutations, because of a lack of
medical necessity. Seventy-four percent (23/31) of these patients
were EGFR–, whereas their KRAS mutation status was unknown.
As it was unclear if those 23 patients were also KRAS–, they were
excluded from the EGFR1 and WT differentiation analysis,
which may explain why SUVmin, busyness, and long run low gray
emphasis could significantly differentiate EGFR1 from EGFR–,
but not EGFR1 from WT.
Our results showed that a lower SUVmax was associated with

EGFR1 tumors. Previous studies have also shown a substantial
association between SUVmax and EGFR mutation status in
NSCLC patients, where lower SUVmax was associated with
EGFR1 (18,20,41); however, there have been conflicting conclu-
sions with other studies. Conversely, studies by Huang et al. (21)
and Lee et al. (42) identified that higher SUV measures, such as
SUVmax, were a strong predictor of EGFR1 tumors. In other
studies, Lee et al. (43) and Chung et al. (44) found that none of
their PET features (e.g., SUVmax, MTV, and total glycolysis le-
sion) was significantly associated with or predicted EGFR muta-
tion status.
The differences observed in these aforementioned studies may

be attributed to the patient demographics for each study. Our study
contained the largest patient cohort (348 patients) compared with
the other studies (206 patients in Lee et al. (43), 106 patients in
Chung et al. (44), 77 patients in Huang et al. (21), and 214 patients
in Lee et al. (42)). Furthermore, the previous studies were from
Asian institutions whereas our study was from a North American
cohort, which resulted in more than 90% of our patients being
Caucasian (Table 1). Another study that had a predominantly Cau-
casian cohort was reported by Mak et al. (18), who reported that a
lower SUVmax was associated with EGFR mutants, which is con-
sistent with our current study.
The frequency of EGFR mutations has been found to be

substantially higher in Asian countries than Western countries
(45). Therefore, the effect of ethnicity is reflected in the frequency
of EGFR1 mutations in each cohort, where the previous studies
had a higher percentage of EGFR1 mutants than in our study
(23% in the cohort of Lee et al. (43), 40% in Chung et al. (44),
64% in Huang et al. (21), and 24% in Lee et al. (42) vs. only 13%
in our study). However, despite the differences between each
study, it is clear that the conclusions on using conventional PET-
based features for prediction of mutation status remain debatable.
The limitation of conventional PET features may be that they do
not adequately quantify the tumor phenotype that reflects muta-
tion status. Using a radiomics approach with greater descriptive
power to quantify the tumor phenotype, we found that not only
were many radiomic features predictive of EGFR mutation sta-
tus, they also could be better predictors than conventional PET
features. Although this was an initial exploratory study to dem-
onstrate that radiomics could be applied for mutation status pre-
diction using PET images, these findings need to be further
investigated in multiple large datasets acquired from different
countries.
None of the conventional or radiomic features was associated

with or predictive of KRAS mutation status (KRAS1 vs. KRAS2).
We found that KRAS1 tumors tended to be bigger and had
greater values in SUV measures than EGFR1 tumors, suggesting
that KRAS1 tumors may be more aggressive (Figs. 1 and 2).
Only 1 radiomic feature (InvDiffmomnor) could significantly dis-
criminate KRAS1 from EGFR1, whereas other features, includ-
ing conventional features, were unable to.

FIGURE 2. Comparison of PET features between mutation statuses.

Wilcoxon rank-sum test was used to determine whether there was a sig-

nificant difference in the PET feature between the mutation statuses.

FDRWilcoxon # 0.10 is indicated by *. Values of all PET features were nor-

malized using z-transformation. Entries in columns of EGFR1 vs. EGFR–,

EGFR1 vs. KRAS1, and KRAS1 vs. KRAS− represent differences of

medians of transformed measures. For example, in EGFR1 vs. EGFR–

column, entry values , 0 indicate that median value of PET feature for

EGFR1 is lower than EGFR–. LGSZE 5 low gray small zone emphasis;

LGLZE5 low gray large zone emphasis; LRE5 long run emphasis; LRLGE

5 long run low gray emphasis; LZE5 large zone emphasis; RunPct5 run

percentage; SZE 5 small zone emphasis; SZV 5 size zone variability.
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Other groups have also investigated the ability of conventional
PET features to identify KRAS mutation status. Caicedo et al. (19)
investigated whether SUV measures, including maximum, peak,
and average SUV, could predict EGFR and KRAS mutation status
in 102 patients with NSCLC. Unlike our results, they found that
KRAS1 tumors had significantly higher values in SUV measures
than both EGFR mutants and KRAS-EGFR WTs. One reason for
this difference between our study and their study may be because a
proportion of the KRAS– tumors in our study were also EGFR1
(36/221 [16%] KRAS– tumors were EGFR mutants). In our anal-
ysis of KRAS1 and WT, we found that all the features performed
poorly in prediction for the KRAS mutation. Moreover, we also
found that the feature distributions between KRAS1 and KRAS–
were not significantly different for any of the PET features. How-
ever, these differences may also be attributed to the different cohort
size because we investigated the association between PET imaging
features and mutation status in 348 tumors, whereas the study by
Caicedo et al. (19) investigated 102 tumors.
There are several limitations of our study. First, because of the

retrospective nature of the study, the imaging protocols were not
standardized for all the patients, resulting in different acquisition
and reconstruction parameters (Table 1). Although these differ-
ences may lead to variability in quantification of SUV (46–48),
the distributions of scanners used for PET/CT image acquisition
were similar for all patient groups (Table 1). Second, partial-vol-
ume effects resulting from limited PET spatial resolution may lead
to an underestimation of the metabolic tumor region and SUV
measures (49). Furthermore, because of insufficient data acquisi-
tion and limited reconstruction techniques, respiratory motion can
induce image blurring in the static (3-dimensional PET) image
acquisition, subsequently affecting the quantification of the PET
features (50). Despite these limitations, many radiomic features
were still found to be significantly associated with and predictive
of EGFR mutation status. Whether PET standardization, correc-
tion of partial-volume effects, and the use of respiratory-gated

PET/CT imaging can improve the value
of PET features in mutation identification
needs to be further investigated. Although
this study focused on the use of radiomic
features extracted from the untreated pri-
mary tumors for mutation prediction, in the
future, it would be interesting to also in-
vestigate the predictive value of features
extracted from metastatic lesions.

CONCLUSION

Tumor metabolic phenotypes that are
driven by EGFR mutations could be quanti-
fied by radiomic features. Several radiomic
features were strongly associated with the
EGFR mutation status; in particular, InvDiff-
momnor outperformed all other PET features
(radiomic and conventional) in EGFR muta-
tion prediction (EGFR1 vs. EGFR2 and
EGFR1 vs. KRAS1). All PET features
were poorly associated with KRAS muta-
tions, potentially indicating that tumors of
KRAS mutants demonstrated weak distinc-
tive imaging features.
Radiomic features extracted from diag-

nostic PET images have potential for identifying EGFR mutations
in NSCLC. Our study may help develop an imaging biomarker to
noninvasively identify EGFR mutation status using PET imaging
to complement, but not to replace, molecular testing. Prospective
studies with masked mutation status and independent datasets will
be needed to further validate the predictive power of the radiomic
features. Furthermore, future studies will need to investigate how
the EGFR mutation gives rise to certain phenotypic traits that are
quantified by radiomic features.
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