# Highly Increased <sup>125</sup>I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst<sub>2</sub> Targeting in Human Cancers

Jean Claude Reubi<sup>1</sup>, Beatrice Waser<sup>1</sup>, Helmut Mäcke<sup>2</sup>, and Jean Rivier<sup>3</sup>

<sup>1</sup>Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland; <sup>2</sup>Department of Nuclear Medicine, University of Freiburg, Freiburg, Germany; and <sup>3</sup>The Salk Institute for Biological Studies, La Jolla, California

There is recent in vitro and in vivo evidence that somatostatin receptor subtype 2 (sst<sub>2</sub>) antagonists are better tools to target neuroendocrine tumors (NETs) than sst<sub>2</sub> agonists. Indeed, antagonists bind to a greater number of sst<sub>2</sub> sites than agonists. Whether sst<sub>2</sub> antagonists could be used successfully to target non-NETs, expressing low sst<sub>2</sub> density, is unknown. Here, we compare quantitatively  $^{125}\mbox{I-JR11}$  sst\_2 antagonist binding in vitro with that of the sst<sub>2</sub> agonist <sup>125</sup>I-Tyr<sup>3</sup>-octreotide in large varieties of non-NET and NET. Methods: In vitro receptor autoradiography was performed with <sup>125</sup>I-JR11 and <sup>125</sup>I-Tyr<sup>3</sup>-octreotide in cancers from prostate, breast, colon, kidney, thyroid, and lymphoid tissues as well as NETs as reference. Results: In general, <sup>125</sup>I-JR11 binds to many more sst<sub>2</sub> sites than <sup>125</sup>I-Tyr<sup>3</sup>-octreotide. In 13 breast cancers, 8 had a low binding (mean density, 844  $\pm$  168 dpm/mg of tissue) with the agonist whereas 12 had a high binding (mean density, 4,447  $\pm$ 1,128 dpm/mg of tissue) with the antagonist. All 12 renal cell cancers showed a low binding of sst<sub>2</sub> with the agonist (mean density, 348  $\pm$  49 dpm/mg of tissue) whereas all cases had a high sst<sub>2</sub> binding with the antagonist (mean density, 3,777  $\pm$  582 dpm/mg of tissue). One of 5 medullary thyroid cancers was positive with the agonist, whereas 5 of 5 were positive with the antagonist. In 15 non-Hodgkin lymphomas, many more sst<sub>2</sub> sites were labeled with the antagonist than with the agonist. In 14 prostate cancers, none had sst<sub>2</sub> binding with the agonist and only 4 had a weak binding with the antagonist. None of 17 colon cancers showed sst<sub>2</sub> sites with the agonist, and only 3 cases were weakly positive with the antagonist. In the various tumor types, adjacent sst<sub>2</sub>-expressing tissues such as vessels, lymphocytes, nerves, mucosa, or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many more sst<sub>2</sub> sites measured with the antagonist. Conclusion: All renal cell cancers and most breast cancers, non-Hodgkin lymphomas, and medullary thyroid cancers represent novel indications for the in vivo radiopeptide targeting of sst<sub>2</sub> by sst<sub>2</sub> antagonists, comparable to NET radiotargeting with sst<sub>2</sub> agonists.

E-mail: reubi@pathology.unibe.ch

**Key Words:** somatostatin sst<sub>2</sub> receptors; sst<sub>2</sub> antagonist; cancer radiopeptide targeting; breast cancer; renal cell cancer

J Nucl Med 2017; 58:300–306 DOI: 10.2967/jnumed.116.177733

Tomatostatin receptors (sst) are highly overexpressed in gastroenteropancreatic and extra-gastrointestinal neuroendocrine tumors (NETs). This represents the molecular basis for sst-targeted diagnostic and therapeutic procedures in NET patients with somatostatin analogs (1-3). One main clinical application makes use of the inhibitory effects of somatostatin on NET cells, particularly on hormone secretion: long-acting somatostatin analogs, such as octreotide or lanreotide, potently inhibit tumoral hormone secretion and improve related symptoms. The second targeting approach is based on the administration of radioactive somatostatin analogs for diagnostic or therapeutic purposes. Indeed, <sup>111</sup>In-octreotide scintigraphy (OctreoScan; Mallinckrodt) and other sst subtype 2 (sst<sub>2</sub>)-targeted imaging with, for example, <sup>68</sup>Ga-DOTATATE, are gold standard methods for NET detection. Moreover, sst radionuclide therapy of NET with 90Y- or 177Lu-labeled somatostatin analogs is highly effective and increasingly applied (4,5). Recently, results of the first prospective, randomized, controlled phase III study using radiolabeled somatostatin analogs for peptide receptor radiotherapy were presented. Lutathera (177Lu-DOTATATE) significantly improved progression-free survival in comparison with cold octreotide therapy in advanced midgut NET (6).

Although it could be shown in vitro that sst<sub>2</sub> antagonists do not trigger receptor internalization (7), we could show in animal models that radiolabeled sst<sub>2</sub> or sst<sub>3</sub> antagonists are not only as good in targeting in vivo the respective receptor, but also even considerably better than the respective agonists (8). The findings that antagonists for G-protein-coupled receptors (GPCRs) recognize more binding sites than agonists are not new and have been discussed in the literature by several groups (9,10). There are only hypotheses in regard to the origin of this difference. The difference is explained by distinct receptor states, those coupling to the G-proteins and uncoupled forms. Antagonists bind to all receptor states whereas agonists bind only to the G-protein-coupled forms that are assumed to represent only a small proportion of the total receptor population (9). In cancer, GPCRs are frequently overexpressed and the superiority of antagonists was shown for the gastrin-releasing peptide receptor (11), sst2 and sst3 (8), and the glucose-dependent insulinotropic polypeptide receptor (12).

Received May 10, 2016; revision accepted Aug. 3, 2016. For correspondence or reprints contact: Jean Claude Reubi, Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, P.O. Box 62, Murtenstrasse 31, CH-3010 Berne, Switzerland.

Published online Aug. 25, 2016.

COPYRIGHT © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

A first pilot study in humans using a first-generation sst<sub>2</sub> antagonist confirmed the animal studies (*13*). The antagonists were better than agonists for NET imaging (*13*). A parallel in vitro study on tissue sections fully confirmed that the <sup>177</sup>Lu-DOTA-bass antagonist labeled more sst<sub>2</sub> binding sites than the <sup>177</sup>Lu-DOTA-TATE agonist (*14*). This was observed in NETs but, interestingly, also in a few non-NETs with a low number of sst<sub>2</sub> (*14*). Presently, second-generation sst<sub>2</sub> antagonists, such as JR11, are in clinical development, with promising results for diagnosis and targeted radionuclide therapy (*15*).

In the present study, we aimed at evaluating the in vitro binding properties of the second-generation antagonist JR11, labeled with <sup>125</sup>I, and compared it with <sup>125</sup>I-Tyr<sup>3</sup>-octreotide, the standard agonist radioligand (16,17). <sup>125</sup>I labeling is the optimal choice for in vitro receptor autoradiography quantification (17,18). Indeed, <sup>125</sup>I radioligands have been used for decades for receptor autoradiography measurements, and quantification of the data using radioactive reference standards has been routinely performed (18-20). The present study therefore allows a direct comparison of quantification data with previously published studies using <sup>125</sup>I radioligands (18-20). This is at difference with the previous <sup>177</sup>Lu-DOTA-bass study (14) in which the data using <sup>177</sup>Lu-labeled ligands could not be directly compared with data with <sup>125</sup>I-labeled ligands. In the present study, a large number of tumors, including such tumors with high-density sst<sub>2</sub> (gastroenteropancreatic NET, pheochromocytomas) and those known to express little or no sst<sub>2</sub> (renal cell cancer, breast cancer, prostate cancer, non-Hodgkin lymphoma [NHL], medullary thyroid cancer, colon cancer), were tested with both ligands. Nontumoral tissues, adjacent to the tumors, were also evaluated.

# MATERIALS AND METHODS

In a first part, we designed cold iodinated JR-11 (iodo-JR11) (structure: DOTA-Cpa-D-Cys-Aph(L-HOro)-D-Aph(Cbm)-Lys-Thr-Cys D-3-iodo-Tyr-NH2) and measured its binding affinity to sst<sub>2</sub>. Iodo-JR11 was then tested in a displacement experiment using sst<sub>2</sub>-transfected cells in an in vitro autoradiography setting with <sup>125</sup>I-Tyr<sup>3</sup>-octreotide as radio-ligand, as reported previously (21). IC<sub>50</sub> (half maximal inhibitory concentration) values were  $1.89 \pm 1.1$  nM (n = 3) for iodo-JR11 and  $2.83 \pm 1.6$  nM (n = 3) for the reference peptide SS-28. The compound iodo-JR11 has therefore high-affinity binding to sst<sub>2</sub> and is suitable as radio-ligand for the planned cancer experiments.

In a second part, we used <sup>125</sup>I JR-11 (74,000 GBq [2,000 Ci]/mmol; Anawa) as radioligand to evaluate the presence of sst<sub>2</sub> in human breast cancers, renal cell cancers, NHL, medullary thyroid cancers, prostate cancers, colon cancers, pheochromocytomas, paragangliomas, bronchial and ileal NET, and small cell lung cancers. Comparison was done with the agonist tracer <sup>125</sup>I-Tyr<sup>3</sup>-octreotide (74,000 GBq [2,000 Ci]/mmol; Anawa), known to have an IC<sub>50</sub> similar to the antagonist (21). Quantification was performed as previously reported (21). Specific binding was calculated as total binding minus nonspecific binding for each tumor case. Nonspecific binding was assessed in each case in an adjacent section incubated with <sup>125</sup>I JR-11 or <sup>125</sup>I-Tyr<sup>3</sup>-octreotide in the presence of 100 nM of the unlabeled antagonist or agonist, respectively. The study conformed to the ethical guidelines of the Medical Faculty of the University of Berne. The institutional review board approved this retrospective study and the requirement to obtain informed consent was waived.

# RESULTS

One group of tumors, shown previously with  $sst_2$  agonist tracers to have low (<1,000 dpm/mg tissue) levels or a lack of  $sst_2$ ,

consisting of 13 samples of breast carcinomas, 12 samples of renal cell cancers, 15 samples of NHL, 5 samples of medullary thyroid cancers, 14 samples of prostate cancers, and 17 samples of colon cancers was used in receptor autoradiography experiments as reported previously (22–29). Successive sections were incubated in a buffer solution containing the standard amount of 30,000 cpm/100  $\mu$ L of <sup>125</sup>I-Tyr<sup>3</sup>-octreotide or 30,000 cpm/100  $\mu$ L of <sup>125</sup>I-Tyr<sup>3</sup>-o

A second group of tumors, shown previously with sst<sub>2</sub> agonist tracers to have a high level of sst<sub>2</sub>, consisting of 5 pheochromocytomas, 2 paragangliomas, 4 ileal NET, 1 bronchial NET, and 4 small cell lung cancers, was also used in receptor autoradiography experiments; however, instead of 30,000 cpm/100 µL of tracer, only 10,000 cpm/100 µL of <sup>125</sup>I-Tyr<sup>3</sup>-octreotide or <sup>125</sup>I-JR11 were given. All these cases had been tested previously with 30,000 cpm/100 µL of <sup>125</sup>I-Tyr<sup>3</sup>-octreotide and were shown to express a high density (>2,000 dpm/mg of tissue) of receptors in all cases. The rationale for the strategy to use 10,000 cpm/100 µL of radioligand was that we assumed, based on Cescato et al. (14), that the antagonist tracer binds to more sites than the agonist and that therefore it is mandatory to use a lesser amount of tracer to prevent overexposure of the films in the antagonist part of the experiment. The results are summarized in Table 3.

#### **Breast Cancers**

Table 1 shows that 8 of 13 breast cancer samples express sst using <sup>125</sup>I-Tyr<sup>3</sup>-octreotide, in most of the cases in low density. The mean density of the receptor-positive cases is  $844 \pm 168$  dpm/mg of tissue (mean  $\pm$  SEM). These data are comparable with previously reported results (22). With <sup>125</sup>I-JR11, however, sst can be detected in as many as 12 of 13 breast cancers, often in high density. The mean density of the receptor-positive cases is 4,447  $\pm$  1,128 dpm/mg of tissue. Figure 1 illustrates the results. Interestingly, although the antagonist labels more sites, the heterogeneity of labeling seen with the agonist is not abolished with the antagonist (Table 1), indicating that breast cancers are multiclonal tumors with areas with and without sst. Moreover, the tumoral and peritumoral vessels in the breast cancer samples are sometimes (4/9 cases) weakly labeled with <sup>125</sup>I-Tyr<sup>3</sup>-octreotide. However, with <sup>125</sup>I-JR11, all 9 cases with identified vessels show a moderate to high labeling of these vessels. Therefore, these results are strongly indicative for a markedly higher binding of <sup>125</sup>I-JR11 versus <sup>125</sup>I-Tyr<sup>3</sup>-octreotide.

#### **Renal Cell Cancers**

Table 1 also shows in a series of 12 renal cell cancers a low level of sst with the agonist in all cases; however, a high density of sst can be identified in all cases with the antagonist. One example is shown in Figure 1. Mean density value with the agonist is  $348 \pm 49$  dpm/mg of tissue (mean  $\pm$  SEM) and  $3,777 \pm 582$  dpm/mg of tissue with the antagonist, representing a more than 10 times difference. The density values with the antagonist resemble the levels seen in NETs in standard studies with the agonist (*18–20*). As seen previously in breast cancers, a much higher number of binding sites is detected in peritumoral vessels with the antagonist than with the agonist.

#### **Medullary Thyroid Cancers**

Table 2 reveals that 4 of 5 medullary thyroid cancers were not labeled with the agonist but that all showed moderate to high labeling with the antagonist. Figure 1 shows a representative example.

#### NHL

Similarly, Table 2 shows that in the 15 NHLs, the antagonist tracer bound to many more  $sst_2$  than the agonist. Whereas the values for the agonist were low or negative, the values measured with the antagonist could be compared with what was seen in NET with the agonist in standard studies (*18–20*). Figure 1 shows a representative example. Here again, tumoral vessels are strongly positive with the antagonist.

#### **Prostate Cancers**

Supplemental Table 1 shows that the agonist <sup>125</sup>I-Tyr<sup>3-</sup> octreotide does not detect any sst<sub>2</sub> in the 14 prostate cancer samples, confirming previously published results (23), whereas the antagonist <sup>125</sup>I-JR11 detects 5 positive cases, 4 of them having only a low sst<sub>2</sub> density. Therefore, the antagonist had a higher sensitivity to detect sst<sub>2</sub> in prostate cancer than the agonist. The higher sensitivity was also observed in the normal adjacent prostate tissues, such as stroma, vessels, or nerves: indeed, whereas these tissues were occasionally labeled with <sup>125</sup>I-Tyr<sup>3</sup>-octreotide, as reported previously as well (23), they were labeled to a much higher level in the experiments with <sup>125</sup>I-JR11. Figure 2 summarizes these results.

# TABLE 1 Comparison of <sup>125</sup>I-JR11 Antagonist Binding with <sup>125</sup>I-Tyr<sup>3</sup>-Octreotide Agonist Binding in Breast Cancer and RCCs Using 30,000 cpm/100 μL of Radioligand

|               | Tumor tissue                                                     |                                                                                         | Surrounding vessels                                              |                                                                                          |  |
|---------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Case no.      | <sup>125</sup> I-JR-11–specific<br>binding<br>(dpm/mg of tissue) | <sup>125</sup> I-Tyr <sup>3</sup> -octreotide–specific<br>binding<br>(dpm/mg of tissue) | <sup>125</sup> I-JR-11–specific<br>binding<br>(dpm/mg of tissue) | <sup>125</sup> I-Tyr <sup>3</sup> -octreotide–<br>specific binding<br>(dpm/mg of tissue) |  |
| Breast cancer |                                                                  |                                                                                         |                                                                  |                                                                                          |  |
| No. 1         | 3,648                                                            | 394                                                                                     | 4,632                                                            | 1,465                                                                                    |  |
| No. 2         | 2,179 het                                                        | 417 het                                                                                 |                                                                  |                                                                                          |  |
| No. 3         | 283                                                              | 0                                                                                       | 1,861                                                            | 508                                                                                      |  |
| No. 4         | 9,937                                                            | 1,535                                                                                   | 4,302                                                            | 0                                                                                        |  |
| No. 5         | 1,891 het                                                        | 382 het                                                                                 | 2,497                                                            | 0                                                                                        |  |
| No. 6         | 881                                                              | 0                                                                                       | 2,062                                                            | 0                                                                                        |  |
| No. 7         | 4,226 het                                                        | 508                                                                                     |                                                                  |                                                                                          |  |
| No. 8         | 420                                                              | 0                                                                                       | 2,196                                                            | 591                                                                                      |  |
| No. 9         | 1,883 het                                                        | 0                                                                                       |                                                                  |                                                                                          |  |
| No. 10        | 0                                                                | 0                                                                                       | 2,236                                                            | 0                                                                                        |  |
| No. 11        | 8,788                                                            | 958                                                                                     |                                                                  |                                                                                          |  |
| No. 12        | 9,225                                                            | 1,349                                                                                   | 3,325                                                            | 559                                                                                      |  |
| No. 13        | >10,000                                                          | 1,207                                                                                   | 3,512                                                            | 0                                                                                        |  |
| RCC           |                                                                  |                                                                                         |                                                                  |                                                                                          |  |
| No. 1         | 3,833                                                            | 157                                                                                     |                                                                  |                                                                                          |  |
| No. 2         | 6,083                                                            | 388                                                                                     |                                                                  |                                                                                          |  |
| No. 3         | 4,871                                                            | 693                                                                                     | 5,471                                                            | 1,898                                                                                    |  |
| No. 4         | 8,169                                                            | 209                                                                                     |                                                                  |                                                                                          |  |
| No. 5         | 4,932                                                            | 656                                                                                     |                                                                  |                                                                                          |  |
| No. 6         | 1,931                                                            | 236                                                                                     | 3,908                                                            | 1,056                                                                                    |  |
| No. 7         | 2,008                                                            | 337                                                                                     | 6,451                                                            | 1,100                                                                                    |  |
| No. 8         | 4,609                                                            | 311                                                                                     |                                                                  |                                                                                          |  |
| No. 9         | 1,631                                                            | 165                                                                                     | 2,855                                                            | 920                                                                                      |  |
| No. 10        | 2,106                                                            | 345                                                                                     | 3,723                                                            | 1,245                                                                                    |  |
| No. 11        | 2,391                                                            | 311                                                                                     | 3,659                                                            | 1,224                                                                                    |  |
| No. 12        | 2,761                                                            | 368                                                                                     | 3,914                                                            | 1,565                                                                                    |  |

het = heterogeneous receptor distribution.

Nonspecific binding values measured in 13 breast carcinomas were  $613 \pm 73$  dpm/mg of tissue (mean  $\pm$  SEM) in <sup>125</sup>I-JR11 experiments and 346  $\pm$  24 dpm/mg of tissue in <sup>125</sup>I-Tyr<sup>3</sup>-octreotide experiments. Nonspecific binding values in 12 RCCs were 397  $\pm$  31 dpm/mg of tissue (mean  $\pm$  SEM) in <sup>125</sup>I-JR11 experiments and 270  $\pm$  14 dpm/mg of tissue in the <sup>125</sup>I-Tyr<sup>3</sup>-octreotide experiments.

## TABLE 2

|                          | Tumo                                                             | r tissue                                                                                 | Surrounding vessels                                               |                                                                                          |  |  |
|--------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Case no.                 | <sup>125</sup> I-JR-11–specific<br>binding<br>(dpm/mg of tissue) | <sup>125</sup> I-Tyr <sup>3</sup> -octreotide-<br>specific binding<br>(dpm/mg of tissue) | <sup>125</sup> I-JR-11–<br>specific binding<br>(dpm/mg of tissue) | <sup>125</sup> I-Tyr <sup>3</sup> -octreotide–<br>specific binding<br>(dpm/mg of tissue) |  |  |
| Medullary thyroid cancer |                                                                  |                                                                                          |                                                                   |                                                                                          |  |  |
| No. 1                    | 1,763                                                            | 0                                                                                        | 3,059                                                             | 275                                                                                      |  |  |
| No. 2                    | 1,771                                                            | 0                                                                                        |                                                                   |                                                                                          |  |  |
| No. 3                    | 650                                                              | 0                                                                                        |                                                                   |                                                                                          |  |  |
| No. 4                    | 3,963                                                            | 499                                                                                      |                                                                   |                                                                                          |  |  |
| No. 5                    | 2,720                                                            | 0                                                                                        | 3,437                                                             | 643                                                                                      |  |  |
| NHL                      |                                                                  |                                                                                          |                                                                   |                                                                                          |  |  |
| No. 1                    | 1,956                                                            | 184                                                                                      |                                                                   |                                                                                          |  |  |
| No. 2                    | 6,066 het                                                        | 580 het                                                                                  | 3,626                                                             | 853                                                                                      |  |  |
| No. 3                    | 1,815                                                            | 0                                                                                        |                                                                   |                                                                                          |  |  |
| No. 4                    | 2,454                                                            | 251                                                                                      | 3,387                                                             | 913                                                                                      |  |  |
| No. 5                    | 4,589                                                            | 697                                                                                      | 4,489                                                             | 1,593                                                                                    |  |  |
| No. 6                    | 1,976                                                            | 0                                                                                        | 3,576                                                             | 0                                                                                        |  |  |
| No. 7                    | 2,895                                                            | 405                                                                                      | 4,501                                                             | 652                                                                                      |  |  |
| No. 8                    | 1,308                                                            | 0                                                                                        | 3,887                                                             | 238                                                                                      |  |  |
| No. 9                    | 1,307                                                            | 0                                                                                        |                                                                   |                                                                                          |  |  |
| No. 10                   | 6,208 het                                                        | 446 het                                                                                  |                                                                   |                                                                                          |  |  |
| No. 11                   | 1,425                                                            | 0                                                                                        |                                                                   |                                                                                          |  |  |
| No. 12                   | 2,070                                                            | 186                                                                                      | 5,296                                                             | 551                                                                                      |  |  |
| No. 13                   | 495                                                              | 0                                                                                        | 4,645                                                             | 0                                                                                        |  |  |
| No. 14                   | 5,829                                                            | 465                                                                                      | 4,030                                                             | 1,124                                                                                    |  |  |
| No. 15                   | 4,680                                                            | 0                                                                                        | 4,546                                                             | 0                                                                                        |  |  |

Comparison of <sup>125</sup>I-JR11 Antagonist Binding with <sup>125</sup>I-Tyr<sup>3</sup>-Octreotide Agonist Binding in Medullary Thyroid Cancers and NHLs Using 30,000 cpm/100 µL of Radioligand

het = heterogeneous receptor distribution.

Nonspecific binding values in medullary thyroid carcinoma were  $837 \pm 79$  dpm/mg of tissue (mean ± SEM) in <sup>125</sup>I-JR11 experiments and 613 ± 54 dpm/mg of tissue in <sup>125</sup>I-Jryr<sup>3</sup>-octreotide experiments. Nonspecific binding values in NHL were 664 ± 42 dpm/mg of tissue (mean ± SEM) in <sup>125</sup>I-JR11 experiments and 407 ± 26 dpm/mg of tissue in <sup>125</sup>I-Jryr<sup>3</sup>-octreotide experiments.

#### **Colon Cancers**

Supplemental Table 1 also shows that colon cancers in general do not express significant quantities of  $sst_2$ , either with the agonist or with the antagonist tracer (Fig. 1), except for 3 cases with borderline levels of receptors as measured with the antagonist radioligand; this density is probably not clinically relevant for tumor targeting. However, in approximately half of the agonist experiments, tumoral vessels, lymphatic follicles, and mucosa are labeled as known from previous studies (*30*); in the antagonist experiments, not only are the vessels, lymphatic follicles, and mucosa labeled in all tested samples, but also the amount of labeling in these compartments is much higher than with the agonist.

# NETs

In the series of tumors (Table 3) representing classic indications for sst targeting in vivo, based on the high number of sst, namely pheochromocytomas, paragangliomas, ileal, and bronchial NETs and small cell lung cancers, we have compared agonist and antagonist tracers using a lower amount of tracer of 10,000 cpm/100  $\mu$ L to prevent overexposure of the films using the antagonist tracer. Despite the lower radioactivity application, the antagonist tracer bound with high levels whereas the agonist tracer bound in general with low levels, as seen in Figure 1. The difference in binding between antagonist and agonist varied between 2.5- and 40-fold.

# DISCUSSION

The comparison of the binding of the sst<sub>2</sub> agonist <sup>125</sup>I-Tyr<sup>3</sup>octreotide with the sst<sub>2</sub> antagonist <sup>125</sup>I-JR11 showed impressively that the antagonist labeled many more sst<sub>2</sub> binding sites than the agonist, in tumor cells as well as in adjacent sst<sub>2</sub>expressing tissues. The breast cancer data confirm and expand on the receptor quantification aspect of a previous paper (*14*) showing that a <sup>177</sup>Lu-labeled sst<sub>2</sub> antagonist labeled more

## TABLE 3

| Comparison of <sup>125</sup> I-JR11 A | Antagonist with 1 | <sup>125</sup> I-Tyr <sup>3</sup> -Octreotide | Agonist in Selected | Tumors with H | High Density o | of sst <sub>2</sub> Using |
|---------------------------------------|-------------------|-----------------------------------------------|---------------------|---------------|----------------|---------------------------|
|                                       |                   | 10,000 cpm/100 µl                             | L of Radioligand    |               |                |                           |

|                        | Tumo                                                              | r tissue                                                                                 | Surrounding vessels                                               |                                                                                          |  |
|------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Case no.               | <sup>125</sup> I-JR-11–<br>specific binding<br>(dpm/mg of tissue) | <sup>125</sup> I-Tyr <sup>3</sup> -octreotide-<br>specific binding<br>(dpm/mg of tissue) | <sup>125</sup> I-JR-11–<br>specific binding<br>(dpm/mg of tissue) | <sup>125</sup> I-Tyr <sup>3</sup> -octreotide–<br>specific binding<br>(dpm/mg of tissue) |  |
| Pheochromocytoma no. 1 | >10,000                                                           | 144                                                                                      |                                                                   |                                                                                          |  |
| Pheochromocytoma no. 2 | 7,893                                                             | 335                                                                                      |                                                                   |                                                                                          |  |
| Pheochromocytoma no. 3 | 8,205                                                             | 1,545                                                                                    |                                                                   |                                                                                          |  |
| Pheochromocytoma no. 4 | 4,659                                                             | 0                                                                                        |                                                                   |                                                                                          |  |
| Pheochromocytoma no. 5 | 8,502                                                             | 207                                                                                      |                                                                   |                                                                                          |  |
| Paraganglioma no. 1    | >10,000                                                           | 810                                                                                      |                                                                   |                                                                                          |  |
| Paraganglioma no. 2    | >10,000                                                           | 472                                                                                      | 1,807                                                             | 273                                                                                      |  |
| NET ileal no. 1        | 6,124                                                             | 597                                                                                      |                                                                   |                                                                                          |  |
| NET ileal no. 2        | 7,756                                                             | 830                                                                                      |                                                                   |                                                                                          |  |
| NET ileal no. 3        | >10,000                                                           | 3,436                                                                                    |                                                                   |                                                                                          |  |
| NET ileal no. 4        | >10,000                                                           | 4,167                                                                                    |                                                                   |                                                                                          |  |
| NET bronchial no. 5    | 4,268                                                             | 672                                                                                      |                                                                   |                                                                                          |  |
| SCLC no. 1             | >10,000                                                           | 1,719                                                                                    |                                                                   |                                                                                          |  |
| SCLC no. 2             | >10,000 het                                                       | 3,754 het                                                                                | 1,959                                                             | 0                                                                                        |  |
| SCLC no. 3             | 5,517                                                             | 708                                                                                      | 1,865                                                             | 0                                                                                        |  |
| SCLC no. 4             | 5,517                                                             | 708                                                                                      | 1,865                                                             | 0                                                                                        |  |

het = heterogeneous receptor distribution; SCLC = small cell lung cancer.

In all cases, <sup>125</sup>I-JR11 and <sup>125</sup>I-Tyr<sup>3</sup>-octreotide were given at dose of 10,000 cpm/100 mL incubation solution.

sites than a <sup>177</sup>Lu-labeled sst<sub>2</sub> agonist. On the basis of the high number of <sup>125</sup>I-JR11 binding sites (>2,000 dpm/mg of tissue) in more than half of the tested cases, we conclude in the present study that breast cancers should be added to the list of tumor types that may be successfully targeted in vivo with sst<sub>2</sub> antagonist tracers. A similar conclusion can be drawn for renal cell carcinoma (RCC); the antagonist shows a more than 10 times mean increase in sst<sub>2</sub> binding than with the agonist. Here, 10 of 12 cases showed an sst<sub>2</sub> density higher than 2,000 dpm/mg of tissue. Such values predict a positive sst<sub>2</sub> imaging in vivo in patients (18). Therefore, RCCs may be considered a serious indication for radiopeptide targeting with sst<sub>2</sub> antagonists. In medullary thyroid cancer and NHL, the antagonist tracer labeled many more sites than the agonist, with 2 of 5 medullary thyroid cancers and 8 of 15 NHLs having an sst<sub>2</sub> density over 2,000 dpm/mg of tissue, respectively. The marked differences between agonist and antagonist binding may be explained by G-protein coupling with the receptor, as discussed above. GPCRs were present in at least 2 affinity states for the radioligands, a small proportion in a GPCR conformation can be labeled by agonists, and a large proportion in a G-proteinindependent (uncoupled) receptor conformation can be labeled by antagonists (9).

Importantly, in the past, there have been in vivo patient studies using  $sst_2$  agonists that documented the possible feasibility of  $sst_2$  targeting under certain conditions in several non-NETs or tumors expressing only occasionally  $sst_2$  (25–29).

Such in vivo studies in patients included targeting of breast cancers (22,31), RCCs (32,33), NHL (34), prostate cancers (24), and medullary thyroid cancers (35). However, as opposed to NETs, there has never been a systematic follow-up and extension of these studies, because it was clear that the predominantly low number of  $sst_2$  detected by the agonist radioligands would prevent a routine application of  $sst_2$  ligands in these indications.

Other types of cancer tested in the present study do not appear to have a significant number of agonist or antagonist binding sites. Indeed, the prostate cancers are unlikely to be an adequate target for JR11, not only because the tumor cells rarely express sst, but also because adjacent tissues, in particular stroma, vessels, and nerves, regularly express sst that may mimic a tumoral sst<sub>2</sub> expression. Similarly, colon cancers seem not to be appropriate tumor types for sst<sub>2</sub> radiotargeting, either with sst<sub>2</sub> agonists or with antagonists.

For comparison, the tumors with an established high density of  $sst_2$ , namely the NETs in Table 3, show in all cases a massive overexpression of  $sst_2$  with the antagonist, despite the fact that in the present experimental setting the tumor sections were incubated with only one third of the standard radioligand dose. These data confirm what is seen in vivo in patients with gastroenteropancreatic NETs using the  $sst_2$  antagonist JR11, as reported by Wild et al. (*15*). Moreover, not only gastrointestinal NETs but also pheochromocytomas, paragangliomas, and lung NETs may be ideally targeted with  $sst_2$  antagonists.



**FIGURE 1.** Comparative receptor autoradiography in various cancer types (A, hematoxylin and eosin staining) with <sup>125</sup>I-JR11 (B and C) and <sup>125</sup>I-Jyr<sup>3</sup>-octreotide (D and E). B and D are respective total binding, C and E are respective nonspecific binding. Bars = 1 mm. (I) Breast cancer. (II) RCC. (III) Medullary thyroid cancer. (IV) NHL. (V) Colon cancer. In cancers I–V, sections were incubated with 30,000 cpm/100 µL of antagonist or agonist. Cancers I–IV show much higher density of sst<sub>2</sub> with antagonist. Colon cancer (V) is negative. (VI) Ileal NET, incubated with 10,000 cpm/100 µL of antagonist or agonist.



**FIGURE 2.** Receptor autoradiography with <sup>125</sup>I-JR11 showing sst in a prostate cancer sample. (Left) Hematoxylin and eosin staining. (Middle) Total binding of JR11. (Right) Nonspecific binding. (First row) Weakly receptor-positive prostate cancer. Bar = 1 mm. (Second row) Receptor-positive stroma. Bar = 1 mm. (Third row) Receptorpositive vessels. Bar = 0.1 mm. (Fourth row) Receptor-positive nerve. Bar = 0.1 mm.

# CONCLUSION

Whereas the present in vitro data convincingly show that  $sst_2$  antagonists of the second generation such as JR11 are successful and superior to agonists in NETs, the data also strongly suggest that

new indications for sst<sub>2</sub> targeting with these antagonists should be seriously considered, namely renal cell cancers, breast carcinomas, medullary thyroid cancer, and NHL. These in vitro data provide the molecular basis to initiate a clinical trial in these indications.

#### DISCLOSURE

Octreopharm Sciences GmbH, Berlin, Germany, provided financial support of a part of the study. Jean Claude Reubi is a consultant to Ipsen and is inventor of several licensed patents. Helmut Mäcke and Jean Rivier are inventors of licensed patents. No other potential conflict of interest relevant to this article was reported.

#### ACKNOWLEDGMENTS

We thank Judit Erchegyi and Charleen Miller for providing technical assistance and Jean Laissue for reviewing selected tumor cases.

#### REFERENCES

- Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427.
- Oberg KE, Reubi JC, Kwekkeboom DJ, et al. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. *Gastroenterology*. 2010;139:742–753.
- Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(suppl 2):42S–55S.
- Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–2130.
- Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [<sup>90</sup>Y-DOTA]-TOC in metastasized neuroendocrine cancers. *J Clin Oncol.* 2011;29: 2416–2423.
- Strosberg J, Wolin E, Chasen B, et al. 177-Lu-dotatate significantly improves progression-free survival in patients with midgut neuroendocrine tumours: results of the phase III NETTER-1 trial [abstract]. *Eur J Cancer*. 2015;51:S710.
- Waser B, Tamma ML, Cescato R, et al. Highly efficient in vivo agonist-induced internalization of sst2 receptors in somatostatin target tissues. J Nucl Med. 2009;50:936–941.
- Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. *Proc Natl Acad Sci USA*. 2006;103:16436–16441.
- Sleight AJ, Stam NJ, Mutel V, et al. Radiolabelling of the human 5-HT<sub>2A</sub> receptor with an agonist, a partial agonist and an antagonist: effects on apparent agonist affinities. *Biochem Pharmacol.* 1996;51:71–76.
- Perrin MH, Sutton SW, Cervini LA, et al. Comparison of an agonist, urocortin, and an antagonist, astressin, as radioligands for characterization of corticotropinreleasing factor receptors. J Pharmacol Exp Ther. 1999;288:729–734.
- Cescato R, Maina T, Nock B, et al. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med. 2008;49:318–326.
- Hansen LS, Sparre-Ulrich AH, Christensen M, et al. N-terminally and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor. *Br J Pharmacol.* 2016;173:826–838.
- Wild D, Fani M, Behe M, et al. First clinical evidence that imaging with somatostatin receptor antagonists is clinically feasible. *J Nucl Med.* 2011; 52:1412–1417.
- Cescato R, Waser B, Fani M, et al. Evaluation of <sup>177</sup>Lu-DOTA-sst2 antagonist versus <sup>177</sup>Lu-DOTA-sst2 agonist binding in human cancers in vitro. *J Nucl Med.* 2011;52:1886–1890.
- Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55:1248–1252.
- Reubi JC, Maurer R, von Werder K, et al. Somatostatin receptors in human endocrine tumors. *Cancer Res.* 1987;47:551–558.
- Reubi JC, Kvols LK, Waser B, et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. *Cancer Res.* 1990;50:5969–5977.

- Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumors as molecular basis for in vivo multireceptor tumor targeting. *Eur J Nucl Med Mol Imaging*. 2003;30:781–793.
- Körner M, Waser B, Reubi JC. Does somatostatin or gastric inhibitory peptide receptor expression correlate with tumor grade and stage in gut neuroendocrine tumors? *Neuroendocrinology*. 2015;101:45–57.
- Reubi JC, Waser B. Triple-peptide receptor targeting in vitro allows detection of all tested gut and bronchial NETs. J Nucl Med. 2015;56:613–615.
- 21. Reubi JC, Schaer JC, Waser B, et al. Affinity profiles for human somatostatin receptor sst1-sst5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. *Eur J Nucl Med.* 2000;27:273–282.
- Albérini JL, Meunier B, Denzler B, et al. Somatostatin receptor in breast cancer and axillary nodes: study with scintigraphy, histopathology and receptor autoradiography. *Breast Cancer Res Treat*. 2000;61:21–32.
- Reubi JC, Waser B, Schaer JC, et al. Somatostatin receptors in human prostate and prostate cancer. J Clin Endocrinol Metab. 1995;80:2806–2814.
- Nilsson S, Reubi JC, Kalkner K, et al. Metastatic hormone-refractory prostatic adenocarcinoma expresses somatostatin receptors and is visualized in vivo by (111-In)-labeled DTPA-D-(Phe-1)-octreotide scintigraphy. *Cancer Res.* 1995;55(suppl):5805s–5810s.
- Reubi C, Gugger M, Waser B. Coexpressed peptide receptors in breast cancers as molecular basis for in vivo multireceptor tumor targeting. *Eur J Nucl Med Mol Imaging*. 2002;29:855–862.
- Reubi JC, Mazzucchelli L, Hennig I, et al. Local upregulation of neuropeptide receptors in host blood vessels around human colorectal cancers. *Gastroenterology*. 1996;110:1719–1726.

- Reubi JC, Kvols L. Somatostatin receptors in human renal cell carcinomas. Cancer Res. 1992;52:6074–6078.
- Reubi JC, Waser B, van Hagen M, et al. In vitro and in vivo detection of somatostatin receptors in human malignant lymphomas. *Int J Cancer*. 1992;50: 895–900.
- Reubi JC, Chayvialle JA, Franc B, et al. Somatostatin receptors and somatostatin content in medullary thyroid carcinomas. *Lab Invest.* 1991;64:567–573.
- Reubi JC, Laissue JA, Waser B, et al. Expression of somatostatin receptors in normal, inflamed and neoplastic human gastrointestinal tissues. *Ann N Y Acad Sci.* 1994;733:122–137.
- van Eijck CHJ, Krenning EP, Bootsma A, et al. Somatostatin-receptor scintigraphy in primary breast cancer. *Lancet.* 1994;343:640–643.
- 32. Freudenberg LS, Gauler T, Gorges R, et al. Somatostatin receptor scintigraphy in advanced renal cell carcinoma: results of a phase II-trial of somatostatine analogue therapy in patients with advanced RCC. *Nuklearmedizin*. 2008;47: 127–131.
- 33. Peter L, Sanger J, Hommann M, et al. Molecular imaging of late somatostatin receptor-positive metastases of renal cell carcinoma in the pancreas by <sup>68</sup>Ga DOTATOC PET/CT: a rare differential diagnosis to multiple primary pancreatic neuroendocrine tumors. *Clin Nucl Med.* 2014;39:713–716.
- Vanhagen PM, Krenning EP, Reubi JC, et al. Somatostatin analogue scintigraphy of malignant lymphomas. Br J Haematol. 1993;83:75–79.
- Kwekkeboom DJ, Reubi JC, Lamberts SWJ, et al. In vivo somatostatin receptor imaging in medullary thyroid carcinoma. J Clin Endocrinol Metab. 1993;76: 1413–1417.