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Bone metastases are common in patients with advanced breast
cancer. Given the significant associated morbidity, the introduction
of new, effective systemic therapies, and the improvement in
survival time, early detection and response assessment of skeletal
metastases have become even more important. Although planar
bone scanning has recognized limitations, in particular, poor
specificity in staging and response assessment, it continues to be
the main method in current clinical practice for staging of the
skeleton in patients at risk of bone metastases. However, the
accuracy of bone scanning can be improved with the addition of
SPECT/CT. There have been reported improvements in sensitivity
and specificity for staging of the skeleton with either bone-specific
PET/CT tracers, such as '8F-NaF, or tumor-specific tracers, such as
18F-FDG, although these methods are less widely available and
more costly. There is a paucity of data on the use of '8F-NaF
PET/CT for response assessment in breast cancer, but there is in-
creasing evidence that '®F-FDG PET/CT may improve on current
methods in this regard. At the same time, interest and experience in
using whole-body morphologic MRI augmented with diffusion-
weighted imaging for both staging and response assessment in
the skeleton have been increasing. However, data on comparisons
of these methods with PET methods to determine the best tech-
nique for current clinical practice or for clinical trials are insufficient.
There are early data supporting the use '8F-FDG PET/MRI to assess
malignant disease in the skeleton, with the possibility of taking ad-
vantage of the synergies offered by combining morphologic, phys-
iologic, and metabolic imaging.
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The skeleton is the most common site for metastases from
breast cancer, being affected in approximately 50%—70% of pa-
tients with relapse (/,2), and is the sole site of disease in 28%—
44% (3,4). Skeletal metastases cause significant morbidity, includ-
ing pain, fractures, hypercalcemia, and spinal cord compression;
patients in whom disease is confined to the skeleton have the great-
est risk of skeleton-related events (5). The median survival of
patients with disease confined to the skeleton is relatively long com-
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pared with that of patients with visceral disease (2.2 y vs. 5.5 mo;
P < 0.001) (3); therefore, cumulative morbidity and health care costs
from bone metastases are high. With the arrival of effective novel
therapies, it has become even more important to detect bone metas-
tases at an early stage to minimize skeleton-related events and to
allow the determination of a response as early as possible to limit
toxicity and accelerate the therapeutic transition in nonresponding
patients.

Imaging has always played a key role in the diagnosis of bone
metastases in breast cancer and planar **™Tc-diphosphonate bone
scanning (BS) remains widely used, its lack of specificity has been
improved with the addition of SPECT and SPECT/CT. At the same
time, there has been an increase in the use of other hybrid tech-
niques for imaging of the skeleton (e.g., PET/CT) as well as
whole-body MRI techniques, which have improved sensitivity.
Despite improved accuracy in staging of the skeleton, evidence
of efficacy and consensus regarding effective monitoring of a treat-
ment response are lacking. Although radiographs have been used
historically to determine a response by lesion resolution or scle-
rosis (6,7), this method has been recognized as being insensitive
and may take at least 6 mo to yield a confident assessment of
a response.

RECIST 1.1 (8) depends primarily on a change in longitudinal
dimension in nodal and visceral disease. Only lytic bone metasta-
ses with soft-tissue masses of greater than 1 cm (an infrequent
finding) are deemed measureable; although the use of BS, PET, or
radiography for confirmation of a complete response is permitted,
most bone metastases are not assessable. A more pragmatic ap-
proach involving a combination of imaging results from BS, CT,
and radiography has been shown to provide a better prediction of
progression-free survival and overall survival than World Health
Organization criteria but has not yet gained wide acceptance (9).
When these criteria were prospectively tested in 29 breast cancer
patients with bone-only metastases, they were found to predict
progression-free survival at 6 mo but not 3 mo, similar to the
World Health Organization criteria (/0).

The purpose of this review is to update the current status of
imaging, particularly BS, '8F-FDG PET, and !'3F-NaF PET, for
detection and therapy response monitoring of bone metastases
from breast cancer. Some potential future methods that show
promise are also discussed.

PATHOPHYSIOLOGY OF BONE METASTASES

Paget suggested that metastases depend on cross talk between
cancer cells (“seeds”) and specific organ microenvironments (“the
so0il”) (11). Bone marrow stromal cells attract tumor cells through
the expression of chemotactic molecules and provide the tumor
cells with an environment in which to grow. The abilities of cancer
cells to adhere to bone matrix and to promote osteoclast maturation
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and activity are important in the development of bone metastases.
Untreated bone lesions exist on a spectrum between predominantly
osteoblastic (e.g., prostate cancer-related skeletal metastases) and
osteolytic (e.g., myeloma), but breast cancer metastases can vary
between the two or can be mixed in the same patient. The pheno-
types have different effects on bones and may influence the selec-
tion of the optimal imaging modality for demonstrating the lesions.

In bone metastases that are predominantly osteolytic, parathyroid
hormone-related protein, derived from cancer cells, stimulates pro-
duction of the receptor activator of nuclear factor kB ligand; the
latter leads to osteoclast maturation and bone resorption that out-
strips attempts at osteoblastic bone formation and repair (/2). Of
relevance, a human monoclonal antibody to the receptor activator of
nuclear factor kB ligand, denosumab, is currently being used in the
treatment of cancer-related bone disease, and bisphosphonates exert
some of their effect by inhibiting osteoclasts. Tumor cells can also
secrete several growth factors that stimulate bone formation through
increased osteoblastic activity (/2). This primary osteoblastic activ-
ity may be indistinguishable on imaging from reactive and repara-
tive osteoblastic activity that follows successful treatment of both
osteolytic and osteoblastic bone metastases.

BONE SCINTIGRAPHY, INCLUDING SPECT AND SPECT/CT

BS has been used for decades as the primary method for staging
and response assessment of skeletal metastases. Despite recognized
limitations with regard to diagnostic specificity and both sensitivity
and specificity in measuring a treatment response, BS remains in
widespread use in clinical practice. Abnormal accumulation of
99mTc-labeled diphosphonates is related to changes in local blood
flow and osteoblastic activity (/3), events that are secondary in most
bone metastases that are seeded in the bone marrow. Although BS is
still considered a sensitive technique, methods that can detect tumor
in the bone marrow, such as '8F-FDG PET and MRI, before oste-
oblastic activity is present—particularly in predominantly osteolytic
disease—have been shown to be even more sensitive (/4-18). The

FIGURE 1. A 48-y-old woman with metastatic breast cancer. Maxi-
mume-intensity projection '8F-NaF (left) and axial '8F-NaF PET, CT, and
fused PET/CT slices (right, from top to bottom) at level of T12 showing
a metastasis in the spinous process (arrow). A further metastasis is
visible at T4.
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mechanism of accumulation means that the uptake of **™Tc-labeled
diphosphonates is not specific for metastatic disease and may also
make the differentiation of increased reparative osteoblastic activity
after successful treatment (flare) from unresponsive progressive dis-
ease impossible for several months.

For staging of the skeleton, some improvements in sensitivity and
specificity were observed when BS was augmented with SPECT
(19-21). Further gains in sensitivity and, especially, in specificity
and diagnostic confidence were apparent with SPECT/CT (22-25)
because of the greater contrast resolution of SPECT coupled with
the ability to reduce false-positive diagnoses of metastases through
correlation with the morphologic appearance of lesions on CT.

For response assessment, the limitations of BS in defining
response or nonresponse have been recognized for many years,
with only 52% of responders showing scintigraphic improvement
and 62% of nonresponders showing scintigraphic deterioration at
6-8 mo in an early study (26). The problem of the flare phenom-
enon, which makes the differentiation of progression from a tem-
porary healing osteoblastic response to successful therapy difficult
for 3—6 mo, has also been recognized for many years and has been
described after chemotherapy and endocrine therapy in breast
cancer (27,28). However, if serial scans confirm a flare, then a suc-
cessful response can be predicted (29). Nevertheless, a time lag of
3-6 mo for accurate response evaluation from the start of treat-
ment limits the utility of BS for response evaluation in routine
clinical practice or as a progression endpoint in clinical trials, and
we are not aware of evidence that shows an improvement through
the addition of SPECT or SPECT/CT in such situations.

18F-NaF PET

I18F-NaF was first described as a bone-specific tracer in 1962 (30),
but not until the availability of modern PET and, subsequently,
PET/CT scanners was it possible to take advantage of some of the
superior physiologic and pharmacokinetic characteristics of this
tracer compared with the ®™Tc-based tracers used in conventional
BS. The pharmacokinetics of '8F-NaF, including nearly 100% first-
pass extraction into bone, negligible protein binding, and rapid renal
excretion in hydrated subjects, allow early imaging of the skeleton—
at less than 1 h after injection—with high contrast and spatial reso-
lution (/3). The mechanism of uptake into bone is similar to that of
99mTc diphosphonates, being related to local blood flow and osteo-
blastic activity, with rapid initial uptake and eventual incorporation
into bone mineral as fluoroapatite.

Early studies showed the net clearance of '®F-NaF in breast can-
cer skeletal metastases to be 3—10 times greater than that in nor-
mal bone, with the ability to detect osteolytic and osteosclerotic
metastases (3/,32). PET and PET/CT studies in metastatic breast
cancer have shown improved diagnostic accuracy compared with
that of BS (33-37) or CT (38), and '8F-NaF PET/CT has shown
higher diagnostic accuracy than '8F-NaF PET without the CT
component (35). Similar improvements in diagnostic accuracy over
that of BS with or without SPECT have been replicated in other
cancers, including prostate cancer (39—41), lung cancer (42), renal
cancer (43), bladder cancer (44), and hepatocellular carcinoma (45).
Prospective studies with '8F-NaF for the detection of bone metas-
tases are in progress (NCT00882609 (46) and NCT01930812 (47)).
A National Oncology PET Registry trial assessed the impact of '8F-
NaF PET/CT on the management of patients with cancer other than
prostate cancer and included 781 patients with breast cancer (48).
For the breast cancer patients, management changed for 24% of
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FIGURE 2. Maximum-intensity projection '8F-FDG PET/CT and axial
18F-FDG PET, CT, and fused PET/CT slices (right, from top to bottom)
showing abnormal uptake in T12 spinous process (arrow) and at T4 in
a 48-y-old woman with metastatic breast cancer (same patient as in
Fig. 1).

those with suspected first osseous metastasis and for 60% of those
with suspected progression of osseous metastasis.

Although we are not aware of prospective data on the use of
I8F-NaF PET/CT for the assessment of a treatment response in
skeletal metastases from breast cancer, the feasibility of perform-
ing kinetic analysis of '8F-NaF uptake in metastases and normal
bone in patients with breast cancer has been confirmed (49), and
preliminary studies in metastatic prostate cancer have shown

promise (50,51). A further National Oncology PET Registry trial
assessed the impact of '8F-NaF PET/CT used for treatment mon-
itoring and included 476 patients with breast cancer (52). The
frequency of a change in the management plan for patients with
breast cancer was 39.3%. Of note, there have been preliminary
reports of a flare phenomenon with '8F-NaF PET after both che-
motherapy and endocrine therapy in breast cancer; therefore, the
timing of follow-up scans may be crucial (Figs. 1-3) (53,54).

18F-FDG PET

The uptake of '8F-FDG in viable skeletal metastases is assumed
to be predominantly within breast cancer tumor cells rather than
osseous cells, such as osteoblasts or osteoclasts, thereby acting as
a tumor-specific tracer rather than directly reflecting the altered
bone microenvironment.

Several authors have reported lower sensitivity for '8F-FDG
PET in osteoblastic lesions than in osteolytic lesions (15,17,55).
Several factors may contribute to the reported differences in
IBE-FDG avidity between osteoblastic and osteolytic metastases.
Metastases that are inherently more biologically aggressive may
show higher '8F-FDG uptake, with patients having a shorter over-
all survival than those with osteoblastic disease (/7). The un-
derlying histologic subtype may also be important; untreated
invasive lobular carcinoma has been reported to show osteoblastic
metastases with poor '8F-FDG uptake more frequently than in-
vasive ductal or mixed subtypes (56). Previous treatment history is
also important, as many '8F-FDG-negative skeletal metastases
may appear sclerotic as a consequence of previous successful sys-
temic therapy, rendering tumor cells nonviable—even though on-
going reparative osteoblastic activity, as seen with BS or 1®F-NaF
PET, may persist (57).

For detection of skeletal metastases and staging of cancer, '8F-
FDG PET or PET/CT has shown higher sensitivity or specificity

than BS in most reported studies (58,59)
and metaanalyses (/4,16,60). The im-
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provement in sensitivity over that of BS
may be due to the ability to detect meta-
static tumor cells in the bone marrow be-
fore there is a sufficient osteoblastic ef-
fect to allow detection by bone-specific
tracers. Gains in specificity may result
from fewer causes of false-positive up-
take of '8F-FDG than of nonspecific bone
tracers in the skeleton.

It has been postulated that coinjecting
I8F-NaF and '8F-FDG may allow even bet-
ter diagnostic accuracy than the injection
of either tracer alone or consecutively (67—
63). In a prospective multicenter study,
separate '8F-FDG PET/CT and '8F-NaF
PET/CT were compared with coinjected
I8F_FDG/'8F-NaF PET/CT in patients with
various cancers. In the 39 breast cancer

patients included in the study, the com-

FIGURE 3. Axial slices at T12 showing '8F-NaF PET at baseline (A) and at 8 wk (B) and 12 wk (C)
after commencement of endocrine treatment and equivalent '8F-FDG slices at baseline (D) and at
8 wk (E) in a 48-y-old woman with metastatic breast cancer (same patient as in Figs. 1 and 2).
18F-NaF PET at 8 wk shows significant increase in SUV oy, Whereas '8F-FDG PET shows nearly
30% reduction in SUV .. '8F-NaF PET at 12 wk shows decrease in SUV,,,, compared with that
at 8 wk. This patient subsequently responded clinically, and scan sequences were interpreted as
showing metabolic response with '8F-FDG PET at 8 wk but flare with '8F-NaF PET.
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bined scan revealed more lesions than
I8F-NaF PET/CT alone, and in 5 patients,
lesions that were not visible on '8F-FDG
PET/CT alone were revealed by the com-
bined scan (63). In another study, soft-
tissue lesion conspicuity was not adversely
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model (67). Therefore, 3F-FDG PET seems
to be able to add specificity to a purely mor-
phologic treatment response assessment of
bone metastases in breast cancer.

Further studies have shown that changes
in '8F-FDG SUV,,,« correlate with clinical
and tumor marker response assessments
(68) and are predictive of time to progres-
sion and time to skeleton-related events
(69). A correlation between response or
progressive disease on '8F-FDG PET and
circulating tumor cell counts has also been
observed (70). An '8F-FDG PET assess-
ment was the only factor predictive of
progression-free survival in a multivariate

FIGURE 4. A 59-y-old woman with metastatic breast cancer. Maximume-intensity-projection
18F-NaF (left) and axial '8F-NaF PET, CT, and fused PET/CT (right, from top to bottom) at level
of L1 at baseline (A) and at 8 wk (B) after commencement of endocrine therapy. Reduction in
activity in all lesions was seen on '8F-NaF PET (L1 SUV,,.x decreased from 75.7 to 44.5).

affected when a combined scan was used, and although skeletal
lesion-to-background ratios were lower than those obtained with
I8E_NaF alone, no skeletal lesions were missed on the combined
scan (64).

There is accumulating evidence that '3F-FDG PET may have the
advantage over conventional imaging of being able to determine a re-
sponse or a nonresponse to systemic therapeutics more accu-
rately and at an earlier time point, with the potential to limit
toxicity and accelerate the therapeutic transition in nonresponders.
However, as yet there is no evidence that these properties translate
into improved outcomes in terms of skeleton-related events, time
to progression, or overall survival.

Compared with morphologic changes in bone lesions on CT,
progressive lesions become more lytic and '8F-FDG-avid, whereas
increased sclerosis usually indicates a response but can also be seen
with progression (65); such observations were also reported in a ret-
rospective series (Figs. 4 and 5) (66). In another retrospective study,
although both a change in the '8F-FDG SUV,,,, and increased scle-
rosis on CT predicted time to progression in a univariate analysis,
only the change in the SUV,,,, remained predictive in a multivariate

analysis, whereas estrogen receptor status
was the only factor predictive of overall
survival. In a prospective study of 22
patients (15 with bone metastases) receiv-
ing endocrine therapy for metastatic breast
cancer, '8F-FDG PET/CT was performed
at baseline and at 10 (=4) wk, and European Organization for
Research and Treatment of Cancer PET response criteria were
used (71). The authors reported statistically significant differences
in progression-free survival but not overall survival between
patients with progressive metabolic disease and patients who did
not show progression (either responders or stable disease) (72).

OTHER MODALITIES

Whole-body MRI is now feasible in scan times of less than 1 h, and
standard morphologic sequences (e.g., T1- and T2-weighted imaging
and short-T1 inversion recovery imaging) are increasingly being
combined with whole-body diffusion-weighted imaging. The signal
from diffusion-weighted MRI (DW-MRI) depends on the rate of
diffusion of water molecules, whereby tumors—which are typically
hypercellular—show restricted diffusion compared with normal tis-
sues. This property can be quantified, with the apparent diffusion
coefficient representing the rate of signal loss with increasing diffusion
weighting (73,74). The apparent diffusion coefficient typically
increases with successful therapy as a result of cytotoxicity, reduced

cellularity, and loss of cell membrane integ-
rity, allowing water molecules to be more
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freely diffusible. Sclerotic lesions return a
low signal on T1- and T2-weighted images
and, because of fewer water molecules, are
associated with lower diffusion signal and
apparent diffusion coefficient. Therefore,
differentiating reparative sclerosis after
successful treatment from progressive dis-
ease may remain difficult (75), as it is with
BS, although others have not shown this
effect to be significant in prostate cancer
(76).

In metastatic breast cancer, DW-MRI
has been reported to be as sensitive as but
less specific than '8F-FDG PET/CT, partic-

FIGURE 5. Maximum-intensity-projection '8F-FDG PET/CT and axial slices at baseline (A) and
at 8 wk (B) in 59-y-old woman with metastatic breast cancer (same patient as in Fig. 4). Marked
metabolic response was seen on 8F-FDG PET (L1 SUV,ax decreased from 9.5 to 3.3). Note

increase in sclerosis in L1 on CT component.
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ularly in lymph nodes and the skeleton.
These results indicate that the functional
images from DW-MRI should not be read
in isolation; correlation with morphologic
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assessment is required (77). A metaanalysis of studies of bone
metastases from various cancers confirmed high sensitivity
(90%) and specificity (92%) for whole-body MRI with diffu-
sion-weighted imaging but lower specificity in studies in which
DW-MRI was included (/8).

One of the first comparisons of '8F-FDG PET/CT and PET/MRI
in malignant skeletal disease, including 19 patients with breast
cancer, reported similar lesion conspicuity and classification on
PET but better anatomic delineation on MRI compared with CT
(78). A systematic reduction in SUVs was noted in lesions and
normal bone when PET/MRI was used; this issue is known
to occur when MRI tissue segmentation methodology, which
excludes cortical bone, is used for attenuation correction of PET
data (79).

CONCLUSION

Although BS has served well for several decades, more recent
advances in imaging have enabled several techniques to be used
for staging of the skeleton with higher sensitivity and specific-
ity. Some advances relate to hybrid imaging; for example, with
SPECT/CT, PET/CT, and now PET/MRI, the high sensitivity of
bone-specific or tumor-specific tracers can be complemented
with the high spatial resolution and improved specificity of
morphologic methods. At present, there are insufficient data
to be able to determine which method provides the highest
sensitivity for staging of the skeleton in breast cancer, but
there is little doubt that the addition of CT in the form of
BS with SPECT/CT and either bone-specific imaging with 18F-
NaF or tumor-specific imaging with '8F-FDG and PET/CT
improves diagnostic accuracy. It remains uncertain whether
18F-NaF or '8F-FDG alone is sufficiently sensitive for all sub-
types of bone metastases or whether both tracers are required,
possibly as a combination cocktail, to yield the highest sensi-
tivity and specificity.

For monitoring of a treatment response, there are insufficient
data to be able to recommend serial '8F-NaF PET/CT in breast
cancer, and it is likely that the flare phenomenon—as recog-
nized with BS for many years—will also be a problem for early
response assessment within a few months of the start of sys-
temic therapy. In contrast, accumulating evidence suggests that
I8F-FDG PET/CT may be a good method for measuring a re-
sponse early in the course of therapy, perhaps as early as 2 or
3 mo. Whole-body MRI is now feasible and practical, although
there remain insufficient data specifically about routine use for
breast cancer skeletal metastases; further work is required to
understand how to optimally use DW-MRI and the apparent
diffusion coefficient to measure a treatment response. It is
tempting to think that the combination of morphologic, meta-
bolic, and physiologic data that PET/MRI supply may provide
a step forward in this clinical application where it is recognized
that current methods are insufficiently sensitive and specific at
early time points.
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