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18F-FDG PET is well established in the field of oncology for

diagnosis and staging purposes and is increasingly being used
to assess therapeutic response and prognosis. Many quantita-

tive indices can be used to characterize tumors on 18F-FDG PET

images, such as SUVmax, metabolically active tumor volume
(MATV), total lesion glycolysis, and, more recently, the proposed

intratumor uptake heterogeneity features. Although most PET

data considered within this context concern the analysis of

activity distribution using images obtained from a single static
acquisition, parametric images generated from dynamic acqui-

sitions and reflecting radiotracer kinetics may provide additional

information. The purpose of this study was to quantify differ-

ences between volumetry, uptake, and heterogeneity features
extracted from static and parametric PET images of non–small

cell lung carcinoma (NSCLC) in order to provide insight on the

potential added value of parametric images. Methods: Dynamic
18F-FDG PET/CT was performed on 20 therapy-naive NSCLC

patients for whom primary surgical resection was planned. Both

static and parametric PET images were analyzed, with quanti-

tative parameters (MATV, SUVmax, SUVmean, heterogeneity)
being extracted from the segmented tumors. Differences were

investigated using Spearman rank correlation and Bland–Altman

analysis. Results: MATV was slightly smaller on static images

(−2% ± 7%), but the difference was not significant (P 5 0.14).
All derived parameters, including those characterizing tumor

functional heterogeneity, correlated strongly between static

and parametric images (r 5 0.70–0.98, P # 0.0006), exhibiting

differences of less than ±25%. Conclusion: In NSCLC primary
tumors, parametric and static baseline 18F-FDG PET images

provided strongly correlated quantitative features for both standard

(MATV, SUVmax, SUVmean) and heterogeneity quantification.
Consequently, heterogeneity quantification on parametric images

does not seem to provide significant complementary information

compared with static SUV images.
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PET performed using 18F-FDG is increasingly being applied to
detect tumors, perform initial staging, monitor and plan treatment,
evaluate therapeutic response, and determine prognosis (1–4).
Within this context, quantitative features can be used either from
baseline PET images or from a comparison between pretreatment
scans and during-treatment or posttreatment scans. The SUVmax

from static images (55–65 min after injection) is the most com-
monly used, although it does not provide a comprehensive tumor
characterization and may therefore be limited for some clinical
applications (5,6). Additional standard features include SUVmean,
metabolically active tumor volume (MATV), and total lesion
glycolysis (TLG, defined as MATV · SUVmean) (7). Most 18F-FDG
PET–derived features are sensitive to physiologic parameters such
as body composition and blood glucose concentration that may
add confounding factors to inter- or intrapatient comparisons (8).
Recently, PET intratumor heterogeneity characterization has been
shown to have a potential added predictive and prognostic value
over simple SUV measurements (9,10). However, such studies have
to date been based exclusively on static PET acquisitions, which
are those most commonly used in clinical practice. An alternative
consists in analyzing radiotracer kinetics to provide fully quan-
titative information (10), such as the metabolic rate of glucose
(MRGlu). Among kinetic models, Patlak analysis is considered
the gold standard for modeling tissue time–activity concentration
curves derived from dynamic 18F-FDG PET images (11,12).
The fully quantitative parameters derived using such approaches

have previously been shown to be useful in patient management
(13), with differences being observed between static SUV images
and parametric MRGlu images (14,15). First, SUV images reflect
only the total activity, without any distinction between metabolized
and unmetabolized 18F-FDG uptake. In Patlak analysis, the
time integral of the input time–activity curve divided by plasma
concentration is plotted on the horizontal axis versus activity on
the vertical axis, whereas SUV approximates this integral by
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normalizing static activity concentrations using patient weight
and injected dose.
Cheebsumon et al. observed different MATVs when delineated

using static versus dynamic 18F-FDG images (16), whereas Visser
et al. observed that MRGlu maps led to significantly smaller
MATVs than SUV-based images (17). The magnitude of these
differences can be explained by the delineation methodology
used. Threshold-based methods have been shown to lack robustness
relative to varying image properties (noise, contrast) (18), as is the
case for static PET images versus parametric PET images (17).
The potential interest in applying dynamic imaging to charac-

terize intratumor heterogeneity based on texture analysis has not,
to our knowledge, been evaluated. A recent review referred to the
potential of features derived from parametric maps calculated
using kinetic analysis in conjunction with the temporal evolution
of intratumor tracer uptake distribution (19), without an explicit
evaluation in a given patient cohort. The present study aimed to
assess the potential complementary value of dynamic acquisitions
and to derive quantitative parametric images for characterizing
intratumor heterogeneity using 18F-FDG PET. Our main objective
was to quantify the potential differences between newly proposed
intratumor heterogeneity characterization features from static SUV
and parametric MRGlu 18F-FDG PET images derived using the
Patlak linearization approach (11). For comparison purposes,
the analysis was extended to other standard PET image–derived
indices such as SUVmax, SUVmean, TLG, and MATV.

MATERIALS AND METHODS

Patients

We prospectively recruited 20 therapy-naive patients for whom
primary surgical resection was planned for limited-stage non–small

cell lung carcinoma (NSCLC). Tumors were required to be at least

3 cm in diameter in order to reduce the potential impact of partial-
volume effects (PVE) and respiratory motion on the quantitative

measurements (20). The study was approved by the Medical Ethics
Review Committee of the Radboud University Nijmegen Medical

Centre, and all patients gave written informed consent. The patient
characteristics are summarized in Table 1.

18F-FDG PET Acquisition and Image Reconstruction

All 20 patients underwent a dynamic PET acquisition in list mode
for 60 min using a Biograph Duo scanner (Siemens Healthcare) at a

single bed position (159-mm axial length) after intravenous injection
of a 3.3 MBq/kg average dose using an infusion pump (an 8-mL

infusion of 18F-FDG at a rate of 0.2 mL/s followed by a 40-mL saline
flush at a rate of 8.0 mL/s). A low-dose CT acquisition (40 mA and

130 kV) of the same area as that covered by the PET scan was used for
PET attenuation correction and as an anatomic reference. The size of

the CT transaxial matrix was 512 · 512 (0.98 · 0.98 mm), and the CT
slice width was 3 mm.

PET data were reconstructed using a 45-frame protocol (a 10-s
delay after 18F-FDG injection, 16 · 5 s, 4 · 10 s, 4 · 20 s, 4 · 30 s,

4 · 60 s, 4 · 120 s, 1 · 150 s, and 8 · 300 s). Each of the 45 frames
was reconstructed using 2-dimensional ordered-subsets expectation

maximization in 2 dimensions with 4 iterations and 16 subsets in a
256 · 256 · 53 image matrix (voxel size, 2.65 · 2.65 · 3.00 mm)

followed by application of an isotropic gaussian filter of 5 mm in full
width at half maximum. We applied CT-based attenuation correction

using a bilinear transformation of Hounsfield units to the PET energy
attenuation values, a delayed-window–based randoms correction,

single-scatter-simulation–based scatter correction, and decay correction.

No partial volume or respiratory motion corrections were considered.
The last time frame of the dynamic series (55–60 min after injection)

was used to generate the SUV images. All voxel values (Bq/mL) were
normalized to the administered activity per body weight. Residual

activity in the infusion system was accounted for (i.e., SUV [g/mL]).
To derive MRGlu parametric maps, MRGlu values were calculated

on a voxel-by-voxel basis based on the standard 2-compartment

TABLE 1
Characteristics of the 20 Patients

Parameter Value

Male (%) 70

Mean age (y) 63.4 (range, 44.3–77.8)

Mean body mass (kg) 78.2 (SD, 15.1)

Mean body mass index (kg/m2) 26.0 (SD, 5.3)

Mean mass activity (MBq/kg) 3.32 (SD, 0.42)*

Median serum glucose
level (mmol/L)

5.3 (range, 4.5–7.7)

Location (%)

Right upper lobe 50

Right middle lobe 5

Right lower lobe 0

Left upper lobe 35

Left lower lobe 10

Treatment (%)

Lobectomy, R0 85

Pneumonectomy, R0 15

Histology (%)

Squamous cell carcinoma 60

Adenocarcinoma 30

No mucinous differentiation 20

Partially mucinous 5

Mucinous differentiation 5

Sarcomatoid pleiomorph

carcinoma

5

Neuroendocrine carcinoma 5

Differentiation (%)

Poor 55

Moderate 30

Unknown 15

Mean histologic tumor

diameter (mm)

52.3 (range, 15.0–85.0)†

TNM classification (%)

T2N0M0 (stage IB) 30

T3N0M0 (stage IIB) 30

T2N1M0 (stage IIB) 40

R0 5 resection margins free of tumor.

*P5 0.193 for 2-tailed 1-sample t test compared with reference
mass activity of 3.45 MBq/kg.

†One lesion was smaller than 30 mm at final histology but was

larger than 30 mm at CT because of surrounding organizing

pneumonia.
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18F-FDG model with trapping in the linear approximation (Patlak

analysis) (12):

MRGlu 5
K1k3
k2 1 k3

Cp;glu

LCFDG
5 Ki

Cp;glu

LCFDG
;

where K1, k2, and k3 are the 3 rate constants of the 2-compartment
model, Ki (mL/g/min) is the 18F-FDG influx constant, Cp,glu is the

plasma glucose concentration, and LCFDG is the lumped constant
(which is equal to 1). For the tissue time–activity curves, the images

from frames 38–45 (i.e., 20–60 min after injection) were used, since
for all tumors investigated the Patlak curves approached a straight line

at 15–20 min after injection. An image-derived input function (plasma
time–activity curve) was determined by considering the mean activity

concentration in a manually drawn 3-dimensional volume of interest
in the thoracic ascending aorta (whole blood). No plasma–to–whole-

blood ratio or PVE corrections were applied. Voxelwise Ki values were
subsequently determined by linear regression analysis on the Inveon

Research Workplace (version 3; Siemens Healthcare) using the tissue

time–activity curve and the image-derived whole-blood time–activity
curve. Using the derived parametric images, we also derived for each tumor

volume the metabolic rate volume (MRV5 MRGlumean · volume), which
was used to denote the parametric equivalent of TLG in SUV images.

Image Analysis

For all patients, the primary tumor MATV was delineated on the
static SUV and parametric PET images. The automatic fuzzy locally

adaptive Bayesian algorithm previously validated for accuracy, ro-
bustness, and reproducibility in PET (21,22) was used to minimize the

impact of the delineation approach on the extracted features. From
these delineated volumes, the following features were extracted from

both static and parametric images: MATV, maximum value (SUVmax

and Ki), metabolic volume products (TLG and MRV), and heteroge-

neity parameters, including the area under the curve of the cumulative

intensity histogram (23) and textural features at both local and re-
gional scales using previously optimized parameters (quantization into

64 levels of gray) (24). The area under the curve of the cumulative

intensity histogram was calculated by considering all tumor voxels,
consequently providing a global quantification of tumor heterogeneity.

Local heterogeneity features were computed using a single cooccur-
rence matrix over all 13 spatial directions in 3 dimensions (20).

These features highlight variations in intensity between contiguous
voxels on the local scale and include homogeneity, entropy, and dis-

similarity. Regional heterogeneity measurements were computed us-
ing matrices that link groups of intratumor voxels of similar intensity.

These measurements include high-intensity emphasis and zone percent-
age (24). Most heterogeneity textural features used in this study were

chosen according to previously published results regarding their re-
producibility (25) and robustness both to functional tumor volume de-

lineation approaches and to PVE (18,26).

Statistical Analysis

Statistical analysis was performed using MedCalc software.

The statistics of each parameter’s distribution in both images were
reported using the first and third quartiles, as well as the median.

The Kolmogorov–Smirnov test was used to assess the normality of
distributions. Agreement between parameters from static and parametric

images was assessed using the Spearman rank coefficient, and differences
were quantified using Bland–Altman analysis, reporting the mean 6 SD

and 95% confidence intervals of the differences and the upper and
lower limits (UL and LL, respectively), defined as 1.96 · SD, after

application of a log transformation to parameters with a nonnormal
distribution. For SUVmax (or maximum Ki) and TLG (or MRV), only

correlation coefficients are reported because the measures are not
directly comparable between the two image types given the differ-

ences in units. P values of less than 0.05 were considered significant

throughout the analyses.

RESULTS

Figure 1 shows examples of tumors on parametric Ki and SUV
images and differences in the corresponding image indices.
All features were normally distributed with the exception of MATV

and TLG/MRV (Table 2). MATVs mea-
sured on static and parametric images were
strongly correlated (r 5 0.96; P , 0.0001;
95% confidence interval, 0.90–0.99) (Table
3). Slightly smaller MATVs were obtained
on static images than on the corresponding
parametric images, with nonstatistically sig-
nificant differences (22% 6 7%; P 5 0.14;
UL/LL, 111%/215%) (Table 3; Fig. 2A).
The smallest and largest absolute volume
differences were 0 and 26.5 cm3, respec-
tively, which were obtained for a very large
tumor (.145 vs. 115 cm3 in the parametric
vs. static images).
As shown in Figure 2B, SUVmax and

maximum Ki correlated strongly (r 5
0.9; P , 0.0001; 95% confidence inter-
val, 0.76–0.99). Similarly, TLG and
MRV correlated strongly, with a Spear-
man rank correlation coefficient of 0.98
(95% confidence interval, 0.94–0.99; P ,
0.0001; Fig. 2C). Intratumor heterogeneity
parameters for the static and parametric
images also correlated (r 5 0.7–0.91,
P # 0.0006), with less than a 21% SD and
UL/LL within the 640% range, similar to

FIGURE 1. Three tumor examples, with parametric Ki and SUV images in top and middle rows,

respectively, and differences between the two in bottom row. Examples 1, 2, and 3 correspond to

cases with small, medium, and large differences, respectively, between parametric Ki and static

SUV images. CIHAUC 5 area under curve of cumulative intensity histogram; D 5 dissimilarity; E 5
entropy; H 5 homogeneity; HIE 5 high-intensity emphasis; ZP 5 zone percentage.
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the physiologic reproducibility limits previously measured on test–
retest baseline PET images for such parameters (22,25). The het-
erogeneity parameters showing the lowest variability with respect to
static versus parametric PET images were entropy (0.3% 6 2.1%;
UL/LL, 13.8/24.4%; Fig. 2D) and zone percentage (11.0% 6
3.7%; UL/LL,18.2%/26.1%; Fig. 2E). Homogeneity led to slightly
larger differences (10.6% 6 11.9%; UL/LL, 124.0%/222.7%),
whereas dissimilarity behaved similarly to area under the curve of
the cumulative intensity histogram, with SD being 16%–17% and
UL/LL being about 630%–35% (Fig. 2F). Finally, the parameter
that exhibited the largest difference was high-intensity emphasis, with
an SD of 10.3% 6 20.9% (UL/LL, 141.3%/240.6%; Table 3).

DISCUSSION

There is currently increasing interest in intratumor heterogeneity
characterization by PET and its potential added value for diagnosis,

evaluation of therapy response, and survival analysis. It has already
been shown that, for NSCLC, the use of whole-body static 18F-FDG
PET to characterize intratumor heterogeneity has not only a com-
plementary prognostic value relative to metabolic functional volume
(20,27) but also a predictive value in the case of exclusive che-
motherapy (28). On the other hand, there are several unanswered
questions about the robustness of these heterogeneity parameters
and their underlying biologic significance. Some of these para-
meters, including those used in this study, have been shown to be
robust to physiologic reproducibility (25,29). In terms of their
biologic significance, we have previously shown that tumor
blood flow correlates strongly with various tumor heterogeneity
scales extracted from 18F-FDG PET images in colorectal cancer
(30). To further evaluate the robustness of intratumor heteroge-
neity characterization in 18F-FDG PET for NSCLC, the goal of
this study was to compare, for the first time to our knowledge,
intratumor heterogeneity parameters between standard static

TABLE 2
Statistics and Normality (Kolmogorov–Smirnov Test) for Features Derived from Static and Parametric 18F-FDG PET Images

Parametric Static

Parameter 25% Median 75% Normality 25% Median 75% Normality

MATV (cm3) 18.43 49.51 82.47 0.01 18.83 35.39 81.29 0.006

CIHAUC 0.27 0.30 0.35 .0.10 0.28 0.33 0.38 .0.10

Entropy 4.52 4.69 5.18 .0.10 6.46 6.72 7.08 .0.10

Homogeneity 0.51 0.55 0.56 0.0083 0.22 0.25 0.28 .0.10

Dissimilarity 2.03 2.22 2.48 .0.10 4.86 6.07 7.26 .0.10

High-intensity emphasis 854.00 1,108.00 1,229.00 .0.10 514.00 661.00 800.00 .0.10

Zone percentage 0.41 0.47 0.51 .0.10 0.82 0.86 0.88 .0.10

SUVmax/maximum Ki 0.05 0.06 0.07 0.06 9.41 12.41 14.96 .0.10

TLG/MRV 161.00 448.00 1,074.00 0.0002 1.13E105 2.29E105 5.14E105 0.0001

CIHAUC 5 area under curve of cumulative intensity histogram.

TABLE 3
Bland–Altman and Spearman Rank Correlation Results for Comparison of Static and Parametric 18F-FDG PET Images

%

difference Bland–Altman Spearman

Parameter Mean SD P (H0: mean 5 0) LL 95% CI for LL UL 95% CI for UL r P 95% CI

MATV* (cm3) −2.31 6.64 0.14 −15.32 −20.72, −9.91 10.71 5.30, 16.11 0.96 ,0.0001 0.90, 0.99

CIHAUC 2.39 16.52 0.53 −29.99 −43.43, −16.55 34.77 21.33, 48.21 0.75 0.0002 0.45, 0.89

Entropy −0.30 2.09 0.53 −4.39 −6.09, −2.69 3.80 2.10, 5.49 0.91 ,0.0001 0.78, 0.96

Homogeneity 0.64 11.91 0.81 −22.71 −32.40, −13.02 23.99 14.30, 33.68 0.70 0.0006 0.38, 0.87

Dissimilarity −1.13 16.30 0.76 −33.08 −46.34, −19.82 30.82 17.55, 44.08 0.78 ,0.0001 0.52, 0.91

High-intensity emphasis 0.32 20.89 0.95 −40.63 −57.63, −23.63 41.27 24.27, 58.26 0.77 0.0001 0.51, 0.91

Zone percentage 1.04 3.65 0.22 −6.11 −9.07, −3.14 8.18 5.22, 11.15 0.74 0.0002 0.44, 0.89

SUVmax/maximum Ki — — — — — — — 0.90 ,0.0001 0.76, 0.96

TLG/MRV* — — — — — — — 0.98 ,0.0001 0.94, 0.99

*TLG/MRV and MATV were log-transformed.

H0 5 the null hypothesis; CI 5 confidence interval; CIHAUC 5 area under curve of cumulative intensity histogram.
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acquisitions and quantitative parametric 18F-FDG PET images.
The underlying goal of this comparison was to provide
some insight into the potential information that parametric
images may add to that obtained from standard clinical PET
acquisitions.
First, the use of a robust delineation approach allowed us to

overcome the potential robustness issues previously observed (21)
in the determination of MATVs measured from static versus
parametric PET images (22% 6 7% and limits of 11%–15%).
The observed variations, at 630%, were well within the upper
and lower physiologic reproducibility limits previously deter-
mined for the fuzzy locally adaptive Bayesian approach (22)
and substantially lower than those previously reported using
less robust delineation methods based on fixed thresholding
(17). Fixed thresholding has been shown to lack robustness
and to be sensitive to tumor contrast (31). The higher contrast
in parametric images (32) may explain MATV differences that
were not observed in the present study using a more robust
delineation algorithm.

We also found that measurement of max-
imum intensity (SUVmax and maximum Ki)
and total activity (TLG and MRV) corre-
lated strongly between static and para-
metric images (r $ 0.9). This observation
is in line with results previously reported
for renal cell carcinoma metastases by
Freedman et al. (14) and for breast can-
cer by Doot et al. (33). Both found a
strong correlation (r . 0.95) between
SUVmax and maximum Ki on baseline
18F-FDG PET scans.
Most of the uptake heterogeneity features

considered in the present study corre-
lated strongly (r $ 0.7, P # 0.0006)
when obtained using static or parametric
PET images, with differences of less than
625%, except for high-intensity emphasis
(640%) and dissimilarity (630%). In par-
ticular, entropy and zone percentage values
were quite similar (,65% and ,69%, re-
spectively), providing further evidence of
the robustness of these parameters in char-
acterizing intratumor heterogeneity (18,26).
The strongest differences associated with
high-intensity emphasis may be explained
by its previously demonstrated lower robust-
ness to PVE (mean difference of 220.6 6
18.8 between PVE-corrected and non–PVE-
corrected images) (18).
In comparisons of quantitative mea-

surements of intratumor heterogeneity
between static and parametric 18F-FDG
images, our results suggest that the ob-
served differences, rather than repre-
senting the actual spatial distribution of
uptake, can be attributed mostly to var-
iability in image characteristics and
noise (Fig. 1). This possibility, in turn,
supports the hypothesis that with respect
to intratumor heterogeneity character-
ization the parametric images provide

information similar to that of static SUV images on a 18F-FDG
PET baseline scan.
On the basis of the Patlak analysis assumptions and use of

the baseline scan only, the hypotheses of this work were that
the unmetabolized component of 18F-FDG is negligible at later
times and that the ratio of injected dose to patient weight is
proportional to the area under the curve of the arterial input
function. If one considers a comparison of a baseline scan and
an early or late scan, such as in early–late therapy response
monitoring, the conclusions may be different. Although such
an analysis was beyond the objectives of this work, in such a
comparative framework parametric images may eventually
provide useful additional information. For example, it has pre-
viously been demonstrated—within the context of early pre-
diction of the response of locally advanced breast cancer to
therapy—that dynamic PET scans provide clinical added
value to static SUV measurements, leading to significantly
higher predictive accuracy (34). That study, however, was
based on comparison of SUV measurements only and did

FIGURE 2. Bland–Altman plot of MATV (logarithmic transformation) (A), area under curve of

cumulative intensity histogram (B), SUVmax/maximum Ki (C), TLG/MRV (logarithmic transforma-

tion) (D), entropy (E), and zone percentage (F). Each graph reports mean ± 1.96 SD and 95%

confidence interval for mean of differences. AUC 5 area under curve; CIH 5 cumulative intensity

histogram; E 5 entropy; ZP 5 zone percentage.
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not include more advanced tumor characterization metrics
(volume, heterogeneity).
Our study was limited by the small number of patients and the

exclusion of NSCLC patients with large lesions (.3 cm). Despite
the few patients, the small mean differences in parameters suggest
that similar information on tumor heterogeneity can be derived
from the static and parametric baseline 18F-FDG PET images.
Given these small differences, a more substantial patient cohort
is needed to confirm the statistical significance of these results.
We chose to limit lesion size in order to reduce the influence of
both respiratory motion and PVE. Although previous studies have
shown variability in heterogeneity features as a result of respiratory
gating (35,36), other studies have shown no statistically significant
differences in the PET heterogeneity parameters considered in the
present study (37). In addition, most of the lesions in our study
(85%) were in the upper lung lobes, which are less influenced by
respiratory motion.
The choice of NSCLC as the cancer type in our study can also

be a limitation because lung tissue is mostly metabolically
nonactive and thus the background is low and the fraction of
unmetabolized 18F-FDG is also low. Our present conclusions
for NSCLC therefore cannot be extended to tumors in tissues
with higher background levels (e.g., liver metastases) or near res-
ervoirs of metabolically inactive 18F-FDG, such as in urine or even
blood (especially in end-stage renal failure).
Although the strong correlation between features extracted from

static and parametric PET images suggests that there is no sig-
nificant complementary information to be derived from parametric
18F-FDG PET images, further validation studies are required to
compare the actual predictive and prognostic value of static versus
parametric images for patient response and overall survival in
NSCLC.

CONCLUSION

In NSCLC, parametric and static SUV 18F-FDG PET images
provided similar and strongly correlated findings for tumor-derived
characterization parameters. More specifically, similar correlations
and small differences were found for such metrics as entropy and
zone percentage, which quantify heterogeneity in the spatial distri-
bution of intratumor uptake. Despite the limited number of patients
and the lack of correction for respiratory motion, our findings
suggest that within the context of NSCLC patient manage-
ment, dynamic 18F-FDG PET has no added value over a single
baseline 18F-FDG PET image in the analysis of intratumor
heterogeneity.
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