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99mTc-labeled dimercaptosuccinic acid (99mTc-DMSA) accumu-
lates in the kidney cortex and is widely used for imaging of the
renal parenchyma. Despite its extensive clinical use, the mech-
anism for renal targeting of the tracer is unresolved. Megalin
and cubilin are cooperating receptors essential to the proximal
tubule endocytic uptake of proteins from the glomerular ultra-
filtrate. We have used megalin/cubilin-deficient mice produced
by gene knockout to determine whether receptor-mediated en-
docytosis is responsible for the renal uptake of 99mTc-DMSA.
Methods: Control or megalin/cubilin-deficient mice were
injected intravenously with 0.5 MBq of 99mTc-DMSA or 99mTc-
mercaptoacetyltriglycine (MAG3). Whole-body scintigrams and
the activity in plasma, urine, and the kidneys were examined 6 h
after injection. The size and identity of 99mTc-DMSA–bound pro-
teins in urine were analyzed by fractionation by centrifugation
and separation by sodium dodecyl sulfate polyacrylamide gel
electrophoresis, followed by autoradiography and mass spec-
trometry. Results: No renal accumulation of 99mTc-DMSA was
identified in scintigrams of megalin/cubilin-deficient mice. The
renal accumulated activity of the tracer was reduced to 11.4%
(62.5%, n 5 7) of the normal uptake in control mice, correlating
with a reduction in renal megalin/cubilin expression in knockout
mice to about 10% of normal. The reduced renal uptake in
megalin/cubilin-deficient mice was accompanied by an in-
crease in the urinary excretion of 99mTc-DMSA. Size separation
of the urine by ultracentrifugation and sodium dodecyl sulfate
polyacrylamide gel electrophoresis demonstrated that in mega-
lin/cubilin-deficient mice an increased amount of 99mTc-DMSA
was excreted in an approximately 27-kDa form, which by mass
spectrometry was identified as the plasma protein a1-micro-
globulin, an established megalin/cubilin ligand. Conclusion:
99mTc-DMSA is filtered bound to a1-microglobulin and accumu-
lates in the kidneys by megalin/cubilin-mediated endocytosis of
the 99mTc-DMSA protein complex. Renal accumulation of
99mTc-DMSA is thus critically dependent on megalin/cubilin re-
ceptor function and therefore is a marker of proximal tubule
endocytic activity.
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Dimercaptosuccinic acid (DMSA) labeled with 99mTc is
a major renal cortical imaging agent used in the diagnosis
of renal parenchymal disorders (1). 99mTc-DMSA is highly
accumulated in the kidney cortex (2), but the mechanism
for the renal targeting of the tracer has not been established.
Two main routes of 99mTc-DMSA tubular uptake have been
proposed: by basolateral uptake from plasma by peritubular
extraction and by tubular reabsorption from the glomerular
ultrafiltrate. However, the significance of both routes is de-
bated (3–12). The sodium-dependent dicarboxylate trans-
porter NaDC-3 has been implicated in the basolateral
uptake of 99mTc-DMSA from peritubular capillaries into
proximal tubule cells (13). The mechanism by which
99mTc-DMSA may be reabsorbed from the glomerular ul-
trafiltrate is unknown; however, studies have indicated that
this route may contribute substantially to the renal uptake
of the tracer (4,5,14). The potential importance of this path-
way is further stressed by recent observations of a decreased
renal uptake of 99mTc-DMSA in patients with proximal
tubular endocytic dysfunctions, such as Dent’s disease,
Lowes syndrome, and Fanconi syndrome (10,15,16).

The cooperating receptors megalin and cubilin are re-
sponsible for the endocytic uptake of proteins from the
glomerular ultrafiltrate in the proximal tubule (17,18).
Megalin, a member of the low-density lipoprotein receptor
family, is a 600-kDa transmembrane glycoprotein with more
than 50 known ligands, including a variety of plasma pro-
teins. Megalin functions in a complex with the 460-kDa
extracellular protein cubilin. Cubilin also binds several
plasma proteins, including albumin, but depends on
megalin for the endocytosis of cubilin–ligand complexes
(19,20). Accordingly, megalin/cubilin-deficient mice excrete
several low-molecular-weight proteins in the urine, includ-
ing b2-microglobulin, a1-microglobulin, and retinol-bind-
ing protein, characteristic of tubular proteinuria caused by
proximal tubule endocytic dysfunction (20–22). Megalin/
cubilin dysfunction has been implicated in the pathogenesis
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of various renal diseases, such as the early stages of diabetic
and hypertensive nephropathy, and other conditions of pro-
teinuria (23). However, there are currently no assays for
direct quantitation and imaging of proximal tubule recep-
tor–mediated endocytic function.
Our aim was to investigate if the megalin/cubilin re-

ceptor complex is important for renal 99mTc-DMSA accu-
mulation. Using conditional megalin/cubilin-deficient mice
and examining the renal uptake and urinary excretion of
tracer, we identified a crucial role of the megalin/cubilin
receptors for the accumulation of 99mTc-DMSA and sug-
gest a mechanism of uptake involving glomerular filtration
and proximal tubule endocytosis of protein-bound tracer.

MATERIALS AND METHODS

Animals
Animal breeding and experiments were performed in a certified

animal facility according to provisions approved by the Danish
Animal Experiments Inspectorate. The conditional megalin/cubilin-
deficient mice used were Meglox/lox, Cubnlox/lox,Wnt4-Cre1 mice,
where the Cre-recombinase gene is driven by the Wnt4 promoter
(22). Genotyping was made on tail DNA by polymerase chain
reaction as described before (20). Cre-negative littermates were
used as controls. The mice were on a mixed C57BL/6-129/Svj back-
ground and 8–12 wk old at the time of use. The body weights of
megalin/cubilin-deficient and control mice were 27.4 6 4.8 g and
26.9 6 1.8 g (P 5 0.39), respectively. Megalin/cubilin-deficient
mice displayed left and right kidney weights of 91.8 6 31.5 and
112.7 6 42.8 mg, respectively, which was not significantly different
from the kidney weights of controls of 79.3 6 20.0 and 102.2 6
20.4 mg (P 5 0.20 and P 5 0.28), respectively.

Radiotracers
DMSAwas prepared using a commercially available kit, Renosis

DMSA (RH-Isotopagenturet). Mercaptoacetyltriglycine (MAG3)
was prepared using a commercially available kit, MAG3 Technescan
(DRN 4334; RH-Isotopagenturet). The tracers were labeled accord-
ing to the manufacturer’s instructions by adding 1,000 MBq of
freshly eluted 99mTcO42 (pertechnetate) to a final concentration of
200 MBq per mL. Radiochemical purity was above 95%.

99mTc-DMSA and 99mTc-MAG3 Uptake Studies
in Mice

Megalin-/cubilin-deficient or control mice were anesthetized
with isoflurane for a few minutes for the intravenous injection
in the femoral vein of 0.5 MBq of 99mTc-DMSA or 99mTc-MAG3
in a total volume of 0.1 mL of saline. The mice were placed in
metabolic cages for 6 h for urine collection. At the end of the 6-h
urine collection, the mice injected with 99mTc-DMSA (n 5 7 in
each group) were anesthetized, and the remaining urine in the
bladder and the kidneys was collected. A blood sample was col-
lected into a syringe containing heparin. Blood and urine samples
were centrifuged for 10 min at 1,600g. Specimens (50 mL) of
plasma and urine, and the whole kidneys, were counted using
a g-counter (Packard Biosciences). Renal imaging was performed
by placing megalin/cubilin-deficient mice injected with 99mTc-
DMSA or control mice (n 5 3 in each group) directly on the
detector of a g-camera (BrightView, Philips Healthcare) with
a low-energy high-resolution collimator. Planar images were ac-
quired over 10 min in a 256 · 256 matrix.

Size Fractionation of Urine
Urine from megalin/cubilin-deficient mice injected with 99mTc-

DMSA or control mice (n 5 3 in each group) was pooled, and
800 mL were applied on centrifuge filters (Amicon; Millipore)
with a molecular weight cutoff at 100, 30, 10, 3, and less than
3 kDa, and separated by centrifugation at 4,000g. Samples were
counted using a g-counter before and after the fractionation.

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis (SDS-PAGE) and
Protein Visualization

Urine samples (15 mL) collected from megalin/cubilin-deficient
mice injected with 99mTc-DMSA or control mice (n 5 3 in each
group) were separated under nonreducing conditions by SDS-PAGE
(16%). For protein identification, gels were silver-stained using Pro-
teosilver Plus according to the manufacturer’s instructions (Sigma-
Aldrich) and dried, and the position of the 99mTc-labeled protein was
determined by autoradiography. For immunodetection, urine samples
collected from megalin/cubilin-deficient mice or controls (n 5 3 in
each group) were separated by unreduced SDS-PAGE (16%) and
immunoblotted as described previously (24), using rabbit-antirat
a1-microglobulin (Agrisera).

Mass Spectrometry (MS)
The in-gel digestion procedure of proteins separated by SDS-

PAGE was performed essentially as described before (25). The
samples were digested by sequence-grade porcine trypsin, peptides
were recovered by reverse-phase absorption (C18 Stagetip; Proxeon
Biosystems), and the sample was eluted directly onto the matrix-
assisted laser desorption/ionization (MALDI) target using 1 mL of
a-cyano-4-hydroxycinnamic acid in 70% acetonitrile and 0.1%
trifluoroacetic acid. Peptides were subsequently analyzed using an
Autoflex Smartbeam III instrument (Bruker Daltonics GmbH) op-
erated in both MS and MS/MS mode (LIFT). Before analyses, the
instrument was calibrated by external calibration using a peptide
mix containing 7 calibrants (Bruker Daltonics). On the basis of the
generated mass spectra, proteins were identified using the Mascot
search engine and the Swiss-Prot database as reference.

Kidney Tissue Preparation and Analysis
After being counted on the g-counter, kidney extracts were

prepared from the collected kidneys of the megalin/cubilin-
deficient mice injected with 99mTc-DMSA or from control mice.
In brief, kidney cortices were homogenized in ice-cold 0.3 M
sucrose, 25 mM imidazole (pH 7.2), 8.5 M leupeptin, 1 mM
phenylmethylsulfonylfluoride (PMSF), and 1 mM ethylenediami-
netetraacetic acid for 30 s with an Ultra-Turrax T8 homogenizer
(IKA-Werke) and centrifuged at 4,000g for 15 min at 4�C. Cleared
supernatants (10 mg of protein) were analyzed by SDS-PAGE
(16%) and visualized by immunoblotting (24), using sheep-anti-
rat megalin (26), rabbit-antirat cubilin (27), and rabbit antiactin
(A5060; Sigma-Aldrich). Band intensities were quantified using
the Odyssey software (version 1.2; LI-COR Biosciences). The
megalin and cubilin protein levels in the kidneys were expressed
relative to actin protein levels.

In Vitro Binding Assay
99mTc-DMSA (0.005 MBq) was incubated for 1 h at 37�C with

buffer or purified human a1-microglobulin (AbD Serotec) at a
final concentration of 0.05 mg/mL, in a total volume of 250 mL
diluted in phosphate-buffered saline (pH 7.4). Samples (50 mL)
were counted with a g-counter before and after fractionation
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on a filter (molecular weight cutoff, 30 kDa; Amicon) by
centrifugation at 4,000g. The experiment was performed in
triplicate.

Immunohistochemistry
Kidneys from megalin/cubilin-deficient or control mice (n 5 3

in each group) were fixed by retrograde perfusion with 2% para-
formaldehyde, and sections were processed as reported before
(20), using sheep-antirat megalin and rabbit-antirat a1-microglo-
bulin. Images were obtained using a confocal laser-scanning mi-
croscope (LSM 510-META; Carl Zeiss) and processed using Zeiss
Zen software (2009, Light Edition).

Statistics
Data represent mean6 SD. Groups were compared using a Stu-

dent unpaired t test, assuming equal variance. A P value of less
than 0.05 was considered significant.

RESULTS

Renal Uptake and Urinary Excretion of 99mTc-DMSA

Accumulation of 99mTc-DMSA uptake in the kidneys of
normal control mice was evident by whole-body g-camera
scintigraphy 6 h after intravenous injection of 99mTc-
DMSA (Fig. 1A). In contrast, no accumulation was seen
in the kidneys of megalin/cubilin-deficient mice (Fig. 1B).
When quantified by g-counting, the uptake of 99mTc-
DMSA in isolated kidneys from megalin/cubilin-deficient
mice was reduced to 1.8% 6 0.4% of the injected dose per
100 mg of kidney tissue (Fig. 2A), corresponding to 11.4%
of the normal uptake in controls (n5 7 in each group). This
uptake was associated with an approximate 90% increase in
the urinary excretion of 99mTc-DMSA (Fig. 2B). Thus,
whereas the total renal activity of megalin/cubilin-deficient
mice was 8,882 6 3,264 cpm, compared with 66,656 6
9,336 cpm (P , 0.0001) in controls, the total activity of
99mTc-DMSA extracted by the kidneys (kidney plus urine
activity) was not significantly different between megalin/
cubilin-deficient mice and control mice (7.9�103 6 1.6�103
vs. 6.5�103 6 1.2�103cpm/g mouse, P 5 0.07).
The approximate 90% reduction in kidney uptake of the

tracer correlates with a megalin and cubilin protein
knockdown efficiency of 90.8% 6 8.7% and 89.8% 6
6.1%, respectively, as evaluated by immunoblotting of kid-
ney cortex homogenates from megalin/cubilin-deficient

mice, compared with controls, which is similar to previous
reports in these mice (22). The plasma level of 99mTc-
DMSA in megalin/cubilin-deficient mice and controls was
not significantly different (Fig. 2C).

Urinary Excretion of 99mTc-MAG3

No significant difference (P 5 0.11) in the urinary ex-
cretion of 99mTc-MAG3 was observed between megalin/
cubilin-deficient (n 5 7) and control mice (n 5 7, Fig. 3)
after 6 h. Although we cannot rule out a potential difference
in the kinetic parameters of 99mTc-MAG3 handling, the
total excretion of 99mTc-MAG3 appears to be unaffected
by the megalin/cubilin deficiency.

Urinary Excretion of Protein-Bound 99mTc-DMSA

The molecular weight of the 99mTc activity in urine was
determined through size fractionation by successive appli-
cation of urine to centrifuge filters, thereby producing frac-
tions corresponding to molecular weights of more than 100,
30–100, 10–30, 3–10, and less than 3 kDa. In urine from
megalin/cubilin-deficient mice, 60% of the injected dose of
99mTc-DMSA was associated with fractions corresponding
to a molecular weight of more than 10 kDa, compared with
only 17% in urine from control mice (Table 1). In both
controls and megalin/cubilin-deficient mice, 2%–3% was
bound to small peptides (3–10 kDa), and 19%–20% was
excreted as small molecules, including amino acid–bound
and free 99mTc-DMSA. Thus, the increased 99mTc-DMSA
activity in the urine of megalin/cubilin-deficient mice
reflects a 3.5-fold increase of protein-bound 99mTc-DMSA
excreted in the urine.

Identification of 99mTc-DMSA Bound
to a1-Microglobulin

The analysis of urine samples collected from megalin/
cubilin-deficient mice by SDS-PAGE and autoradiography
showed that the 99mTc radioactivity was associated with
a single band of approximately 27 kDa (Fig. 4A). To iden-
tify the protein associated with the tracer, the collected
urine samples were subjected to SDS-PAGE, and proteins
were visualized by silver staining. The sample representing
megalin/cubilin-deficient mice presents unique staining at
the position corresponding to 27 kDa (Fig. 4B). This band
was excised, subjected to in-gel digestion using trypsin, and
subsequently identified as the plasma protein a1-microglo-
bulin by MALDI MS (Table 2). This finding was further
corroborated by immunoblotting (Fig. 4C). The interaction
between 99mTc-DMSA and a1-microglobulin was further-
more evaluated in vitro using purified a1-microglobulin,
whereby approximately 80% of the 99mTc-DMSA activity
was found bound to a1-microglobulin after 1 h of incuba-
tion. Finally, immunohistochemical staining of kidney sec-
tions from control and megalin/cubilin-deficient mice
demonstrated proximal tubule uptake of a1-microglobulin
in megalin-expressing cells only, confirming that megalin
is essential for uptake of a1-microglobulin (Fig. 5).

FIGURE 1. Megalin/cubilin-
dependent renal accumulation

of 99mTc-DMSA. Whole-body

scintigram of mice 6 h after in-
jection of 99mTc-DMSA shows

accumulation in kidneys of con-

trol mice (A) but no accumulation

in kidneys of megalin/cubilin-
deficient mice (B). In megalin/

cubilin-deficient mice, evidence

of accumulation of tracer in blad-

der was seen. Images shown
are representative of similar

analyses (n 5 3 in each group).
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DISCUSSION

We show that in megalin/cubilin-deficient mice, the renal
accumulation of 99mTc-DMSA is almost abolished and as-
sociated with a corresponding increase in urinary excretion
of the tracer. The increased 99mTc-DMSA activity in the
urine is found to be associated with high-molecular-weight
fractions, suggesting protein binding. MS and in vitro bind-
ing studies identified a1-microglobulin as the 99mTc-
DMSA binding protein present in urine. a1-microglobulin
is a 27-kDa plasma protein filtered in the glomeruli and an
established ligand for both megalin and cubilin (21,24). This
is confirmed by immunohistochemistry showing uptake of
a1-microglobulin in megalin-expressing tubule cells only.
On the basis of these observations, we proposed a new
model for renal accumulation of 99mTc-DMSA (Fig. 6).
In this model, 99mTc-DMSA binds to a1-microglobulin,
which is filtered as a complex in the normal renal glomeruli
followed by megalin/cubilin-mediated endocytic uptake
and accumulation of the tracer in the kidney proximal
tubules.
An approximate 10% residual renal uptake of 99mTc-

DMSA was observed in the kidneys from megalin/cubilin-
deficient mice. Although an additional and minor pathway
for renal uptake of 99mTc-DMSA cannot be excluded, this
corresponds to the possibility that the approximately 10%
remaining megalin expression in these mice is a likely ex-
planation for the residual uptake. This argument is also
consistent with a previous study using kidney-specific megalin-

deficient mice, in which a renal uptake of 35%–55% of
99mTc-DMSAwas reported in megalin-deficient mice, com-
pared with normal controls, although the data were not
shown in the study (12). Previous analyses, however,
showed that these megalin-deficient mice have a partial
and variable (35%–50%) megalin expression in the kidneys
(28), explaining this variation in 99mTc-DMSA uptake.

The renal 99mTc-DMSA uptake in megalin/cubilin-defi-
cient mice was reduced to 1.8% 6 0.4% of the total
injected dose per 100 mg of kidney tissue, whereas the
uptake in control mice was 15.6% 6 2.3%, similar to what
has been reported in rats (12). Importantly, the total activity
of 99mTc-DMSA (7.9�103 6 1.6�103cpm/g) extracted by the
kidneys (kidney plus urine activity) of megalin/cubilin-de-
ficient mice was not significantly different from that of
control mice (6.5�103 6 1.2�103cpm/g) (P 5 0.07), indicat-
ing similar renal extraction and filtration of 99mTc-DMSA.

a1-microglobulin, a member of the lipocalin protein su-
perfamily, is synthesized in the liver, freely filtered by glo-
meruli, and reabsorbed by renal proximal tubule cells,
where it is catabolized (29). Under normal conditions, little
filtered a1-microglobulin appears in the final excreted
urine; however, urinary excretion of a1-microglobulin has
been demonstrated previously in megalin-deficient mice
(21) and a1-microglobulin was recently shown to be ex-
creted in the urine of a patient with cubilin dysfunction,
where additional binding experiments confirmed that both
megalin and cubilin bind a1-microglobulin (24). An in-

FIGURE 2. Renal uptake and urinary ex-

cretion of 99mTc-DMSA by megalin/cubilin-

deficient and control mice. Renal uptake (A),

urinary excretion (B), and plasma levels (C)
of 99mTc-DMSA in megalin/cubilin-deficient

mice are compared with controls. Columns

represent mean of each group (n 5 7) 6 SD.
*Significantly different from control mice

(P , 0.0001).

FIGURE 3. Urinary excretion

of 99mTc-MAG3 by megalin/

cubilin-deficient and control
mice. Columns represent

mean of each group (n 5 7)

6 SD.

TABLE 1
Ultrafiltration of Urine from Mice Injected with 99mTc-DMSA

Molecular weight (kDa) Control Megalin/cubilin-deficient

.100 4 8
30–100 9 43

10–30 4 9

3–10 3 2

,3 20 19

Values are from mixed urines (n 5 3) and expressed as per-
centage of injected dose.
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crease in the urinary concentration of a1-microglobulin
therefore indicates proximal tubule cell injury or impaired
proximal tubular endocytosis and is considered a valuable
marker of renal proximal tubular dysfunction (30–32). In-
terestingly, similar to our findings in urine from megalin/
cubilin-deficient mice, the molecular size of excreted
99mTc-DMSA in the urine of patients with idiopathic tubu-
lar proteinuria is also in the range of 24–28 kDa (33),
supporting binding to a urinary protein of this size. Our
study showed no uptake of a1-microglobulin in megalin-
negative tubular cells independent of cubilin expression.
Thus, although a1-microglobulin may bind to both cubilin
and megalin, megalin is essential for the internalization of
the cubilin–a1-microglobulin complex, as also shown for
other proteins binding to both receptors, such as albumin

(20). It has previously been shown that most (65%–90%)
99mTc-DMSA in plasma is protein-bound (6,31,34), and it
has been proposed that the sulfhydryls in DMSA bind to
free cysteine residues. a1-microglobulin has a free cysteine
side-chain located in a flexible loop, giving the protein re-
ductase and dehydrogenase properties with a broad biologic
substrate specificity (35). It is therefore likely that the bind-
ing of 99mTc-DMSA to a1-microglobulin occurs via its free
cysteine residue.

On the basis of our findings, the renal uptake of 99mTc-
DMSA depends on the binding to a1-microglobulin,
whereby it becomes a ligand for the megalin/cubilin recep-
tors; the glomerular filtration of a1-microglobulin; and the
activity of proximal tubule megalin/cubilin-mediated endo-
cytosis. Under conditions for which the first 2 factors may
be assumed to be constant, a 99mTc-DMSA scan will reflect
the receptor-mediated endocytic activity in the proximal
tubule, as is supported by several studies showing poor
99mTc-DMSA renal uptake in patients with disturbed tubu-
lar endocytosis and subsequent low-molecular-weight pro-
teinuria, including Dent’s disease, Lowes syndrome, and
Fanconi syndrome (10,15,16). Reduced 99mTc-DMSA up-
take in these patients is associated with increased bladder
activity, indicating an increased urinary excretion of
99mTc-DMSA, and correlates with the degree of tubular
proteinuria (10). However, quantitative estimates of megalin/
cubilin function will require further studies, including eval-
uation of the dynamics of 99mTc-DMSA uptake and relating
it to the glomerular filtration rate in conditions with
varying degree of tubulopathy. In the case of heavy pro-
teinuria, an altered tracer distribution could be due to the
increased glomerular filtration of proteins, leading to
increased urinary loss and reduced 99mTc-DMSA up-
take, as reported (36). Conversely, diminished filtration
would lead to low 99mTc-DMSA kidney uptake, even
while tubular function is retained, as it is observed under
renal artery stenosis and captopril experiments (5,37).
Thus, 99mTc-DMSA renal uptake should also be cau-
tiously interpreted in the case of alterations in glomer-
ular filtration.

Our findings may also explain previous observations
made in a mouse model of Dent’s disease caused by knock-
out of the renal, endosome-associated chloride channel

FIGURE 4. Urinary excretion of protein-bound 99mTc-DMSA by
megalin/cubilin-deficient mice. (A) SDS-PAGE separation and auto-

radiography of urine from megalin/cubilin-deficient mice and con-

trols injected with 99mTc-DMSA. A single, labeled band of

approximately 27 kDa is observed in urine collected from megalin/
cubilin-deficient mice only. (B) Urine profile analysis by SDS-PAGE

and silver staining of urine from megalin/cubilin-deficient mice and

controls. A distinct protein band of 27 kDa was identified in urine

from megalin/cubilin-deficient mice (*). This band was excised and
protein identified by MALDI MS as a1-microglobulin (Table 2). (C)

Immunoblotting identifying a1-microglobulin as an approximate 27-

kDa band in urine from megalin/cubilin-deficient mice but not from

controls. Data shown are representative of 2 (autoradiography and
MALDI MS) or 3 (SDS-PAGE, silver staining, and immunoblotting)

independent experiments.

TABLE 2
Mass Spectrometry (MS/MS) Analysis of Trypsin-Cleaved 27-kDa Band from Urine Separated by SDS-PAGE

Protein Measured peptide mass (Da) Peptide sequence identified by MS/MS

a1-microglobulin* 1,131.6 K.LYGREPQLR.D

1,354.6 R.GVCEEITGAYQK.T

1,510.7 R.RGVCEEITGAYQK.T
1,809.8 K.WYNLAVGSTCPWLSR.I

2,090.0 K.DVALNVGISENSIIFMPDR.G

*Mascot score, 393.
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ClC-5. In Clcn5 knockout mice, impaired uptake of 99mTc-
DMSA was observed (11). The Clcn5 knockout mice are
known to display disturbed megalin/cubilin-mediated endo-
cytic activity due to impaired trafficking of the receptors
(38), accompanied by an increased urinary excretion of
a1-microglobulin (39). Thus, although it was proposed
that CLC-5 affects trafficking of NaDC transporters (40),
it seems likely that dysfunction of megalin/cubilin-
mediated endocytosis is the actual cause of impaired

99mTc-DMSA uptake in these mice. Interestingly, similar
to what our data indicate in megalin/cubilin-deficient mice,
the renal uptake of 99mTc-MAG3 was normal in Clcn5
knockout mice (11), suggesting that the basolateral uptake
mediated by an organic anion transporter (41), and its ex-
cretion by proximal tubular cells, is not disturbed by de-
fective endocytosis.

CONCLUSION

We have shown that megalin/cubilin receptor–mediated
endocytosis is essential for normal renal accumulation of
the 99mTc-DMSA tracer. Renal uptake depends on the
binding of 99mTc-DMSA to the plasma protein a1-micro-
globulin, followed by glomerular filtration and megalin/
cubilin-mediated endocytosis by proximal tubular cells.
Thus, the 99mTc-DMSA renography is a potential method
for the evaluation of proximal tubule endocytic function
in patients.
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FIGURE 6. Mechanism for renal uptake of 99mTc-DMSA. (A) a1-
microglobulin–bound 99mTc-DMSA is freely filtered by glomeruli and

accumulates in renal proximal tubules by endocytosis mediated by

multiligand-binding megalin/cubilin receptors (B). (C) Free 99mTc-

DMSA and trace amounts of a1-microglobulin–bound 99mTc-DMSA
are excreted in urine. Consequently, megalin/cubilin dysfunction

leads to abolishment of renal uptake and increased urinary excre-

tion of a1-microglobulin–bound 99mTc-DMSA.

FIGURE 5. Megalin/cubilin-dependent re-

nal uptake of a1-microglobulin. Immunohis-

tochemical staining is shown for megalin
(green) and a1-microglobulin (red) in kidney

cortex of control and megalin/cubilin-

deficient mice. In megalin/cubilin-deficient

mice, a few profiles of megalin-expressing
proximal tubule cells can be identified (*)

because of mosaic expression. Merged

images showed that a1-microglobulin can-
not be identified in proximal tubular cells

lacking megalin.
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