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HighlY constrained backPRojection (HYPR) is a promising
image-processing strategy with widespread application in
time-resolved MRI that is also well suited for PET applications re-
quiring time series data. The HYPR technique involves the crea-
tion of a composite image from the entire time series. The
individual time frames then provide the basis for weighting matri-
ces of the composite. The signal-to-noise ratio (SNR) of the indi-
vidual time frames can be dramatically improved using the high
SNR of the composite image. In this study, we introduced the
modified HYPR algorithm (the HYPR method constraining the
backprojections to local regions of interest [HYPR-LR]) for
the processing of dynamic PET studies. We demonstrated the
performance of HYPR-LR in phantom, small-animal, and human
studies using qualitative, semiquantitative, and quantitative
comparisons. The results demonstrate that significant improve-
ments in SNR can be realized in the PET time series, particularly
for voxel-based analysis, without sacrificing spatial resolution.
HYPR-LR processing holds great potential in nuclear medicine
imaging for all applications with low SNR in dynamic scans, in-
cluding for the generation of voxel-based parametric images
and visualization of rapid radiotracer uptake and distribution.
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PET is a powerful in vivo imaging modality for tracking
dynamic changes in physiologic processes. However, the
temporal resolution and, in turn, the underlying physiologic
information are often sacrificed by integrating the data
collection across time to yield images with adequate signal-
to-noise ratios (SNRs). Such has been the strategy for
18F-FDG, the mainstay of PET, using imaging acquisition
methods that require only 1 time point to obtain an ap-
proximation of glucose metabolism (1). Despite the exper-
imental ease of single-time-point assays, investigators have
acknowledged the advantages of acquiring radiotracer time

courses for quantitative assessment (2,3). Kinetic analysis is
generally recognized as a more informative method of
quantifying PET data than using simpler methods such as
standardized uptake values (4–6) but remains underutilized
in the clinical setting in part because of the low SNR
accompanying time series data and lengthier acquisition.

Strategies have been explored since the infancy of PET to
optimize both data acquisition and algorithm implementation
for parameter estimation from dynamic time series (7–9).
Preprocessing algorithms (i.e., on sinograms) were devel-
oped to exploit the spatiotemporal correlation in dynamic
PET scans, with the aim of improving physiologic parameter
estimation (10,11). Most strategies have focused on post-
processing algorithms with time series data reconstructed
with filtered backprojection (FBP) or ordered-subset expec-
tation maximization. For example, wavelet processing has
demonstrated some success as a denoising method on voxel-
based time–activity data (12–15). However, wavelet process-
ing is computationally intensive and requires further
investigation to optimize the denoising of wavelet coeffi-
cients. Methods using spatial constraint algorithms have also
been applied to the process of parameter estimation and have
yielded measurable reductions in parameter estimation
variability (16), but these methods are limited to the spatial
constraint of a single time frame and do not take advantage
of the increased SNR of the entire time series.

HighlY constrained back PRojection (HYPR) is a promis-
ing strategy with widespread application in time-resolved
MRI (17) that is also well suited for PET applications
requiring time series data. HYPR was initially introduced
for the reconstruction of highly undersampled MRI time
series data—for example, in applications for which the
passage of contrast material through a region is faster than
the acquisition capabilities of the MRI system. The HYPR
technique involves the creation of a composite image from
the entire undersampled radial time series. The individual
(undersampled) time frames then provide the high temporal
resolution for the weighting matrices, which are multiplied
by the composite image containing the high spatial resolu-
tion. This technique permits image generation of rapidly
changing processes from acquisitions that are radially under-
sampled by factors of up to several hundred. This method was
further refined by constraining the backprojections to local
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regions of interest (ROIs), which was termed HYPR-LR
(18). This local reconstruction adaptation of HYPR can
accommodate situations in which image sparsity and com-
plete spatiotemporal correlation are not met. For the case of
radionuclide imaging studies, in which adequate angular
sampling exists during each time frame, the HYPR-LR
weighting images are formed by a ratio of convolved versions
of the time frame and composite image, thus taking advan-
tage of the spatiotemporal correlations between time frames.

Strategies have been used for the application of partial-
volume correction of PET data that use algorithms similar
to HYPR-LR. Boussion et al. (19) developed a technique to
capture the high spatial resolution from a separate imaging
study, such as MRI or CT, using wavelet transforms and
applying this information into image-based corrections for
the lower-resolution PET (and SPECT) studies. In contrast,
the HYPR-LR algorithm captures high SNR by integrating
the PET data over the time course of the study but with the
same spatial resolution as the original PET data. Filtering
functions are then used to obtain high SNR in the in-
dependent time frames, without attempting to improve
spatial resolution.

HYPR-LR processing holds great potential in nuclear
medicine imaging for all applications with low SNR in dy-
namic scans, including the generation of voxel-based para-
metric images and visualization of rapid radiotracer uptake
and distribution. To evaluate the performance of HYPR-LR
postprocessing (i.e., on the FBP-reconstructed dataset), we
present data based on qualitative, semiquantitative, and quan-
titative comparisons in phantom, small-animal, and human
studies. For all methods of evaluation, we chose to analyze
dynamic measured PET data rather than to use computer-
simulated data. This method of evaluation was chosen to
present an overall performance of HYPR-LR postprocessing
using actual studies to demonstrate the practical application
of this technique and phantom studies to assess signal fidelity
using known concentrations of radionuclide.

MATERIALS AND METHODS

HYPR-LR Processing
A schematic of the HYPR-LR method is shown in Figure 1. The

general HYPR-LR approach involves the formation of a composite
image from several or all of the images in a time series. This image,
which provides high-spatial-resolution, high-SNR information, is
multiplied by low-spatial-resolution weighting images formed from
each time frame. HYPR-LR weighting images are formed by taking

a ratio of spatially convolved versions of the time sequence and
composite image; thus, each individual frame has an SNR closer to
that of the composite. The functional equation for HYPR-LR
processing, following the notation of Johnson et al. (18), is:

IH 5 Ic � Iw; Eq. 1

where IH is the HYPR image, and Ic is the time-averaged
composite image. Iw is the weighting image derived from the
original reconstructed images I; a box-kernel (low-pass) spatial
filter function, F; and Ic, given as:

IW 5
F 5 I

F 5 Ic
: Eq. 2

In the original formulation (18), the Ic term in the denominator of
Equation 2 was represented by a composite formed from a sliding
temporal window of the time series (rather than the entire time
series). The temporal window for the image, Ic, was empirically
determined by examining the fidelity of the large ROI PET signal
(i.e., high SNR) with the HYPR-LR time series of varying window
widths. For the studies reported herein, it was found that using the
entire time series for this image did not distort the signal fidelity;
therefore, the composite image, Ic, represented the entire summed
PET dynamic study—that is,

Ic 5 +
i

PETi � Dti; Eq. 3

for i frames of duration Dti. The filter function used either a 2-
dimensional (2D; in-plane) or 3-dimensional (3D; volumetric)
kernel, F. For dynamic PET studies with time frames of varying
duration, the I (5PETi) images were weighted according to their
duration (Dti). For the HYPR-LR process, the SNR of the individual
time frames is largely determined by the SNR of the composite
image, and it has been shown that the variance of the HYPR-LR
images is inversely proportional to the number of nonzero elements
in the filter function (F) (18). However, excessive spatial filtering
can also introduce spillover of signals from neighboring regions. A
range of spatial filters was investigated to examine this effect.

Experimental
Evaluating Accuracy and Reduced Voxel SNR. A custom-made

miniature Derenzo acrylic phantom (diameter, 40 mm; length, 13
mm) was filled with a uniform concentration of aqueous radioac-
tivity (18F, 1.5 MBq/mL) and scanned using a Concorde microPET
P4 scanner (20). The phantom contained holes (diameters, 0.8, 1.0,
1.25, 1.5, 2.0, and 2.5 mm) arranged in wedged-shaped groupings,
with the center-to-center hole separation being twice the hole

FIGURE 1. Schematic of HYPR-LR
processing of dynamic PET data. 4D 5

4-dimensional.
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diameter (21,22). Emission and transmission events were binned
into 3D sinograms, with a span of 3 and a ring difference of 31, using
the system software (version 2.3.3.6). The emission list-mode files
were then binned into sixty 1-min frames. For reconstruction, the 3D
sinograms were first rebinned to 2 dimensions by the system Fourier
rebinning algorithm. The data were reconstructed using FBP with
a ramp filter (at the Nyquist frequency cutoff), a ·1.5 image zoom,
and no offsets to a matrix size of 128 · 128 · 63 with voxel
dimensions of 1.26 · 1.26 · 1.21 mm. Corrections for normaliza-
tion, dead time, random coincidences, attenuation, scatter, and
decay of radioactivity were applied using the system software. An
in-plane profile through the 2.5- and 1.5-mm diameter holes was
applied to both the FBP and HYPR-LR processed time series. The
mean and SD were then calculated for each voxel passing through
the profile. The accuracy (bias) was compared on the basis of the
profile mean measured concentration, and the SNR was defined as
the voxel mean divided by its SD.

Measurement accuracy was also evaluated with a dynamic
small-animal PET scan of the rhesus monkey using 18F-fallypride,
a PET ligand targeting the dopamine D2/D3 receptor sites in the
brain. 18F-fallypride was administered in 3 injections containing
a high-specific-activity radiotracer (0 min, 168 MBq, 4.2 nmol),
partially saturating low specific activity (20 min, 189 MBq, 10.3
nmol), and competing unlabeled blocking dose (80 min, 0 MBq,
100 nmol) into a 5-kg subject, and data were acquired for 160 min.
The PET data were binned into dynamic frames of 2 min per
frame. Time–activity curves were generated for the striatum,
which demonstrated changing in vivo kinetics throughout the
course of the study.

Accuracy in Parameter Estimation. An 80-mm-diameter cylin-
dric phantom with 14-mm internal (cylindric) chambers was
scanned using the Concorde microPET P4 scanner. The overall
chamber was filled with 16.7 kBq/mL of 18F (half-life [t1/2], 110
min); one internal chamber was filled with 26 kBq/mL of 11C (t1/2,
20.4 min), one chamber with air, and the other with solid acrylic.
This phantom was scanned for 40 min as the 11C activity went from
roughly double to half the 18F background. The acquisition and
reconstruction parameters were the same as those described above,
except correction for decay was not included in the FBP recon-
struction. ROIs (diameter, 9 voxels [11.3 mm], spanning 26 planes,
1,274 total voxels) were placed over the areas containing 11C and 18F
radioactivity. Time–activity curves were generated for each voxel
within these regions (voxelwise) and also for averages over the
entire region (regionwise). Decay constants from the time–activity
curves were estimated using a nonlinear least-squares fit (lsqcurvefit
in Matlab [The MathWorks]; TolX 5 1e-6, TolFun 5 1e-6,
MaxIter 5 400) to the equation C(t) 5 Coe2lt, for the parameters
of starting concentration (Co) and radionuclide decay constant (l 5

ln(2)/t1/2), with initial guesses for the parameter values fixed to
650% of the known values. The accuracy or bias of the estimates
was measured by comparing the distribution mean with the known
values (11C, 0.034 min21; 18F, 0.0063 min21).

Performance of HYPR-LR in Datasets with High Noise Levels.
A human scan of 15O-water was acquired, which consisted of sixty
2-s frames initiated with a bolus injection of 2.78 GBq of radiotracer.
The scan was acquired using the Advance PET scanner (GE
Healthcare) in 2D mode, as specified by the NIH-sponsored
Carotid Occlusion Surgery Study. The data were reconstructed
using FBP (ramp filter) to a matrix size of 128 · 128 · 63, with voxel
dimensions of 2.34 · 2.34 · 4.25 mm. HYPR-LR processing was
performed using the entire 120 s of data as the composite image.

Time–activity curves over small and large regions of the brain were
compared for accuracy and SNR.

RESULTS

The results of a semiquantitative comparison of the
miniature Derenzo phantom are shown in Figure 2 for the
HYPR-LR image using a 3.78 · 3.78 · 3.63 mm (3 · 3 · 3
voxels) 3D boxcar smoothing filter. Averaged over the sixty
1-min frames, the mean concentrations at each voxel along
the profile are in close agreement, with a mean difference in
measured concentration of less than 0.2% between the FBP
and HYPR-LR data. However, the mean coefficient of
variation (COV) (SD/mean) is significantly less in the
HYPR-LR data, with a COV FBP of 22% and a COV HYPR
of 9% (P , 0.00002), suggesting a more than 2-fold im-
provement in SNR. A profile of 1 voxel (width, 1.26 mm) was
used for the data in Figure 2. Also shown (far right column)
are the results of postprocessing with just the smoothing filter
(F). This processing yields a reduced variability, with smooth
COV of 13%, but is accompanied by the inability to resolve
the 1.5-mm regions and reduced activity recovery in the
2.5-mm regions.

The accuracy of the parameter estimates was examined
using a phantom with 2 radioactive sources of different decay
constants. The FBP-reconstructed and HYPR-LR–processed
images using 1-min time frames are shown in Figure 3.
HYPR-LR processing was performed using a 3.78 · 3.78 ·
3.63 mm (3 · 3 · 3 voxels) 3D boxcar spatial filter (F) on the
composite and dynamic images. Volumes of 1,274 voxels
(2.4 cm3) were selected from the regions within the 11C and
18F volumes. The decay constants were compared by region-
wise (averaged over all voxels) and voxelwise analysis.
Figure 4A displays the regionwise time–activity curves.
The decay constants from these time–activity curves were
estimated using a nonlinear least-squares fit to the equation
C(t) 5 Coe2lt, for the parameters of starting concentration
(Co) and radionuclide decay constant (l 5 ln(2)/t1/2), with
the results shown in Table 1. For the 11C region, both the FBP
and HYPR-LR processing yielded similar values within the
true range of the decay constant. For the 18F region, there was
little difference between the FBP and HYPR-LR estimates,
regardless of spatial filtering in the HYPR-LR processing.
The 2%26% underestimation from the theoretic value is
attributable to using only 40 min of data to estimate this rate
constant with a 110-min half-life.

ROI Estimates of Decay Constant (min21) (Table 1)

The decay constants were also estimated from the time–
activity curve of each voxel within this region. The distribu-
tions of the voxel-based decay constant estimates are shown
in Figure 4B. For the native FBP image set, approximately
14% of the voxels yielded estimates with low or negative
decay constants (,0.005 min21) or high constants (.0.1
min21) because of the high levels of noise in these time–
activity curves. The outliers were not included in the
estimation of the mean of l for the FBP data. The parameter
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estimates agreed closely with the known decay rates and
yielded a reduced COV (SD/mean), compared with the FBP
processing (15% vs. 76%, respectively), using the HYPR-LR
processing. Increased spatial filtering of the weighting image
was investigated, and a reduction in the variance in the
distribution of parameter estimates was found (P , 0.0001
for all HYPR-LR data); however, this was at the cost of
increased bias due to the mixing of signal from the 18F
background region (Supplemental Fig. 1; supplemental
materials are available online only at http://jnm.snmjournals.
org).

To examine the effects of rapidly changing temporal
kinetics under experimental conditions, HYPR-LR process-
ing was performed on a PET neuroligand study having

kinetics that were dramatically altered mid scan. A time–
activity curve of the data is shown in Figure 5. For a voxel
ROI placed in the high-uptake region of the striatum,
reduced noise is present in the HYPR-LR processed data,
with no apparent bias between methods in the time–activity
curves. For this study, the composite image consisted of the
entire 160 min of the study, including the period of washout
at approximately 80 min, which is dominated by the
dissociation constant koff rate of fallypride (;0.025 min21)
(23).

Figure 6 displays a comparison of 15O-water in the human
brain to illustrate the effects of images with high levels of
noise. A single composite image was used for HYPR-LR
processing of this study, and the individual frames were

FIGURE 2. HYPR-LR processing of small-animal PET images of miniature Derenzo phantom. Transaxial slices of 1-min frames
for FBP, HYPR-LR processing, and 3.78 · 3.78 · 3.63 mm (3 · 3 · 3 voxels) 3D boxcar smoothing of FBP image are displayed
on top. Profiles (as shown on the images) plotting mean and SD of 1-min frames over entire 60-min study are shown on bottom.
All images are shown using same window and threshold.

FIGURE 3. HYPR-LR processing of
images of multiradionuclide phantom.
Cylindric volume is filled with 11C (t1/2,
20.4 min), and surrounding volume
contains 18F (t1/2, 110 min). Total
summed image (0–40 min) and FBP-
reconstructed images of 1-min frames
at 0, 20, and 40 min are shown on top.
Blurred composite (sum) image and 1-
min frames of data processed with
HYPR-LR using 3.78 · 3.78 · 3.63 mm
(3 · 3 · 3 voxels) 3D boxcar filter are
shown on bottom. All images are scaled
to maximum intensity of 37 kBq/mL.
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spatially filtered with a 16.4 · 16.4 · 17.0 mm (7 · 7 · 4
voxels) 3D boxcar filter. The time course of the radiotracer
entering this transaxial slice can be seen in the large ROI
time–activity curve in the graph on the left in Supplemental
Figure 2. This plot illustrates that for regions containing
significant spatial averaging, the SNR in the native FBP data
and HYPR-LR processed data is almost equivalent. How-
ever, in the extreme case of a single voxel, the denoising
properties of HYPR-LR processing are profound, as seen in
Figure 6. In this limit, the SNR of each individual time point
(for a single voxel) is strongly dependent on the SNR from
the composite image, which is created by integrating the
entire study (after the arrival of the radiotracer).

DISCUSSION

In this work, we have presented HYPR-LR processing in
the context of dynamic PETas a tool for denoising individual
time frames. The primary advantage of HYPR-LR postpro-
cessing lies in its ease of implementation and fast processing
time (approximately seconds per frame using a personal
computer with a Pentium P4 [Intel] processor). To evaluate
the accuracy of HYPR-LR processing and to examine the
potential limits of the algorithm for yielding quantitative
results, we chose a series of phantom, animal, and human
studies with varying levels of noise and temporal kinetics.

We have not attempted to characterize a fixed metric for
SNR improvement because this is highly dependent on the
SNR in the composite image and the original images, which
is dependent on the choice of time frame duration.

With HYPR-LR processing, the SNR of each time frame
is primarily determined by the SNR in the composite image
and the number of nonzero elements in the filtering
function, F (18). The miniature Derenzo phantom was used
to illustrate the improvement in SNR and preservation of
resolution as determined by the composite image. Figure 2
demonstrates that the widths from the profiles, which are
indicative of system resolution, are unchanged in the 2
image sets of FBP and HYPR-LR. Because the entire 60-
min image was used as the composite, this image largely
determines the SNR and spatial resolution of the radioac-
tivity distribution. The mean concentrations for the FBP
and HYPR-LR data are almost equal, never exceeding a 2%
difference between the methods and having a 0.15% mean
difference over the entire profile. However, the variance of
each point along the profile is reduced for the HYPR-LR
data, yielding an improvement factor of 2.4 in SNR. Figure
2 illustrates that the variance at each point is also reduced
using just the smoothing filter (by a factor of 1.7); however,
this reduction is at the cost of reduced spatial resolution as
seen by the inability to resolve the 1.5-mm-diameter holes.

A multiradionuclide phantom was used to simulate a set-
ting with varying kinetics over the course of a time series.
Because the entire time series was used as the composite
image (Fig. 3), the region with the 11C activity appears to
have concentration approximately equal to the surrounding
18F background activity. A range of spatial filters (F) was
applied to the composite and individual time frames to
investigate bias in the measured signal. The effects of this
spatial filtering were examined on both region-based and
voxel-based time–activity curves. Increased spatial filtering
produces significant improvements in SNR, which in turn

FIGURE 4. Quantitative accuracy of HYPR-LR processing. (A) Regionwise analysis: graph displays time–activity curves of
volume containing 1,274 voxels (2.4 cm3) centered over 11C and 18F areas. When averaged over entire volume, time–activity
curves are almost identical for FBP data and HYPR-LR data. (B) Voxelwise analysis: results of voxel-based analysis of
measured decay constants from 11C region. HYPR-LR processing was performed using 3.78 · 3.78 · 3.63 mm (3 · 3 · 3 voxels)
3D boxcar filter. Values on each graph indicate mean 6 SD for each distribution. Decay constant for 11C is 0.034 min21.

TABLE 1. ROI Estimates of Decay Constant (min21)

Region True value FBP

HYPR-LR

(3 · 3 · 3 voxels)
filter

11C 0.0341 0.0347 6 0.0006 0.0345 6 0.0005
18F 0.0069 0.0066 6 0.0005 0.0067 6 0.0001

Estimates were obtained using nonlinear least squares 6 SE.

PET DENOISING WITH HYPR • Christian et al. 1151



reduces the variance in the distribution of voxel decay
constants. However, the excessive blurring in the signal from
the surrounding regions introduces a bias in the decay
constant outcome parameter (Supplemental Fig. 1). A bias of
21% was observed for 12.6 · 12.6 mm (10 · 10 voxels) 2D
filtering and reduced to less than 2% for both 5.04 · 5.04 mm
(4 · 4 voxels) 2D and 3.78 · 3.78 · 3.63 mm (3 · 3 · 3 voxels)
3D filtering, which is well within the experimental error of
PET measurements. These resolution effects were discussed
for MRI applications by Johnson et al. (18) for considerations
of filter size selection. As a general guideline, the effects of
excessive blurring can be suppressed by choosing a filter that
is approximately half the diameter of the object of interest.

Although HYPR-LR processing capitalizes on the spatio-
temporal correlation existing in a PET time series, there is
little temporal correlation introduced into the time series
from HYPR-LR processing. The composite image contains
information from all frames in a dynamic scan, but the noise
components of each frame will be largely uncorrelated

because of the long signal in the composite image with
respect to the independent frames. Each time frame is
calculated as the product of the composite (total sum) and
a weighting matrix (Eq. 2), which contains only spatial
smoothing. The time–activity curves from the multiple-
injection study (Fig. 5) do not suggest that a temporal
correlation was introduced in the HYPR-LR data. For
example, the use of a moving average (time series) filter
would tend to smooth out the transitions during the injections
at 20 and 80 min. Such trends were not observed in this
dataset, which used the entire time series as the composite
image.

Though we foresee several applications for which dy-
namic PET would benefit from HYPR-LR processing, we
believe the greatest potential will be to improve quantitative
PET for voxel-based analysis. For example, the Logan
reference region method (24) is one of the most widely used
schemes for the analysis of reversibly bound radiotracers;
however, this method has been shown to demonstrate

FIGURE 5. HYPR-LR processing in
study with rapid changes in PET signal.
PET images represent single 2-min time
frame (at 28 min after injection) of 18F-
fallypride in brain of rhesus monkey.
This PET study consisted of 3 injections
with radiolabeled and unlabeled fall-
ypride at 0 (168 MBq, 4.2 nmol), 20
(189 MBq, 10.3 nmol), and 80 min (0
MBq, 100 nmol), as indicated by arrows
in graph. Graph represents time–activity
curves from 4-voxel ROI with high and
low radiotracer uptake, indicated by
circles in bottom image.

FIGURE 6. HYPR-LR processing of
15O-water consisting of 60 frames with
duration of 2 s each. Top image contains
single 2-s frame of data from 26 to 28 s.
Bottom image contains matching frame
after HYPR-LR processing 16.4 · 16.4 ·
17.0 mm (7 · 7 · 4 voxels) 3D boxcar
filter. Color bars are in units of kBq/mL.
Graph illustrates time–activity curve of
single voxel in region of arrow. (Supple-
mental Fig. 3 provides multiple images
of time course.)
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a negative bias in distribution volume ratio estimation with
increasing levels of noise (25–28). This bias is due to the high
correlation of noise in the independent and dependent vari-
ables, which are calculated directly from the PET data, and
result in an underestimation of distribution volume ratio in
the (higher noise) voxel-based estimates. Thus, for voxel-
based comparisons of small regions, HYPR-LR processing
holds the potential to enhance disease detection sensitivity or
reduce subject sample size by improving parameter estima-
tion accuracy. For example, the use of the Logan reference
region method has been validated for the amyloid-binding
radiotracer 11C-Pittsburgh compound B (29), which is being
used to discriminate between subjects with Alzheimer
disease and healthy controls in the Alzheimer Disease
Neuroimaging Initiative multicenter trial, and HYPR-LR
may enhance the sensitivity of studies with this radiotracer. A
similar application is presented with the 15O-water study.
Although cerebral perfusion (or oxygen metabolism) esti-
mation with HYPR-LR processing will not be improved with
analysis techniques that integrate the entire PET time
course—for example, a count-based method (30)—HYPR-
LR processing does open up opportunities for improving the
sensitivity using other voxel-based methods of analysis.

Other examples include studies with 11C-WAY100635, in
which injections are limited to 260 MBq (31) but scans in
excess of 90 are required, and research protocols involving
children, for whom only 10% of the radiation dose of
comparable adult studies is allowed. Similarly, PET
methods that rely on the measurement of subtle changes
in the dynamic PET signal for detecting neurotransmitter
release in small regions (32–37) may benefit profoundly
from HYPR-LR denoising. Most important, as data acqui-
sition systems for PET continue to improve, it may be
possible to develop clinical applications that rely on visual
image (or time series) interpretation (2), which benefits
significantly from HYPR-LR processing.

CONCLUSION

In this work, we presented the application of HYPR-LR for
denoising PET data for time series analysis. This method has
potential applications in imaging protocols with an inher-
ently low SNR that is due either to an extended dynamic
acquisition duration or a low radiation dose.
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