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INThODUCrION

The behavior of a biological system can be described in terms of one or
several discrete variables. If the interrelationship among these variables is given
as a mathematical expression, the knowledge of any one provides information

about the remaining variables in any given situation.
The resulting equation describing the biological ( or physical) system may

be simple or of considerable complexity. The more complex equations are often
more readily â€œsolvedâ€•by labor saving devices called computers. In utilizing

an analogue computer, and in setting up its program, an electrical system is con
structed in such a way that its behavior resembles the system under study and

â€œsolutions to the equations that describe the system under study are represented

by varying voltages taken from the computerâ€• ( 1).
For instance, the charge and discharge of a capacitor can represent the

filling and emptying of a physiological space within the body, the entrance or exit
of air from the lungs, or the decay of a radioactive isotope. The magnitude of the

quantities which represent the units in each of these is the voltage of the capacitor

at a given time. It is important to note, though, that the decision as to whether

the analogy is appropriate must be made by the experimenter on the basis of

observations on the biological system.
As early as 1954 Fossier and Rosen (2) designed a small, portable, desk

size analogue computer which engineers could use as easily and rapidly as a

desk calculator. The desk type analogue computer has turned out to be a valu
able tool in engineering, and many applications to the biomedical field are pos
sible. Examples have been furnished by Clynes (3), Stacy (4), Hiltz (5), and
Chance (6), from the fields of cardiovascular physiology, pulmonary physiology,
neurophysiology, and biochemistry.

Many of the problems concerning the decay and physiological interactions

of radioactive isotopes in nuclear medicine are particularly suited to analogue
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techniques, because the same basic mathematical laws govern both isotopic

decay and the discharge of a capacitor through a resistor. Differential equations

governing radioactive decay can be solved on an analogue computer with almost
the same ease as multiplication on a slide rule.

The student of nuclear medicine acquires soon a familiarity with differen
tial equations and their use in explaining the physics and physiology of radio

active isotopes. The solutions of these equations, as algebraic functions of time,

are somewhat more difficult, but the log-log slide rule, one of the first analogue
computers, has been most helpful. A typical problem is illustrated below for

which the calculation of a complete solution, even with the slide rule, is a task of
considerable complexity.

The analogue method is easily mastered by anyone with the appropriate
background in the basic mathematics of nuclear medicine. When used with a

suitable readout device, such as a cathode ray oscilloscope, X-Y plotter, or a re
cording milliameter, the curve describing the change of the isotope with time

may be presented in a dynamic fashion. One of the most important lessons which

the analogue computer demonstrates to the student is that the interaction of the
radioactive isotope with the biological organism is governed by precise mathe

matico-physical laws. Furthermore, the knowledge of any process is advanced

when it may be defined in the precise language of mathematics. In biology, this
is necessarily an inductive method, and hence the necessity for a quasi â€œtrialand
errorâ€•method, in determining the appropriate model.

PRACTICAL DETAILS

The computer employed by theauthorwas constructedfrom a commercially
availablekit,'which costlessthan $200 (Fig.1).Itiswell suitedforstudent

Fig. 1: Computer and read out oscilloscope.

1Model EC-1 available from the Heath Company, Benton Harbor, Michigan
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use and operation and is capable of solving linear differential equations of the
first order. (The order of the differential equation is limited by the number of

operational relays in this particular device.) At a somewhat greater expense,
commercial models, such as the Donner Model 3400, are available for the more
sophisticated user who requires greater accuracy.

The following analogue solutions illustrate a few of the many in nuclear
medicine which may be solved by the analogue type computer. For the purpose
of generality, I have omitted specific numerical values for the hypothetical iso
topes. In addition, the factors for converting machine time to real time have
been omitted for the same reason. Such practical â€œset-upsâ€•are readily obtained
from any of the texts in the field. (See Chapter 2 in Korn (7) or the Donner
Tech Notes (1).)

R2

Fig. la: A resistance-capacitance (B-C) network.
Fig. ib: An operational amplifier, symbolized by a triangle lying on its side, employed as

an integrator.

Fig. ic: Use of an operation amplifier to multiply by a constant,
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Fig. id: The use of an operational amplifier for addition.
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THE ELECTRICAL ANALOGUE OF RADIOACTIVE DECAY

Though radioactive decay and the discharge of a capacitor through a re
sistor are analogous and are described by similar mathematical expressions, the
practical considerations of accuracy, reproducibility, and versatility of applica
lion limit the use of simple passive networks in analogue computation.

In a RC network ( Fig. la) the current through the capacitor is proportional
to the derivative of the voltage

dE
I Ca,.

I and E are the instaneous current and voltage, respectively, and C is the
capacitance. Since

E

R'

the expression representing the voltage across the resistor is

E rd1@

R â€œdt

If the capacitor is charged to a voltage Eo, and then allowed to discharge
through the resistor R, the above relationship becomes

E = -RC@

with the minus signbeing insertedbecause the voltageacrossthe capacitoris

decreasing. The solution of this equation, a function of time, is

E =

By recording the voltage across the resistor at various times, and plotting the
values obtained on graph paper, a curve results which is identical in appearance

to that obtained by â€œplottingâ€•this equation as an analytical expression using
F0, R, and C as parameters, and t as the independent variable. The RC net
work, employed in this manner, â€œsolvesâ€•the differential equation, and as the solu
tion represents an integration, under the conditions of the problem, the circuit
is considered to be an integrating network. If 9, representing quantity of radio
active material is substituted for E, and 1/RC is replaced by A

Q= Q0e@
the familiar equation for radioactive decay results.

In order to avoid the inaccuracies introduced by power consumption in
passive networks, the modern analogue computer employs a high grain amplifier,
most often d-c, symbolized by a triangle lying on its side (Fig. lb). Input voltages
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are represented by lines directed toward the base of the triangle, and output
voltages are shown to appear at the apex. The introduction of feedback results
in a very high input impedance so that almost no current flows in the input
circuit. Since the current is negligible, no power losses are present.

Detailed circuit analyses, available in Korn (7), show that if a capacitor,
C, connects the input and output of the amplifier, the equation governing the
operation of the amplifier in Figure lb is

= â€” E1d1.

Replacing the capacitor by a resistor, Rf, multiples by a constant @L(Fig. lc)

=@

or if voltages E1 and E9 are inserted, the output voltage is equal to the negative
of the sum of the input voltages, provided Rf = R, = R2 (Fig. ld)

(R, R,E0= â€”@@-E1+1E2

To solve the differential equations which occur in the mathematical formula
tion of isotope problems, the operational amplifiers are set up to perform one of
the fundamental operations described above, and are then interconnected so
their behavior represents the equation to be solved. The following examples will
illustrate this procedure.

d.A
dt

Fig. 2: Schematic showing the computer setup for simple radioactive decay. The hall-life is
determined by the setting of Pot A. The capacitance is in microfarads, and the re
sistance is in megohms.

PotA
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TYPICAL PROBLEMS AND THEIR ANALOGUE SOLUTIONS

The first problem is concerned with a hypothetical isotope, A, having a decay
constant, a. It is desired to describe the decay of the isotope with respect to
time.

The differential equation describing the decay is:

(Li
=

and the algebraic solution, obtained by separating the variables and integrat
ing is:

A =

The analogue solution is simply obtained by setting a portion of the output
of an integrating amplifier equal to the input (Fig. 2). The constant of integration
is obtained by inserting the voltage representing the initial quantity of isotope

into the integrating capacitor at the start of the solution. The â€œmachinetimeâ€•
solution is then obtained. Four different solutions, obtained from four different
settings of pot A, and recorded on a direct writing oscillograph, are shown in
Fig. 2a.
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Fig. 2a: Representation of the decay of different isotopes with different half lives, produced
by varying the setting of Pot A in Fig. 2.
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t=o
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â€”AdA
dt

Y
Fig. 3: Schematic of the analogue solution to the second problem. The capacitance is in

microfarads and the resistance is in megohms. Refer to the text for details.
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Fig. 3a: Output of integrating amplifier 1 in figure 3 at different settings of pots X and Y.
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Fig. 4: Schematic of the analogue solution to the third problem discussed in the text.
Capacitance is in microfarads and resistance in megohms.
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Fig. 4a: Simultaneous representation of X, Y, and Z, from the differential equations of the
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Fig. 4b: Effect on Y when a is varied and b remains

large value of a, and curve 2 by a small one.
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constant. Curve 1 is produced by a

The second problem involves an isotope A, which has both a physical and
biological half life. The physical decay constant is x, and the biological decay
constant is y. It is desired to depict the total decay of the isotope within a bio
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Fig. 4c: Effect on Y when a is varied and b remains constant. Curve 1 is produced by a

large value of a, curve 2 by a smaller one.
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logical organism, as well as the decay of the isotope outside the organism, and the
disappearance of the isotope from the organism.

The differential equation representing the solution to the problem is:

dA
-@- = â€” xA â€” yA

and the algebraic solution is:

A =

Physical decay alone is obtained by setting y = 0, and independent biological
decay is obtained by setting x = 0.

The analogue solution is shown in Figure 3. Curve 1 in Figure 3a represents
physical decay alone and is obtained by setting pot Y to zero (ground potential),
curve 2, representing biological decay alone, is obtained by setting pot X to zero,
and curve 3, representing the observed decay of the isotope within the organism,
is obtained with x and y set to the proper decay constants.

The third problem is of greater complexity. Assume that isotope X having
decay constant a decays into isotope Y with decay constant b, which in turn
decays into stable isotope Z. (An example of such a situation is the preparation
of 1132from Te132 according to the following reaction):

132 132 132
@ I C @@531â€”â€”â€”â€”@54.A..e

it is desired to plot the decay curves of X and 1, and the curve representing the
appearance of F.

The differential equations representing the above system are:

dX
= â€” aX

= aX â€” bY,

dZ bY
dl

The algebraic solutions are:

X = X,eâ€•

aX0 â€”at â€”bt
Y=b(e â€”e )

@ =x0(i bae+bae)
The plot of the solutions to the above equations is a very time consuming process
without the analogue computer.

The analogue solution is shown in Figure 4. The input to amplifier 1 is the

expression of the decay of isotope X, L@i= â€”aX, the input to amplifier 3 is the
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decay of Y, dl aX â€”bY, and the input to amplifier 5 is the production of Z,

@ = bY. Amplifiers 2 and 4 are sign inverters. A typical solution, as recorded

on the direct writing oscillograph, is shown in Figure 4a.
One of the advantages of analogue simulation is the rapidity with which a

complex solution may be examined under the influence of varied parameters. This
provides a feel for a system which is almost impossible to obtain using the analy@
tical approach. Figure 4b shows the effect of varying the decay constant of the
second isotope, :Y, on the amount of Y present at a given time, the decay con
stant of X remaining constant. ( Physically, this would represent a different sys

tem. ) This is effected by a change in the setting of pot B. Readily apparent by in

creasing the decay constant is the earlier time at which isotope Y reaches its maxi
mum, as well as the smaller total amount present at this time.

In a similar fashion, a, the decay constant of X, is varied by changing the
setting of pot A, and the effect on Y is noted (Fig. 4c). In this case, increasing

the value of a causes the maximum of B to be reached more rapidly, but, unlike
thepreviousexample,increasinga produces a largeramount ofB atitsmaximum.

SUMMARY

Applicationsof a simple,relativelyinexpensixeanaloguecomputer to a few
hypothetical problems in nuclear medicine involving radioactive decay are dis
cussed. The only prerequisite for using this device is a basic understanding of
differential equations. Besides the solutions to specific problems, the student of
nuclear medicine obtains a better, more sophisticated understanding of the
dynamic, time dependent nature of radioactive material and its interaction with
the biological organism.
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