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The objective of the work reported here was to develop and test
automated methods to calculate biodistribution of PET tracers
using small-animal PET images. Methods: After developing soft-
ware that uses visually distinguishable organs and other land-
marks on a scan to semiautomatically coregister a digital mouse
phantom with a small-animal PET scan, we elastically trans-
formed the phantom to conform to those landmarks in 9 sim-
ulated scans and in 18 actual PET scans acquired of 9 mice.
Tracer concentrations were automatically calculated in 22 re-
gions of interest (ROIs) reflecting the whole body and 21 in-
dividual organs. To assess the accuracy of this approach, we
compared the software-measured activities in the ROIs of simu-
lated PET scans with the known activities, and we compared the
software-measured activities in the ROIs of real PET scans both
with manually established ROI activities in original scan data and
with actual radioactivity content in immediately harvested tis-
sues of imaged animals. Results: PET/atlas coregistrations
were successfully generated with minimal end-user input, allow-
ing rapid quantification of 22 separate tissue ROls. The simulated
scan analysis found the method to be robust with respect to the
overall size and shape of individual animal scans, with average
activity values for all organs tested falling within the range of
98% =+ 3% of the organ activity measured in the unstretched
phantom scan. Standardized uptake values (SUVs) measured
from actual PET scans using this semiautomated method corre-
lated reasonably well with radioactivity content measured in
harvested organs (median r = 0.94) and compared favorably
with conventional SUV correlations with harvested organ data
(median r = 0.825). Conclusion: A semiautomated analytic
approach involving coregistration of scan-derived images with
atlas-type images can be used in small-animal whole-body
radiotracer studies to estimate radioactivity concentrations in
organs. This approach is rapid and less labor intensive than are
traditional methods, without diminishing overall accuracy. Such
techniques have the possibility of saving time, effort, and the
number of animals needed for such assessments.

Key Words: image fusion; digital mouse atlas; PET atlas;
small-animal PET

J Nucl Med 2006; 47:1181-1186

Received Aug. 2, 2005; revision accepted Mar. 27, 2006.

For correspondence or reprints contact: Adam L. Kesner, MSc, Department
of Molecular and Medical Pharmacology, UCLA, 10833 LeConte Ave., Center
for Health Sciences, AR-144, Los Angeles, CA 90095-6942.

E-mail: alkesner@mednet.ucla.edu

Guest Editor: Sanjiv Gambbhir

COPYRIGHT © 2006 by the Society of Nuclear Medicine, Inc.

The main goal of the work reported here was to de-
velop and test semiautomated methods to estimate rodent
radiotracer biodistribution from PET scans. The methods
involve image coregistration between actual small-
animal PET scans and a predefined digital mouse phantom
(digital atlas) morphed to match designated features in the
scans.

Software image-registration methods are currently used
for various purposes in medical imaging (/,2). Combining
images from modalities such as MRI, CT, PET, or SPECT
can aid in assessing physiologic function and anatomic
boundaries (3) and can be used for planning therapy such as
surgical procedures or radiation delivery (4,5). Methods of
fusing patient-specific image data with a standard anatomic
atlas have so far largely been focused on brain images
(6,7). The present work was aimed at the further develop-
ment and testing of methods for fusing actual PET scans
with voxelized phantoms requiring minimal end-user input.
Such methods have the potential to be helpful in a wide
variety of applications, including facilitation of radiation
dosimetry measurements, pharmacokinetic compartmental
modeling, and implementation of certain image-processing
techniques.

By coregistering a digital mouse phantom with a small-
animal PET image of a mouse, one can couple general ana-
tomic information with animal-specific information in
assessing biodistribution of tracer activity concentrations.
Using a variation of Shepard’s inverse-distance—weighted
method for scattered data interpolations (§), we developed
an elastic, feature-based algorithm for aligning correspond-
ing anatomic landmarks, using radioactivity-quantifying
data from the PET scan and geometric data from the
digital phantom. The methods for scan analysis were eval-
uated by comparing algorithm-calculated activity values
with the true values in simulated PET acquisitions of multi-
shaped digitized phantoms. The algorithm-calculated
values were also compared with activity distributions
determined by analyzing manual regions of interest (ROIs)
on animal PET images and with activity distributions
determined by measuring the radioactivity content of
tissues harvested from these animals immediately after
imaging.
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MATERIALS AND METHODS

A program was developed on a PC-based platform to allow ra-
pid calculation of tracer activity biodistribution after fusion of a
3-dimensional MOBY digital mouse phantom developed by William
P. Segars (Johns Hopkins Medical Institutions) (9) with small-animal
PET mouse volumes (Fig. 1). In operating the program, the end user
is initially asked to semiautomatically define as many organs as pos-
sible on the small-animal PET scan, using a method in which the user
selects threshold intensities and scan-smoothing values for each
otherwise-automated ROI rendering. This whole process takes a few
seconds for each organ. When each organ is defined, it is overlaid with
a characterizing 3-dimensional grid (Fig. 1) based on an explicit
dimensional-integration center-of-mass weighting method we devel-
oped (Fig. 2). These points act as landmarks within the small-animal
PET scan and correspond to similar predefined landmarks in the
digital phantom. The 2 images are essentially “pinned together” at
these common points. Although it is possible to use more grid points
to define each organ, in initial pilot runs of the program a grid of 15
points was sufficient for delineating the general size and shape of
most organs and represented a practical compromise to avoid unduly
slowing the algorithm.

A representation of these points of definition can be seen in Figure
1A. The actual fusion process consists of 2 further steps. First, the
phantom is stretched in the anterior—posterior and left-right direc-
tions to best match the dimensions of the actual PET scan. No explicit
rostral—caudal stretching is introduced because of complications
arising from variations in the extent to which the animal is inside
the scanning field of view. However, stretching in this dimension
occurs implicitly when landmark points are defined at the rostral and
caudal ends of the scan (e.g., the head and the kidneys, respectively).
Second, 2 sets of n landmark points p; and g; (where p represents the
defined points on the phantom, g represents the defined points on the
scan, and i = 1,...,n) are generated in two 3-dimensional image
representations. The 2 sets can be used to make a new set of n
landmark shift vectors 7, representing the shifts necessary to apply to
the phantom landmark points to map them on top of the scan:

?i:pi_qi 1:1.n

The algorithm will then iterate through all the points ¢, in the
phantom (where £ = 1,...,m; m = number of voxels in phantom)
and calculate a displacement vector d; for each point. The
displacement vector for each point is created as a combination
of all n landmark shift vectors, with the shift vectors that are
nearer point ¢, influencing its displacement vector more:
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where wy, is the weighting factor controlling the influence of each
landmark shift vector for a particular point ¢, and is based on the
distance between the 3-dimensional point coordinates (Cy, Cxy Ckz)
and the coordinates of the phantom landmark points (px, piy, Piz)-
The wy, values are calculated as
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FIGURE 1. Digitized mouse models illustrating image fusion
process. (A) PET volume (left) and digital phantom volume (right)
to be fused together (as 2-dimensional projectional views).
Overlaid on images are points delineating organ volume grids
for several organs (in 2-dimensional view, only 9 of 15 points
used per organ are visible). Points in these grids define pa-
rameters used in transformation of the phantom matrix when
fusing it to PET scan. Organs are defined by user, whereas a set
of points is automatically defined at tip of head (shown in
orange) at the most rostral boundary of whole-body ROI, to
ensure proper rostral-caudal stretching. (B) Spatial warping
applied to grid in phantom space (right) when fused to PET
space (left) for a given slice. (C) Fusion of stretched phantom
coregistered with PET scan.
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FIGURE 2. Methods of defining landmark points for repre-
senting an ROIl. Three-dimensional object (for this example,
kidney) is first spatially integrated over 1 dimension (A) and then
integrated a second time over a second dimension, yielding
1-dimensional volume distribution (B). Center of mass point is
defined at center of this distribution. Dimensional high and low
points are defined at each end of distribution so as to leave 5%
of volume outside these bounds on each side. These 3 points
represent volume in 1 dimension. This process is repeated for
each of 3 spatial dimensions. From these points, an overlying
grid encasing the ROI is constructed (C). Corners of grid are
defined by dimensional high-low boundaries, and additional
landmark points are placed at center of mass and its orthogonal
projections on each face of rectangular grid. COM = center of
mass; pt = point.

Displacement vectors are rounded to integer values for each
dimension, thus originating and terminating at the center of a
voxel (rounding error is assumed negligible because voxel dimen-
sions are less than the resolution of the scanner). Once the dis-
placement vectors are calculated, every voxel can be translated
from the phantom space to the PET space by its displacement
vector. Figure 1B illustrates a grid being stretched and warped
in the phantom space by this method. Completing this process
will create a transformation map between the PET space and the
phantom space. All the tissue- and organ-specific voxels in the
phantom space are then projected into the PET space and assigned
a tissue type in the PET volume at each voxel. A relatively small
number of voxels not assigned a tissue type in the PET space
because of undersampling along the most stretched portions of the
warped phantom are assigned the values of the tissue type most
representative among the immediately adjacent voxels.

From the fused PET/phantom images, corresponding PET in-
formation is assigned to each phantom organ. The software also
allows the user to visually inspect the image coregistration as a
quality control measure. Figure 1C provides a graphic represen-
tation of the fused volumes.

To explore the accuracy of this image coregistration approach,
we examined the PET activity measurements it generated using,
first, simulated PET acquisitions of digital mice of different shapes
and sizes and, second, biodistributions determined through tradi-
tional analysis of 9 actual small-animal PET scans, as well as data
acquired from the immediate harvesting of mouse organs after the
scans and the direct measurement of radiotracer content in a well
counter.

For the first comparison, we evaluated how accurately the
approach could be used to calculate activity distributions in digital
phantoms of varying dimensions with predetermined biodistribu-
tions. Using the MOBY phantom software (9), we generated sev-
eral such phantoms. We measured the lengths, in each of 3
dimensions, of the 9 mice that were later scanned with small-
animal PET. We then determined the average lengths and their
SDs and generated 9 phantoms within a range of body dimensions
representing these average dimension lengths = 2 SDs (Table 1).
Once the phantoms were generated, 2-dimensional PET acquisi-
tions were simulated from each. Axial slices were forward pro-
jected into sinograms, convolved with a 1.8-mm blurring kernel,
adjusted to model the effects of Poisson noise (total image counts
scaled to 1.2 x 107 trues), and then reconstructed using filtered
backprojection and a ramp filter. Attenuation was considered cor-
rected for and not modeled.

This process was performed for the 9 generated digital phan-
toms of varying sizes, plus once more for the unstretched phantom
used as the digital atlas. After repeating this simulation process for
the digital atlas (which was initially assigned the same uniform
radioactivity concentrations per tissue type as for the set of 9
digital phantoms), we were able to measure the degree of lost
accuracy that was due solely to the blurring and noise introduced
in the simulation of the PET acquisition and not to the fusion pro-
cess, because no elastic transformation step was required in con-
junction with that simulation.

Second, we looked at 9 actual small-animal PET scans and
compared the standardized uptake values (SUVs, quantifying
tracer concentration in each organ) based on ROIs defined by
the software program (sSUV) with the SUVs based on manually
defined ROIs (mSUV). In both cases, SUVs were calculated
relative to measured whole-body tracer concentrations as follows:
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Radioactivity Concentration Measurements for 9 Simulated Small-Animal PET Acquisitions

TABLE 1

Simulated mouse

Parameter 1 2 3 4 5 6 7 8 9 Mean SD
Dimension (mm)
X 31.8 25.4 31.8 28.6 28.6 25.4 28.6 28.6 28.6 28.6 2.3
y 22.9 16.9 19.9 22.9 19.9 19.9 16.9 19.9 19.9 19.9 2.1
z 90.9 88.0 89.5 89.5 90.9 89.5 89.5 88.0 89.5 89.5 1.0
Organ software measurement ratio
Heart 0.97 1.03 0.98 0.99 0.98 1.03 1.01 1.02 1.03 1.00 0.03
Liver 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.01
Lung 0.99 1.03 1.00 0.99 1.01 1.02 1.01 1.03 1.04 1.01 0.02
Stomach 1.00 1.03 1.01 1.00 1.01 1.02 1.01 1.02 1.02 1.01 0.01
Kidney 1.02 0.97 0.99 1.00 0.97 0.96 0.99 0.97 0.97 0.98 0.02
Spleen 1.00 0.98 1.03 0.98 0.99 1.00 0.99 1.00 1.01 1.00 0.02
Intestine 0.98 1.00 0.99 1.00 1.00 0.98 1.00 0.99 0.98 0.99 0.01
Bladder 0.96 0.96 0.93 1.00 0.98 0.96 0.97 0.99 0.97 0.97 0.02
Testis 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.00
Rib 0.97 0.97 0.97 0.99 0.97 0.96 0.99 0.99 0.98 0.98 0.01
Spine 0.98 1.01 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.01
Brain 0.99 0.91 0.95 0.97 0.97 0.95 0.95 0.93 0.96 0.95 0.02
Body 0.98 1.00 1.01 1.01 1.00 1.00 1.01 1.03 0.98 1.00 0.01

sSUV = radioactivity concentration in software-defined organ
ROl/radioactivity concentration whole-body volume; mSUV =
radioactivity concentration in manually defined organ ROIl/radio-
activity concentration whole-body volume. SUV ratios were used
as the unit of comparison because this has been the most common
ratio unit used in published PET studies.

As a criterion standard, the SUVs derived from these images
were compared with an analogous unit (hSUV) derived by using a
well counter to measure the actual radioactivity content of organs
harvested from animals immediately on completion of imaging
(hSUYV, or radioactivity concentration measured in harvested
organ/average radioactivity concentration in all harvested tissues),
as previously described (10). For these studies, 9 mice that had not
been kept fasting were imaged twice in a small-animal PET
scanner from the tip of the nose to the caudal extent of the pelvis,
as described previously (10): once with '8F-FDG (10—15 MBq)
and once with '8F-fluorocyclophosphamide (15 MBq synthesized
as recently described (/7)). The 2 scans were acquired within 1 wk
of each other using radiotracers having different routes of excre-
tion, in order to identify as many organs as possible. The actual
radioactivity concentrations reported here are those associated
with the ®F-fluorocyclophosphamide tracer.

RESULTS

As afirst test of the coregistration implemented in our PET
biodistribution software program, we studied 9 simulated
PET acquisitions of mice of varying dimensions. Tables 1 and
2 represent the data from the calculated organ activities
measured for the 9 simulated mouse scans, and their variance,
along with the activity measured in the simulated scan of the
atlas phantom. The data in Table 1 are represented as ratio of
organ activity measured in each simulated scan to organ
activity measured in the simulated atlas phantom scan. The
average activity for each organ fell within the range 0.98 =
0.03. The known organ activities (i.e., before application of
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the blurring kernel and reconstruction algorithms), in arbi-
trary units, were set proportional to those found in typical
mouse '8F-FDG scans, with activities in relatively low-
concentrating organs set to 100.0. A generally close corre-
spondence existed between the values measured in the
simulated scan set and those measured in the simulated atlas
phantom scan, with comparable activity losses occurring in
both (before application of any recovery coefficient factor),
relative to the known activities.

TABLE 2
Activity Concentrations Measured by Software Program
for Simulated Scans of 9 Digital Mouse Phantoms
and Original Atlas Phantom

Measured

activity in Measured  Actual organ
phantom set activity in activity
h=09 atlas-based (before
Organ Mean SD phantom blurring)
Heart 174.2 4.6 173.4 225.0
Liver 128.0 0.7 129.1 160.0
Lung 116.7 2.2 1151 145.0
Stomach 87.3 0.7 86.1 100.0
Kidney 337.4 7.3 343.9 500.0
Spleen 133.7 2.1 133.7 185.0
Intestine 86.2 0.7 86.8 100.0
Bladder 1,561.8 32.6 1,612.0 2,500.0
Testis 83.0 0.3 83.3 100.0
Rib 83.3 1.0 85.2 100.0
Spine 83.3 0.8 83.7 100.0
Brain 165.3 4.1 173.2 235.0
Thalamus 132.0 199 100.1 100.0
Body 97.1 1.3 96.9 121.7

Activity concentrations are in arbitrary units.
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TABLE 3
Correlation Coefficients and Associated P Values
for sSUV or mSUV vs. hSUV

TABLE 4
Correlation Coefficients for Comparison of SUV Methods
with Harvested Organ Data Across All Mice

sSUV vs. hSUV mSUV vs. hSUV

Correlation coefficient

Mouse no. r P r P Organ sSUV vs. hSUV mSUV vs. hSUV
1 0.943 0.001 0.083 0.859 Heart 0.579 0.358
2 0.957 0.001 0.973 0.000 Brain 0.331 0.237
3 0.947 0.001 0.956 0.001 Lung 0.799 0.303
4 0.893 0.007 0.825 0.022 Liver 0.589 0.192
5 0.908 0.005 0.560 0.191 Spleen 0.038 0.193
6 0.999 0.000 0.276 0.550 Large intestine 0.777 0.350
7 0.934 0.002 0.915 0.004 Kidney 0.636 0.513
8 0.483 0.272 0.424 0.343

9 0.996 0.000 0.992 0.000

DISCUSSION

The next test involved calculating organ SUVs in actual
mouse scans. Table 3 provides Pearson correlation coeffi-
cients and associated P values for each of the SUV definition
methods relative to the values obtained from harvesting of
organs (heart, brain, lungs, liver, spleen, large intestines, and
kidneys). Correlation coefficients for the sSSUV versus hSUV
measurements were higher in 7 of the 9 mice (median r =
0.943, with a range of 0.483-0.999) than were those for the
mSUYV versus hSUV measurements (median » = 0.825, with
arange of 0.083-0.992), indicating that data generated with
the semiautomated program for calculating mouse organ
activities from small-animal PET correlated well with har-
vested data and compared favorably with data generated by
manual ROI analysis of the same images. We also evaluated
how well the image-based SUVs correlated with hSUVs
across the mouse scans on an organ-by-organ basis, as shown
in Figure 3 and Table 4. Some organs (e.g., lungs and liver)
contributed to the improved correlation more than others did
(e.g., brain and kidneys). Overall, the correlation coefficients
were higher for sSSUV versus hSUV measurements than for
mSUV versus hSUV measurements for 6 of the 7 organs
examined. The spleen correlation with hSUV values was
poor using either image-based method (possibly because of
its relatively high blood content in images, lost with harvest-
ing) but was worse for sSUVs.

We approached the analysis of PET data through using a
coregistered digital mouse atlas phantom applied to small-
animal PET mouse scans, generating predefined ROIs to be
overlaid on the actual images. After image coregistration, a
complete set of 22 organ ROIs could rapidly be defined,
including those that were not manually definable on the
original PET image. This semiautomated approach requires
2-5 min of human interaction (for organ definition) and 4-6
min for computer processing (using a 3.4-GHz Pentium
4 processor; Intel Corp.). Thus, a researcher, in about 10
min, can evaluate a small-animal PET mouse scan and
obtain biodistribution and time—-activity data for 22 organs
in each animal.

In assessing the robustness of the image coregistration
method per se, we compared activity measurements from
9 simulated PET scans of mice of varying x, y, and z
dimensions with measurements from a simulated scan of a
(nonstretched) atlas. These data, displayed in ratio form in
Table 1, are quite close to unity (mean, 0.99; SD, 0.02),
indicating that the program performs well over a typically
varying range of mouse dimensions.

Compared with the criterion standard of harvested organ
data derived from 9 mice, sSUV data correlated favorably
relative to mSUV data (Tables 3 and 4; Fig. 3). The scans
associated with the most affected datasets (e.g., of mouse 1 and
mouse 6) tended to be of relatively lower image quality, likely
making accurate ROI definitions especially difficult manually.

1.300 - . 1.300 -
*
1.000 P - 1.000 #
@ . E . *
* *
0.700 - 0.700 4 .
* FIGURE 3. Comparison of SUV mea-
surement methods for liver in the 9 mice.
0.400 i . 0.400 . i sSUV (A) and mSUV (B) measurements
0.200 0.700 1.200 0.200 0.700 1.200 are shown relative to hSUV measure-
hSUV hSUV ments (considered the criterion standard).
Regression lines are shown in gray.
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Because the sSUV method was less perturbed by this tendency,
it permitted reasonably accurate ROI measurements for those
scans. This reflects the fact that, with the image fusion process
of the sSUV method, every pixel mapped on the small-animal
PET scan is influenced by many other points of information
and that the definition of the individual organ ROIs with this
method is thus less critically affected by individual organ
uptake levels. A potential advantage of this approach, then, is
that it allows a reasonable estimation of organ radioactivity
contents even for images in which scan quality or target-to-
background ratios are not conducive to precise manual defi-
nition of organ ROIs.

The image transformation and coregistration aspects of
this work used a method adapted from Shepard’s inverse-
distance—weighted interpolation function (8). In our imple-
mentation, the tissue values from the digital phantom were
projected into the PET space. Alternatively, the projections
could have been calculated from the PET space into the
phantom space. That approach has the advantage of avoiding
the lack of an initial atlas-based tissue assignment for some
PET pixels due to the undersampling effect described in the
“Materials and Methods.” When we tested that approach,
however, the processing time increased, and both approaches
yielded similar measurements, affecting less than 1% of the
pixels in each scan.

Many alternative methods of achieving generalized im-
age coregistration have been published and can be explored
in future work. Projectional (/2) and bilinear mapping (/3)
algorithms, spline-based algorithms (/4-16), and mutual
information—based algorithms (/7) are a few such methods.
Algorithms have been compared in several studies (/8-21),
which generally concluded (not surprisingly) that different
methods perform better under different circumstances. Our
work used a landmark-based function because PET is a
relatively low-resolution imaging modality, particularly for
features having a minimal accumulation of tracer above
background level, and thus is well suited to a distance-
weighted-interpolation-function approach that maximizes
the use of the most well-defined regions in each scan.

The establishment of procedures to facilitate analysis of
small-animal PET, as well as human PET, could prove useful
in many areas. The assignment of voxels within a PET scan
to specific tissue types provides a platform for dosimetric
calculations and, potentially, for achieving rapid, patient-
specific dosimetry. Better scan analysis techniques can also
play a role in new radiotracer development, with the possi-
bility of taking advantage of image-based measurements in
animals to replace some of the invasive measurements cur-
rently performed, thus speeding up initial testing and reduc-
ing the number of animals needed for such purposes.

CONCLUSION

The main goal of this work was to develop and test
semiautomated methods of coregistering a digital mouse
phantom image with a small-animal PET image to be used
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in the calculation of activity distributions in PET mouse
scans. Using these methods, we have been able to calculate
radioactivity distributions that are at least as accurate as
those obtained using conventional ROI analyses, with
minimal end-user input. The coregistration of images not
only helps with PET activity calculations but also provides
a 3-dimensional voxelized tissue-based model of the indi-
vidual animal. Such data have the potential to aid in many
applications of image analysis, including radiation dosimetry
calculations, new tracer development, compartmental mod-
eling, attenuation correction, and image deconvolution.
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