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Nonlinear Bayesian regression permits curve fitting to a group
of subjects simultaneously rather than individually. We evalu-
ated this approach for interpreting plasma clearance curves
with the goal of reducing curve-fitting failures and dealing ob-
jectively with problem datasets that may arise in clinical set-
tings. Methods: 99mTc-Diethylenetriaminepentaacetic acid
plasma clearance curves from 79 subjects were analyzed. The
data typically comprised 7–9 samples obtained from 5–10 to
180–240 min after injection. A 2-compartment model was fitted
by Bayesian regression to yield compartmental hyperparam-
eters V1, L21, and L12 corresponding to the volume of the
compartment into which tracer was injected and the transfer
rates from compartment 1 to compartment 2 and from com-
partment 2 to compartment 1, respectively. This also yielded a
clearance estimate for each subject. Results: Estimated hyper-
parameters were V1 � 8.9 L, L21 � 0.026 min�1, and L12 �
0.040 min�1. Conventional methods led to fitting failures in 2 of
the 79 subjects but there were no failures with the Bayesian
method. The hyperparameters were used to calculate the glo-
merular filtration rate for each subject from a single plasma
sample with a root-mean-square error of 7.3 mL/min, which was
not significantly different from the widely used Christensen–
Groth formula. Conclusion: Fewer fitting failures were encoun-
tered than with conventional methods, offering an objective
means of dealing with problem data. This conceptually simple
model can be used directly to calculate clearance from a single
plasma sample. It requires only the 3 parameters described
above, whereas the Christensen–Groth method requires 6 pa-
rameters.
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To calculate tracer clearance from a plasma time–activity
curve, the curve is commonly fitted numerically to a sum of
exponentials. However, this mathematic problem is ill con-
ditioned or ill posed, meaning that small errors in the data
can lead to large errors in calculated quantities such as renal
clearance (1,2). This can lead to negative parameter esti-

mates and can cause convergence failure with iterative
curve-fitting algorithms. This problem has been handled
traditionally by manual intervention, but with no assurance
of a correct result. Modern nonlinear regression programs
better reveal the problem. Anyone who handles many
plasma clearance curves by modern methods will encounter
occasional curve-fitting problems.

When a problem is ill conditioned, one seeks more infor-
mation than the data alone can provide. The observed data
must be supplemented by additional information that re-
stricts the set of possible solutions. As an example, when
filtered backprojection is used in computerized tomography,
conditioning is improved by means of a smoothing filter that
imposes a smoothness restriction on the solution. In the case
of plasma clearance curves, conditioning can be improved
by restricting compartmental parameters to physiologically
reasonable ranges, which can be regarded as a kind of
smoothing. Bayesian regression automatically applies such
a restriction and, thus, can improve conditioning.

Bayesian regression treats all subjects simultaneously, in
contrast to the usual practice of fitting each subject sepa-
rately (3). Parameters for individual subjects are regarded as
drawn from statistical frequency distributions, each de-
scribed by its own hyperparameters. For example, the vol-
ume of the first compartment for a given subject, a conven-
tional parameter, is regarded as a random variable, and the
median of this random variable is a hyperparameter that
describes the subject population as a whole. The solution
space is restricted, which improves the conditioning, by the
implicit requirement that parameters for individual subjects
cluster near the group averages. The clustering need not be
tight. For example, the relative SD for the volume of the
first compartment was found to be 22% (Table 1). This
imposes only a weak restriction.

In 1985, we showed that the parameters of a 2-compart-
ment model could be used directly to estimate clearance
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TABLE 1
Compartmental Hyperparameter Estimates

Parameter Median Relative SD (%)

V1 8.9 L 22
L21 0.026 min�1 6
L12 0.040 min�1 20
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from a single plasma sample (4). This direct method at-
tracted less attention than other methods that were simpler
to program and that were presented in the same publication.
However, the elegance and conceptual simplicity of dealing
with just the 3 parameters of the conventional model were
attractive. With our data, it worked as well as other methods.

In 1986, Christensen and Groth (5) reported a 1-sample
method based on the 2-compartment model that incorpo-
rated an empiric formula for extracellular fluid volume,
providing for variation in body size. That has become the
standard 1-sample method. It fits our own data better than
our 1985 formula and slightly (but not significantly) better
than even the method reported in this article. But it lacks
theoretic elegance: It is a 6-parameter method, none of
which correspond to the parameters of the standard model,
and pediatric use requires a completely different set of
parameters.

Was the Christensen–Groth method better than our 1985
method because of the scaling for patient size implicit in use
of the extracellular volume? That is possible, but we have
never found scaling for size to improve significantly the
results of a 1-sample method unless children were included
(6,7). More likely, our estimates of the compartmental pa-
rameters were not good enough. Until now, our attempts to
obtain better estimates of these parameters have been de-
feated by ill conditioning of the curve-fitting problem.
(With conventional formulation of the problem, different
combinations of the 3 parameters could lead to nearly the
same residual variance.) With the Bayesian method, we
have now found parameters for the simple 2-compartment
model that yield clearance estimates rivaling the best em-
piric methods.

MATERIALS AND METHODS

Patient Population
Volunteers were recruited from adult patients referred for eval-

uation of renal function to the nuclear medicine clinics at the
University of Alabama in Birmingham (63 subjects) or Emory
University (16 subjects). Informed consent was obtained in accord
with institutionally approved procedures. Patients were recruited to
include a broad range of renal function from low to high to ensure
that the model would fit the full range encountered clinically.

Plasma Clearance Curves
After administration of an imaging dose of 185 MBq 99mTc-

diethylenetriaminepentaacetic acid (DTPA), 7–9 blood samples
were obtained from an indwelling catheter over a time interval
beginning 5–10 min after injection and continuing for 180–240
min. The detailed methods have been described (4). All data were
corrected for protein-bound impurities either directly (4,8) or by
counting only the plasma ultrafiltrate (9). If significant dose infil-
tration was seen on images of the injection site, data from that
subject were excluded.

Scaling for Patient Size
The scaling used here has been used by physiologists for cross-

species scaling of physiologic parameters (e.g., plasma volume and
glomerular filtration rate [GFR] from mouse to elephant): volume

parameters are scaled by body weight and flux parameters (clear-
ance, intercompartmental flows) are scaled by body surface area.
We have discussed this scaling method and shown its validity for
human subjects elsewhere (6). (Other investigators, reasoning
from the fact that measurement of extracellular fluid volume in
children tends to correlate better with surface area than with
weight, have obtained useful results scaling volumes by surface
area rather than weight (10). We have been unable, thus far, to
show a statistically significant difference between these 2 scaling
methods in the context of clearance estimation.) Good results with
the scaling method we used earlier (6) are reported in this article.

Bayesian Statistical Model
Overview. A conventional linear 2-compartment model was

assumed, with injection into and excretion from compartment 1
(having virtual volume V1) and with transfer of activity from
compartment 1 to compartment 2 (having transfer coefficient L21)
and in the reverse direction (having transfer coefficient L12). This
is only a model, in which the volumes are virtual volumes that may
not have meaningful physiologic correlates. (The physiologically
meaningful volume is the sum of V1 and V2, which approximates
the extracellular fluid volume.)

The 2-compartment model was fitted by Bayesian regression.
The values of V1, L21, and L12 were allowed to vary from subject
to subject. (Actually, the logarithms of these parameters were used
to ensure that negative values would not arise in the curve-fitting
procedure. For nonnegative physiologic quantities having large
variance, such logarithmic transformation frequently leads to ap-
proximately normal distributions.) The clearance for each subject
was not treated as a random variable but as a unique parameter
describing that subject. The likelihood function for this nonlinear
model was derived in the manner described by Gelman et al. (3)
for the closely related linear model. A noninformative uniform
prior distribution was used except for the variance parameters,
which were restricted to a physiologically reasonable range. To
obtain hyperparameter estimates from the posterior distribution
(which is simply the product of the likelihood function and the
prior distribution), the mode of the posterior distribution was
calculated using the program of Bunch et al. (11).

Equations. Consider a time–activity curve from a 2-compart-
ment model with N plasma samples designated by index i. At
sample time ti, let the observed activity be yi and the predicted
activity fi. Each fi is a function of the sample time ti and the vector
� of compartmental parameters having M components �j. (In this
case M � 3, and the components of vector � are the 3 parameters
V1, L12, and L12.) Assume that yi � fi � �i, where the measure-
ment errors �i are normally distributed with mean 0 and variance
�2. This is the standard nonlinear regression model for a compart-
mental model, so that fi can be calculated from ti and � by standard
methods.

Now extend this model from a single subject to a group of K
subjects, each designated by index k, and extend the notation by
replacing each subscript i by ik. Assume that �jk � �0j � �jk,
where b0j is constant and �jk is normally distributed with mean 0
and variance �j

2. (Here j indexes a component of the parameter
vector, and k indexes a subject.) Following the reasoning given by
Gelman et al. (3) for the closely related linear regression model
leads one to the following expression for the likelihood function:

2 ln �lik	 � ��
k�1

K �
i�1

N �
2yik

�2 � ln �2� � �
k�1

K �
j�1

M �
2�jk

�j
2 � ln ��j

2� ,
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where ln(lik) is the log likelihood, 
yik is a residual (the difference
yik � fik between observed and predicted values), and 
�jk is the
difference �jk – �0j between �jk and its expected value �0j. Calcu-
lation of the residuals 
yik, which involves calculating predicted
activities from the parameters, can be done by various methods for
this standard linear compartmental model. We used a matrix di-
agonalization method in order not to limit the computer program to
2 compartments, although only 2 compartments are used in this
article (12).

The Bayesian posterior distribution is the product of the above
likelihood function and the Bayesian prior distribution. We as-
sumed a noninformative uniform prior distribution (simply a factor
of 1) for each parameter other than the variance parameters, and so
these factors can be ignored. The variance parameters (squares of
the SDs) were treated differently because simple noninformative
prior distributions for variance parameters place too much mass at
the origin when using hierarchic models. (Some parameters may
shrink to 0 when finding the mode numerically.) As suggested by
Gelman et al. (3), the prior distribution for each variance parameter
was taken as a scaled inverse �2 distribution that embraced a
physically reasonable range for the variance parameters. Thus,

f��	 �
�/2	�/2	

��/2	
s���/2�1	e�s2/�2�	,

where f(�) is the probability density function for parameter �, 
and s are parameters of the distribution, and � is the mathematic
�-function. The variance hyperparameter for measuring plasma
activity was forced into a range of approximately 1%–10% (ex-
pressed as relative SD), a range chosen from experience with
similar measurements, by selecting values of 3 and 0.0004 for 
and s, respectively. The variance hyperparameters for compart-
mental parameters were forced into a range of approximately
10%–40% by selecting values of 7 and 0.04 for  and s, respec-
tively. The posterior distribution was obtained by multiplying the
above likelihood function by the product of these inverse �2

factors, one for each variance hyperparameter. The compartmental
hyperparameters were then estimated by finding the mode of the
posterior distribution numerically.

Conventional Statistical Model
As in our previous work (7,13), weighted regression was used

on the basis of the premise that measurement error arises chiefly
from volumetric laboratory manipulations. Measurement error was
thus assumed proportional to the measured activity. (For the data
presented in this article, unweighted regression was found to
increase the number of fitting failures and would have led to an
even more favorable comparison for the Bayesian model.)

RESULTS

The estimates of the Bayesian hyperparameters are
shown in Table 1. Because logarithms of the parameters
were used, Table 1 presents the median and relative SD
(relative to the measured value), which take simple forms
under the logarithmic transformation.

Although conventional methods led to fitting failures in 2
subjects, no failures occurred with the Bayesian model so
that all 79 subjects were included in the results shown in
Table 1. The residual SD attributable to measurement error
was 3.4%, close to the value of 3% determined by direct

measurement of pipeting error (13). For the 77 subjects
for whom the data could be fitted by conventional methods,
the root-mean-square (rms) difference between Bayesian
and conventional clearance estimates was small, only 3.4
mL/min.

The parameter values and variances indicated above cor-
respond to the joint mode of the posterior distribution. (Note
that, from the Bayesian viewpoint, the statistical parameters
themselves have a frequency distribution, so that we can
speak of the mode of the median, and there is no discrep-
ancy with the headings in Table 1.) A full Bayesian analysis

FIGURE 1. Correlation of Bayesian 1- and 2-sample methods
and Christensen–Groth 1-sample method (5) with multisample
reference method. Sampling was at approximately 3 h for
1-sample methods and at 1 and 3 h for 2-sample method.
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can describe the entire distribution. Thus, we were able to
apply the Metropolis algorithm (3) to obtain a pseudoran-
dom sample from the posterior distribution, but the size of
the problem (441 parameters, including latent parameters)
meant difficulty in scaling and very slow convergence,
measured in days. The sample medians calculated in this
way for V1 (8.3 L), L21 (0.033 min�1), and L12 (0.048
min�1) differed somewhat from the modal estimates shown
in Table 1, not surprising when the number of parameters is
large in proportion to the number of data points. (Both
methods estimated the median of the population, but one
was based on the mode of the posterior distribution and the
other was based on the median of a sample drawn from the
posterior distribution by means of the Metropolis algo-
rithm.) However, clearance estimates for individual subjects
were quite precise: For these, the mean interquartile range,
or mean interval from 25 percentile to 75 percentile (a
measure of error in the clearance measurement), was 3.3
mL/min/1.73 m2. Furthermore, for single-subject clearance,
the Metropolis and modal estimates were in close agreement
(rms difference, 1.7 mL/min/1.73 m2). We conclude that the
modal parameter estimates of Table 1 are satisfactory for
calculating clearance. In a larger study, the Metropolis
method would not be practical, and so it is fortunate that the
simpler modal estimates suffice.

Individualized error estimates can be calculated for the
clearance of each subject (from an individual multisample
time–activity curve) by means of the Metropolis algorithm.
The largest interquartile range for a single subject in this
study was 11 mL/min/1.73 m2, nearly 4 times the average
value of 3.3 mL/min/1.73 m2. The clearance itself can be
calculated quickly, but calculating the error estimate can
take as much as 1 h with our present software and is not
practical for routine use.

The hyperparameters in Table 1 can also be used as a
prior distribution for direct estimation of clearance from 1
or 2 (or more) plasma samples. In the 1-sample case, this is
mathematically equivalent to the Newton’s method ap-
proach that we have described (4), so that programming is
simple and execution is fast. (Only the clearance is un-
known because the other single-patient parameters are the
same as the group hyperparameters.) The results are shown
in Figure 1. We found an rms error of 7.3 mL/min/m2 using
a single sample at 180 min and 4.5 mL/min/1.73 m2 using 2
samples at 60 and 180 min. For comparison, using the
formula of Christensen and Groth (5) with our data, the rms
error was 6.8 mL/min/1.73 m2. The difference between the
2 single-sample methods was not statistically significant (F
test; P � 0.05). Another comparison is shown in Figure 2,
which shows the GFR calculated by each method versus the
effective volume of distribution at 3 h for an adult of normal
height and weight. Note the close agreement between the 2
methods.

DISCUSSION

In contrast to the Bayesian method, the conventional
method was more susceptible to fitting failures, which oc-
curred in 2 of the 79 subjects. In a research study, such
datasets can be deleted, but in the clinic, fitting failure can
be a serious problem. The Bayesian method reduced the
number of such failures, providing an objective means of
dealing with problem datasets.

The method used to scale for height and weight has been
used successfully in the past to extrapolate from adult to
pediatric data (6), so it is of interest to try such extrapolation
with the current model. Figure 3 compares this Bayesian
model with pediatric formulas proposed by Groth and
Aasted (10) and by Ham and Piepsz (14). GFR as calculated

FIGURE 2. GFR vs. effective volume
(Veff) of distribution at 3 h after injection,
for adult of average size, calculated from
Bayesian parameter estimates and from
Christensen–Groth formula (5).

BAYESIAN MODEL FOR PLASMA CLEARANCE • Russell et al. 765



by all 3 methods is plotted against effective volume of
distribution at 120 min for a 1-y-old child of average height
and weight. (The 2 pediatric methods were derived for
51Cr-ethylenediaminetetraacetic acid [EDTA], not 99mTc-
DTPA, but the properties of these agents are known to be
similar.) Note the close agreement between the Bayesian
2-compartment model and the Groth–Aasted pediatric for-
mula. The same Bayesian model (with identical parameters)
was used for adults and children, unlike the Groth formulas,
which differ for adults (Christensen–Groth) (5) and children
(Groth–Aasted). Although Figure 3 is highly suggestive, it
must be emphasized that this method has not been tested
directly in children. The Bayesian model clearly fits pub-
lished pediatric data for 51Cr-EDTA, but it should be tested
with pediatric data for 99mTc-DTPA as well.

For adult subjects this method led to results that did not
differ significantly from the standard Christensen–Groth
method (5). Note that this model has only 3 adjustable
parameters compared with 6 in the Christensen–Groth for-
mula (including the 2 parameters required to calculate ex-
tracellular volume). The Christensen–Groth formula cannot
be used for children; instead, there is a separate Groth–
Aasted formula (10). We suggest direct use of the 2-com-
partment model with the same 3 parameters for adults and
children.

CONCLUSION

A Bayesian 2-compartment model was applied to the
plasma clearance of 99mTc-DTPA. Compartmental parame-
ters were estimated by fitting a single global model simul-
taneously to data from multiple subjects. The result was a
conceptually simple 2-compartment model having only 3

adjustable parameters that can be used in lieu of empiric
formulas for 1-sample and 2-sample clearance estimation.
This approach can also be used for more robust fitting of
multisample clearance curves, with fewer fitting failures
than conventional methods, to provide a means of dealing
with problem datasets.
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