
INVITED COMMENTARY

Myocardial Adrenergic Dysinnervation
in Dilated Cardiomyopathy: Cornerstone
or Epiphenomenon?

During the last few decades, inter-
est in inflammatory cardiomyopathy
has been growing. This interest has
developed over the years because of
substantial animal experimental data
supporting the hypothesis that a patho-
genetic link exists between infectious
agents (usually viruses) and subse-
quent immune-mediated damage to the
myocardium resulting in dilated car-
diomyopathy (1–3) and because of hu-
man studies providing evidence of a
significant prevalence of the viral ge-
nome in the heart of patients with di-
lated cardiomyopathy (2). These stud-
ies provided new insights into the
immunologic mechanisms of the dis-
ease and into potential therapies for
humans (4). Although a possible
causal link between myocarditis and
dilated cardiomyopathy has been sug-
gested (5,6), definitive proof of such a
link is still lacking. Dilated cardiomy-
opathy is an important cause of heart
failure. A recent analysis of the data
published between 1966 and 1997
showed a 21% incidence of progres-
sion to dilated cardiomyopathy over a
mean of 3 y (7) in patients with a
clinical or histologic diagnosis of acute
myocarditis of viral or unknown ori-
gin.

Whatever the cause of heart failure,
increased adrenergic activity plays a
critical role in the evolution of the dis-
ease. Much experimental evidence has

accumulated over the past few decades
that shows that the failing human heart
is adrenergically supported (8–10),
and adrenergic support helps to main-
tain cardiac performance over the short
term by modulating contractility and
heart rate. A possibility is that it is the
increase in cardiac adrenergic drive,
leading to local release of the adrener-
gic neurotransmitter, rather than an in-
crease in circulating norepinephrine
(NE) that is both initially supportive
and then ultimately deleterious to the
failing heart (11–13). Catecholamines
are actually cytotoxic substances. Ox-
idative metabolites of epinephrine
have been shown to induce coronary
spasm, arrhythmias, myocardial necro-
sis and ultrastructural damage, and
ventricular dysfunction (14,15). Hy-
droxydopamine acts as a neurotoxin
that causes degeneration of sympa-
thetic nerve endings and leads to myo-
cardial denervation lesions, which
have been shown with 123I-metaiodo-
benzylguanidine (MIBG) imaging (16,17).
Specifically, chronic overexposure of
the heart to norepinephrine causes hy-
pertrophy, ischemia, and myocyte in-
jury. Norepinephrine in concentrations
found in the failing heart can induce
myocyte damage (18). Some investiga-
tors have speculated that the sympa-
thetic nerve endings are probably dam-
aged by NE-derived free radicals (19).
These toxic metabolites of NE were
thought to be formed outside the neurons
and taken up into the nerve terminals by
the uptake-1 transporter (19,20). This
speculation was confirmed by mea-
surements of increased hydroxyl free-
radical generation by nonenzymatic
autooxidation of NE in the heart after
NE administration (21) and after car-
diac sympathetic nerve stimulation

(22). The NE cardiotoxicity in isolated
hearts was completely abolished by su-
peroxide dismutase, supporting the hy-
pothesis that the NE toxicity is medi-
ated by NE-derived free radicals (23).
Some reports on animal models have
shown that exposure to high catechol-
amine levels could cause a loss of
uptake-1 carrier site (24–26) in a way
similar to that observed for �-adrener-
gic receptors. Because neuronal re-
uptake of NE is the major mechanism
for terminating action of NE on the
myocardial �-receptors, this impair-
ment of uptake-1 can further accentu-
ate myocyte hyperstimulation to the
neurotransmitter (27,28), creating a vi-
cious circle at the synaptic level and
explaining, in part, why decreased
MIBG uptake showed a potent prog-
nostic value in heart failure (29–31).

The continuously increased adrener-
gic drive present in the failing heart
delivers deleterious transducing sig-
nals to the myocyte through �- and,
presumably, �2- and �1-adrenergic re-
ceptors. In the failing heart, �-adren-
ergic signal transduction is blunted
secondary to desensitization, because
of changes in �1 and �2 receptors,
muscarinic receptor density, inhibitory
G protein (an enzyme responsible for
modulating receptor activity by phos-
phorylation), and even the expression
of the adenylate cyclase enzyme itself
(32–34).

In the end-stage failing heart, a
50%–60% reduction in the total sig-
nal-transducing potential is found, but
substantial adrenergic neurotransmis-
sion capacity is preserved (32). These
data suggest that the desensitization of
the �-adrenergic receptor pathway
present in the failing heart may serve a
cardioprotective role (35,36).
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The concept that the adrenergic ner-
vous system has a dysregulatory role in
chronic heart failure was confirmed
when the beneficial effects of �-block-
ade on both hemodynamic condition
and clinical outcome were shown. Nu-
merous clinical trials have shown mul-
tiple benefits of �-blocker therapy in
patients with chronic congestive heart
failure who remain symptomatic de-
spite the use of optimal triple therapy
(digoxin, diuretics, and angiotensin-
converting enzyme [ACE] inhibitors).
Three large, randomized, placebo-con-
trolled trials (37–39) were stopped
early because of substantial reductions
in mortality in the active-treatment
groups. On the basis of a metaanalysis
of 22 trials involving 10,135 patients
with heart failure, the use of �-block-
ers led to the saving of 3.8 lives and
the avoidance of 4 hospitalizations for
every 100 patients treated for 1 y (40).

Carvedilol is a third-generation
�-blocker that combines nonselective
�-blockade, �-blockade, and antioxi-
dant effects (41,42). The unique phar-
macologic profile of carvedilol may of-
fer a particular advantage compared
with other �-blockers in heart failure
and may have caused the apparently
better results observed with use of
carvedilol in severe heart failure (43),
compared with other �-blockers (44).

In this issue of The Journal of Nu-
clear Medicine, Watanabe et al. (45)
report data showing cardioprotective
effects of carvedilol on a rat model of
dilated cardiomyopathy induced by au-
toimmune myocarditis. This model
created autoimmune reactions in rats
through injection of cardiac myosin,
which leads to a constant morbidity
and a 25% mortality from severe myo-
cardiopericarditis. After 4 wk, the sur-
vivors were treated orally with either
carvedilol solution or vehicle solution
alone. The protective effect of carve-
dilol was estimated by its ability to
improve hemodynamic variables such
as heart rate and left ventricular end-
diastolic pressure; mainly, to improve
myocardial adrenergic status as as-
sessed by MIBG uptake and clearance;
and, finally, to decrease myocardial fi-
brosis.

The rationale for the choice of
MIBG uptake and clearance to evalu-
ate the effects of the treatment was
based on previous experimental and
clinical work on heart failure. Because
the integrity of the sympathetic path-
way determines myocardial fixation of
MIBG, it is reduced in parallel with the
alteration of norepinephrine uptake
(46) and correlates with the myocardial
content in norepinephrine in experi-
mental heart failure (47) and with the
degree of myocyte degeneration and
necrosis in congestive heart failure
(48). This factor contributes largely to
the potent relationship reported be-
tween MIBG uptake and the unfavor-
able outcome in dilated cardiomyopa-
thy (29–31). The washout rate of
MIBG uptake may reflect norepineph-
rine spillover. Whether MIBG washout
confers additional clinical information
remains, however, uncertain (31).

The finding, reported by Watanabe
et al. (45), that carvedilol exerts car-
dioprotective properties on myocardial
adrenergic innervation is in line with
previous clinical data. MIBG uptake
was reported to increase after spirono-
lactone (49) and ACE-inhibitor treat-
ments (50). The effects of �-blocker
treatment on MIBG uptake have also
been investigated in some studies. No
change in MIBG uptake was found
after 3 mo of bucindolol administration
(51). Conversely, an increase in MIBG
uptake was reported after open-label
metoprolol (52,53), carvedilol (54,55),
or other agents (56,57) in either is-
chemic or nonischemic heart failure.
Some reports indicated that MIBG im-
aging was also useful in predicting the
response to therapy (56,58). These data
suggest that the NE reuptake mecha-
nism is improved with �-blockers,
which may contribute to the improve-
ment in cardiac function. Nevertheless,
whether this effect is caused by
�-blockers per se or is secondary to the
overall improvement in hemodynamics
remains unclear, although a report has
shown that the changes in MIBG ki-
netics preceded the increase in left
ventricular ejection fraction (56).

In the light of experimental data
such as shown by Watanabe et al. (45)

and in previous clinical reports, the
myocardial adrenergic dysinnervation
assessed by neuroimaging techniques
in dilated cardiomyopathy has impor-
tant clinical implications. MIBG imag-
ing may thus help risk-stratify heart
failure patients and monitor the effects
of medical therapy, especially in pa-
tients treated with �-blockers. In pa-
tients who have heart failure from di-
lated cardiomyopathy but untreated by
�-blockers, MIBG imaging and radio-
nuclide left ventricular ejection frac-
tion are likely challenged by the mea-
surement of exercise capacity (maximal
oxygen consumption, or peak VO2) in
assessing prognosis (31). However,
these 2 nuclear medicine techniques
are the best noninvasive indices to ob-
jectively evaluate the response to
�-blocking agents. The value of peak
VO2 measurement in this situation re-
mains controversial. Although patients
generally report an improvement in
functional status, peak exercise capac-
ity remains unchanged or slightly re-
duced after carvedilol, with the reduc-
tion in peak exercise heart rate being
the mechanism generally advocated to
explain this discrepancy. Carvedilol
seems to have lesser effects on exer-
cise tolerance than does metoprolol
(59). In controlled studies, carvedilol
did not exhibit a significant effect on
treadmill exercise capacity, compared
with the effect of placebo (60–64). If
the reality of the adverse effects of
myocardial adrenergic dysinnervation
on dilated cardiomyopathy is not ques-
tionable, some considerations may
limit the practical consequences of this
alteration. In the case of full anatomic
denervation in cardiac transplantation,
leading to dramatically decreased
MIBG uptake in the heart (65), the
only apparent physiologic conse-
quence appears to be a prolongation of
the action of �-receptor agonists,
which are usually taken up through the
uptake-1 carrier system (12). This can
be explained by the fact that in the
transplanted heart, NE concentration
does not increase at the receptor site.
Indeed, in a dog model associating ex-
perimental heart failure and ventricular
denervation, significantly less catechol-
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amine-induced desensitization was found
in comparison with dogs having the
same heart failure but intact myocar-
dial adrenergic innervation (66). These
data and others (67) indicate that the
presence of normal ventricular inner-
vation is required for physiologic ex-
pression of catecholamine overexposure.

The finding of Watanabe et al. (45)
that carvedilol may prevent progres-
sion to dilated cardiomyopathy after
myocardial injury is in accordance
with a large body of evidence that
�-blockers prevent deterioration in
function and progression in remodel-
ing (68–72) and even reverse remod-
eling (70,72). These data may encour-
age those who try to extend this
experience to other types of myocardial
injury, such as that present in anthra-
cycline-induced cardiomyopathy (73).
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