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A meta-analysis of data primarily from PET oncologic investiga-
tions using FDG PET was performed. Its purpose was to
establish statistical features of the distributions of standardized
uptake values (SUVs) as possible aids in the diagnostic process.
Methods: We obtained 1536 values of oncologic markers from
patient studies of 40 investigations in the literature. Statistical
parameters were tabulated for analysis. Results: A significant
observation is that, unlike skewed SUV histograms, log10SUV
has Gaussian behavior, which is not uncommon for biologic
quantities. This was found for SUVs of FDG and 2 amino acids as
well as a few other cancer markers. A possible model for
explaining this is proposed. For FDG, the SD s of the log10SUVs
for an average cancer category was 0.23. Examining data
within the framework of the model points to physiologic factors
as dominating SUV variability rather than PET protocols. When
data for a single cancer category were available from mul-
tiple institutions, averages, SUVs, disagree beyond chance
expectations. Diagnostic utility suggestions include a universal
linear relationship between sensitivity and severity, defined
as SUV/SUV, on semilogarithmic probability paper; a generic
receiver-operating-characteristic curve for all cancers; using
[log10(SUVmal/SUVnorm)] 4 (smal

2 1 snorm
2)1/2 as a simple diagnos-

tic effectiveness measure; and using Gaussian log10SUVs to
avoid erroneous P values. Conclusion: Using the logarithms of
markers, such as SUVs, several advantages stemming from their
Gaussian nature can be achieved with benefits ensuing to the
diagnostic process.
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Presently, FDG is the most popular tracer in PET oncology.
This stems from tumor metabolism being characterized by
enhanced glycolysis compared with normal or benign tissue.
A frequently used quantitative aid is the standardized uptake
value (SUV), which is basically the ratio of 2 specific
activities: that of a tumor at the study’s end and a temporally
constant entire body average. Its clinical appeal, compared
with various other quantitative approaches, lies in its
simplicity. Thus, the SUV is very commonly used as an
adjunct to visual interpretations. Not surprisingly, an over-

whelming volume of SUV data has accrued in PET onco-
logic literature.

An underlying premise of this investigation is that the
application of statistical information contained in SUV data
might improve diagnostic usage of the latter. Statistical
models have been applied (1–3) to cerebral glucose metabo-
lism and blood flow with analogous motives. That oncologic
diagnostic methods might benefit from a statistical study of
SUVs stems from a basic principle that the mean values,
SUVs, and shapes of overlapping benign or normal and
malignant SUV distributions (i.e., histograms) directly deter-
mine a study’s sensitivity and specificity (4). TheSUV 6 SD
is universally reported for patient subgroups. However,
research on distribution shape and its influences on the
underlying performance of the FDG protocol is essentially
nonexistent. A rare exception is the research of Ponto et al.
(5), who showed histograms of normal liver, spinal verte-
brae, and thyroid FDG SUVs; however, those data were
summarized as means6 SD for further use. An investigator,
recognizing that the SUVs skew toward high values, might,
on rare occasions, report a median rather than a mean.
However, the consequences of this shape have been ignored.
In t testing, ANOVA, Pearson correlations, and so forth,
failure to recognize the skewed distributions that violate
Gaussian assumptions can possibly lead to incorrect
conclusions.

Besides documenting SUV distribution features extracted
from data in FDG literature, we have searched for practical
applications of these in diagnoses and for insights offered:
These include addressing underlying phenomena respon-
sible for distribution features. This has yet to be confronted
even though reducing distribution widths (i.e., data variabili-
ties) would have an immediate payoff in terms of improved
sensitivity and specificity.

In many facets of biology, research has been directed
toward statistical distributions. A not uncommon result in
many investigations came from the logarithms of observable
biologic quantities. These, rather than the quantities them-
selves, exhibited nature’s ever-prevailing Gaussian (or nor-
mal) histogram shape (6). Prominent among explanations for
this is the law of proportionate effects involving randomness
in multiplicative factors occurring in a process (Appendix).
A few examples of lognormal behavior among numerous
ones in the literature are doubling times of cancers, sizes and
weights of species, sensitivities to drugs, tumor sizes, and
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cell geometric quantities including cell density in tumors.
Taking this cue from others, our work therefore examines
the consequences of hypothesizing a lognormal distribution
for the SUVs—that is, testing log10SUV data for a Gaussian
shape.

MATERIALS AND METHODS

A well-planned, multicenter prospective investigation would be
the ideal approach for obtaining the SUV data. However, many
patients would be required. Therefore, as an initial exploration that
can give immediate results, a compromise approach was to use
meta-analysis (7). With this technique, SUV distribution data were
examined retrospectively in each of many separate historical
investigations. Its limitations must be recognized (8). For example,
discussions of patient population characteristics below point out
some issues.

An oncology database that was created required defining
acceptance criteria. The database emphasized primarily the SUVs
of malignant lesions in FDG PET. It sought variety in cancer
categories and institutions studying these, provided there were
sufficient numbers of lesions in each investigation:

ã From an investigation, n$ 20 lesion or normal tissue
quantifiers, with these obtained from a minimum of 13
(human) patients

ã Reported individual quantifier values identifiable in a tabula-
tion or graph

ã Exclusion of studies that monitor the effects of treatment
ã Investigations appearing in English language publications

since 1987
ã Accepting the investigator’s defined patient population and

classification of cancer studies, but not having metastases
from a particular type mixed into a category having other
types. The investigator’s policy on whether to exclude
diabetics was also accepted.

Most investigations included scans of only untreated patients.
Otherwise, months between treatment and scanning would be
typical. Ideally, classifications might be based on the many discrete
classes from histology. Unfortunately, if these were used the
number of available published investigations would be substan-
tially reduced, and this would often lead to subgroups having too
few patients for statistical analyses. Hence, cancer classifications of
investigators were adopted here.

For purposes of some limited comparison with FDG SUVs, data
from 2 amino acid PET tracers as well as cancer markers from CT,
tumor volume, and DNA were included. The SUVs from a few
investigations of normal tissues were also examined. Unfortu-
nately, publication bias (investigators more prone to publish tumor
data) discriminates against having more normal tissues repre-
sented.

For each investigation, there was a tabulation of its quantitative
marker—usually SUV—with the postinjection time for its evalua-
tion noted. These markers provided the input information to
spreadsheet (Lotus 1-2-3. Cambridge, MA: Lotus Development
Corp.; 1989) and statistical (Statistica. Tulsa, OK: StatSoft, Inc.;
1997) software. Only in one sixth of the PET investigations were
there corrections involving the partial-volume effect, plasma
glucose concentration, and body fat content. One fifth of the FDG
investigations were conducted with diabetics excluded; in all
others, only a few cases of abnormally high glucose were reported.

Popular quantifiers of distributions were calculated. Other
specific statistical measures were Lilliefors implementation of the
Kolmogorov-Smirnov goodness-of-fit test for Gaussian behavior,
Kruskal-Wallis analysis of variance by ranks, and Bartlett’s test for
equality of variances.

RESULTS

Using the SUV data of Delbeke et al. (9) as typical, Figure
1 shows the tendency of the histogram to be positively
skewed (i.e., toward higher values). Such histograms are
characterized by 3 parameters: mean, SD, and skew (Appen-
dix, skew formulae). On the other hand, the log10SUV
histogram of these data is symmetric and would be well
characterized by just SDs and mean. Tables 1 and 2
summarize the statistical findings of this meta-analysis. For
example, the data of Figure 1 were used in calculations for
one of the rows in Table 1. A result showing indications of
how logarithms reduce and remove the positive skew may
be found in the columns of skew4 its measurement SE. The
2.9 average of this quantity for SUVs from 25 FDG tumor
investigations was rather high; the average was only 0.3 for
log10SUVs.

Although histogram presentations are the more common,
a plot of the type in Figure 2 better facilitates visualizing
whether distributions have a Gaussian character. In such
plots, Gaussians are straight lines (Appendix). This compos-

FIGURE 1. Histograms of 83 metastatic liver lesions from
Delbeke et al. (9) as representative. Highly skewed FDG SUV
distribution (A) becomes Gaussian when its logarithm is used
(B). Mean and s of latter are 0.89 and 0.18, respectively, from
Table 1.
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ite of all investigations shows such behavior. By using SUV/
SUV as an index of severity, diverse cancer types can be
compared. The averages 5 0.23 from Table 1 has its
reciprocal defining the well-fitting slope shown. However,
for a more stringent test of the hypothesis that log10SUVs are
Gaussian, whereas SUVs are not,P values of the Lilliefors-
Kolmogorov-Smirnov test were used. In Tables 1 and 2, a
low criterion (P , 0.01 for non-Gaussian occurring by
chance) was used in assigning Gaussian or non-Gaussian
distribution because of many investigations analyzed simul-
taneously. For all investigations of malignancies in Tables 1
and 2, almost half of the SUVs failed to fit a Gaussian
distribution, whereas the log10SUV failed in only 1 investiga-
tion.

Thess in Tables 1 and 2 can be examined statistically for
possible evidence of any commonality among the various
categories. For example, even SUVs of normal tissues and
the 2 amino acids’ scans showss not too far from those of
FDG in tumors. Table 1 data show that 68% of the
coefficients of variation (CVs) of SUVs are within60.14 of
their average 0.55. Correspondingly, 68% of thess are
within 60.05 of their average 0.23. However, in spite of
these similarities, Bartlett’s test of the 25 investigations
making up this latter result showed that these do not all have
statistically equal variancessi

2 (P , 0.001)—that is, differ-
ences among the categories are significant. Thus, no overall
commonality was detectable from thess. However, within a
certain type of investigation, as an inspection of non-

TABLE 1
Statistical Features of FDG PET for Various Cancer Categories and Some Normal Tissues

Category* n

SUV or T/N log10 value

Average
value CV Skew/SE G/NG

Average
log10 value s Skew/SE G/NG

Malignancy: SUVs
Non-Hodgkin’s lymphoma 21 8.0 0.69 2.3 NG 0.81 0.29 0.2 G

22 9.2 0.56 1.1 G 0.89 0.29 21.4 G
22 12.5 0.64 1.7 NG 1.02 0.27 0.4 G
46 5.9 0.91 4.8 NG 0.64 0.32 1.8 NG

Hodgkin’s lymphoma 68 5.8 0.62 3.3 NG 0.68 0.26 0.4 G
Lymphoma (all) 34 5.5 0.35 0.6 G† 0.71 0.17 21.7 G†

23 7.8 0.48 1.7 G 0.85 0.21 20.5 G
Breast 24 4.5 0.65 2.2 G 0.57 0.27 0.3 G

41 3.5 0.48 3.5 G 0.49 0.20 20.1 G
36 5.1 0.71 5.9 NG 0.63 0.23 2.0 G
26 12.8 0.73 3.3 G 1.02 0.29 0.1 G

Pancreas 42 3.2 0.52 1.9 G 0.45 0.24 20.7 G
34 4.4 0.56 6.1 G 0.60 0.18 2.3 G
23 6.5 0.52 3.2 NG 0.77 0.18 1.9 G

Lung 23 5.9 0.41 1.6 G 0.74 0.18 20.0 G
43 6.8 0.51 1.6 G 0.77 0.23 20.7 G

Head and neck squamous cell 48 3.2 0.28 2.7 NG 0.49 0.11 1.5 G
22 6.3 0.50 1.1 G† 0.74 0.24 20.7 G†
37 9.4 0.38 0.1 G 0.94 0.19 21.7 G

Sarcoma 20 6.4 0.48 1.1 G 0.76 0.22 20.4 G
Liver metastases 83 8.4 0.47 6.4 NG 0.89 0.18 0.9 G
Lymph node metastases 41 5.4 0.43 1.0 G 0.69 0.21 21.7 G
Melanoma 20 8.5 0.72 1.6 NG 0.83 0.31 0.2 G
Ovary 49 4.5 0.61 7.9 NG 0.60 0.20 2.1 G
Meningioma 73 5.2 0.37 4.9 NG 0.69 0.14 2.2 G

Average 37 0.55 2.9 0.23 0.3
Malignancy: T/Ns

Lung 31 8.6 0.74 3.5 G 0.84 0.29 0.4 G
Brain 86 1.0 0.47 4.2 NG 20.04 0.21 21.2 G
Pancreas 24 3.2 0.39 1.0 G 0.48 0.17 20.1 G

Normal tissue: SUVs
Liver 37 2.7 0.21 1.3 G 0.43 0.09 0.3 G

82 1.7 0.31 4.8 NG 0.22 0.13 0.6 NG
24 2.5 0.18 2.4 NG 0.40 0.07 1.7 G

Lung 26 2.9 0.78 3.9 NG 0.35 0.32 20.3 G

*Bibliography of references pertaining to all studies is available on request.
†For all investigations but these, logarithms gave a better fit to a Gaussian.
T/N 5 tumor-to-normal tissue ratio; CV 5 coefficient of variation; SE 5 SE of skew; G/NG 5 Gaussian or non-Gaussian distribution; s 5 SD

of log10 values.

1666 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 41 • No. 10 • October 2000



Hodgkin’s lymphoma or breast cancerss shows, it may be
that a commons could exist.

In 4 of the FDG investigations the average number of
lesions per patient exceeds 1.5. As 1 type of assessment of
any multiple lesion effect, where data were available,
calculations were also performed with a patient’s multiple
lesions replaced by just a single lesion with an average SUV.
In no instance did this have more than a 1.05 factor effect on
an investigation’s CV.

The average time of evaluations for FDG SUVs in tumor
studies was 57 min, with a SD of 8.5 min. This leads to
variability associated with the rising SUV(t). Results of a
simple theory (10), based on population SUV(t) of several
cancers, gives (d[SUV]/dt)57 min 3 (8.5 min)/(average

SUV) < 0.035. This, on average, is the small CV effect
attributable to68.5-min evaluation time variations.

Other data at the bottom of Table 1 and in Table 2
supplement that of FDG SUVs for tumors. These data also
exhibited lognormal behavior. This tends to suggest a wide
occurrence of this distribution among markers. The few data
from modalities other than PET, with considerable variety in
their methods and tissues, showed more scatter in thes
values tabulated—that is, more than the 0.11–0.32 range
from FDG SUVs in tumors.

DISCUSSION

Data Features
Many investigations have taken place encompassing

various cancer categories and involving the popular FDG
tracer of PET. A small subset of these met our criteria for
inclusion in Table 1. For this subset, additional distribution
characteristics of results—especially information beyond
the SUV 6 SD typically reported—have been calculated
from published data.

A somewhat subjective ranking, in a decreasing impor-
tance order, for a distribution might be the mean, SD, and
skew. The CVs are preferred to SUV SDs. Being normal-
ized, the CVs’ range of values among cancer categories was
consequently more restricted than that of wide-ranging SUV
SDs. Similarly, a more-or-less restricted range was found for
the log10SUVs’ s, as the latter is essentially the SUV CV4
2.303 (Appendix). Nevertheless, statistical testing showed
no commonality amongss of the different cancer types.

Tables 1 and 2 show that the logarithm operation on SUVs
tended on average to remove skew. Moreover, the small
positive and negative skews were equally likely for log10SUV.
On the other hand, SUV distributions always showed
positive skews. For log10SUVs, the largest ratio of skew to
its SE found in a total of 40 investigations in Tables 1 and 2
was only 2.3. This skew removal is associated with the
functional nature of taking a logarithm: compressing values,

TABLE 2
Statistical Features of Some Representative Amino Acid PET SUVs and Other Cancer Markers

Category Modality (value) n

Value log10 value

Average
value CV Skew/SE G/NG

Average
log10 value s Skew/SE G/NG

Malignancy
Head and neck PET volume (cm3) 37 34.7 1.27 4.7 NG 1.20 0.59 20.2 G
Head and neck Methionine (SUV) 21 8.9 0.39 1.4 G 0.92 0.18 21.2 G
Lung Methionine (SUV) 24 4.6 0.22 2.9 G 0.65 0.09 1.4 G
Lung DNA index 20 1.7 0.16 0.6 G 0.23 0.07 0.0 G
Lung CT (Hounsfield units) 111 42.1 0.31 4.1 NG 1.6 0.13 0.5 G
Brain ACBC (SUV) 20 2.4 0.62 2.4 G 0.30 0.25 20.0 G

Normal tissue
Lung CT (Hounsfield units) 52 14.6 1.05 3.8 NG 0.82 0.66 21.7 NG
Skull ACBC (SUV) 20 1.1 0.24 0.7 G 0.04 0.10 20.4 G

CV 5 coefficient of variation; SE 5 SE of skew; G/NG 5 Gaussian or non-Gaussian distribution; s 5 SD of log10 values; ACBC 5

aminocyclobutane carboxylic acid.

FIGURE 2. Diagnostic sensitivity for 921 malignant lesions
from 25 FDG investigations of various cancer categories. Com-
monality seen here stems from Gaussian probability axis used in
combination with severity, SUV/SUV, expressed on logarithmic
scale. Slope of fitting line is related to average 0.23 SD of
log10SUVs for all cancer types in Table 1.
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with larger ones causing the skew in SUVs being com-
pressed more.

The global cerebral glucose metabolic rate is not in Table
1 because it is well reviewed elsewhere (11,12). This is
closely related to the SUV. Thus, its statistical behavior
might be compared with findings from Table 1. A review by
Wang et al. (11) provided data for compiling Table 3: The
data from multiple investigations of normal brain tissue
were examined further in the manner of Table 1. Normal
brain tissue shows a significantly smaller FDGs than all
tumor types. The many factors influencing cerebral glucose
uptake have been well studied and understood (11,12).
Presumably aware of and accounting for these, investigators
have been able to obtain a more-or-less intrinsic constancy
in brain tissues’ uptake in a well-defined population. Also,
for both cancers and normal brain, the spread of thess is
about twice that expected from a hypothetic circumstance of
all investigations assumed to have the same intrinsic vari-
ance of theirss. This corroborates Bartlett’s test result,
which indicated a lack of homogeneity among categories in
Table 1.

Another question to examine is whether variations among
SUVs in Table 1 (even factors of 2 or more) from investiga-
tions involving the same cancer category have statistical
significance. This would show whether these have sufficient
similarity in patient populations and PET protocols, includ-
ing types of corrections (1,12–14) made. Within several
categories (non-Hodgkin’s lymphoma, breast, head and
neck, and pancreatic cancers as well as normal liver), the
Kruskal-Wallis P for the reported discordant results to be
occurring by chance was always,0.0001. Thus, for a given
category, 1 or more among its 3 or 4 investigations reported
presumably had significantly different patient or protocol (or
both) characteristics. Until there is better understanding,
interinstitutional comparisons must evidently be made with
caution.

Theoretic Reasons for Lognormal Distribution
Gaussian distributions fitting log10SUVs is a significant

observation. A variable with this type of distribution that is
found so frequently in nature might be regarded as a more
natural marker than a distribution that is non-Gaussian.
However, because of limitations from available numbers of
lesions or patients for a distribution, it has not been uniquely
determined that the logarithm, rather than some other
function, is best. Hence, the empiric evidence favoring
logarithmic usage might be supplemented with some theo-
retic points.

There are underlying factors responsible for observed
SUV variabilities in a given institution’s investigation of a
single cancer category, using the individual locally standard-
ized procedures. A review by Carson (15) shows that these
factors are attributed to separate influences: fundamental
physiologic, test measurement, and data analysis. One
approach is to express the observed SUV approximately as a
product of factors, all of which contain their own internal
sources of variability. This extends and quantifies a proposal
by Bland and Altman (16) that rate constant products can
lead to lognormal distributions:

SUV < [PSk3/(k2 1 k3)][kpV] 21[PET protocol factor]

< [tissue accumulation rate][blood clearance rate,

which is whole-body accumulation rate]21

3 [PET protocol factor]. Eq. 1

The first factor is the Gjedde-Patlak accumulation rate K. It
and the second factor approximate the patient’s intrinsic
SUV in terms of basic physiologic quantities (17). Equation
1 contains the rate constants of the model of Sokoloff et al.
(18). Here the product, PS, of capillary permeability P and
its surface area per gram S is an explicit replacement of this
model’s rate constant k1. V is an entire body distribution
volume associated with a tracer plasma clearance rate kp.

The PET protocol factor is a calibration factor, defined as
the ratio of measured SUV to intrinsic SUV. It is the product
of many (measured4 true) factors originating from many
variability sources (1,12–14). These include counting statis-
tics and corrections not fully made in interpreting the SUV
measuring process. In particular, the absence of any partial-
volume correction is a source of variability, with substan-
tially different results possible from scanners of different
resolutions, as shown by Grady (19).

Explaining the magnitude and shape of an observed SUV
distribution would require a rigorous quantitative examina-
tion of individual statistical distributions of every variable
component in Equation 1. However, the scope here is limited
to commenting on the possible dominant causes of variabil-
ity. The relative importance of protocol versus physiologic
factors might be judged from the following:

ã In studying lung cancer, Minn et al. (20) found
excellent FDG PET reproducibility in the same patient,
obtaining CVs for SUVs and glucose-corrected SUV-

TABLE 3
Comparison of Selected Statistics of FDG Uptake in Cancer

Lesions (from SUVs) and in Normal Brain Tissue
(from Metabolic Rates)

Parameter
Cancer
lesion

Brain
tissue*

No. of investigations with $20 lesions or
patients 25 20

Average no. of lesions or patients in investi-
gation (n) 37 30

s (or CV/2.303 for brain)
Of all investigations 0.23 0.08
6SD (range encompassing 68% of ss) 0.05 0.02
Expected SD, calculated from s/(2n)1/2† 0.03 0.01

*From Wang et al. (11).
†As if all ss were randomly varying about same average.
s 5 SD of log10 values.
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leans (i.e., calculated from lean body mass not total
body weight) of only 0.1 and 0.06, respectively.
Similarly, for a variety of malignancies, Weber et al.
(21) found the same patient reproducibility with a 0.09
CV for SUVs.

ã Many investigations of the cerebral glucose metabolic
rate (11,12) typically show CVs as low as 0.19 (Table
3), which includes both patient and PET effects.

ã Table 4 from the work of Avril et al. (22), showing
possible SUV definitions, illustrates variations from
this source. These are responsible for, at most, a CV
associated with methods of about the 0.20–0.22 shown
in the last row of Table 4.

The average CV of 0.55 in Table 1 is much larger than the
CVs of the foregoing. This suggests that individual physi-
ologic factors are more important than PET factors.

With data showing the left side of Equation 1 to be
lognormal, the product of the first 2 (dominating the
variability) explanatory factors on the right must now be
lognormal. If variations in individual subfactors in these are
lognormal, then a mathematic consequence is that the entire
combination is lognormal. It is tempting to theorize perhaps
a variability dominance from the vascular surface area per
gram S: in a specific tissue (as a factor in k1) and in all body
tissues (as a factor in kp). This is because it is well
established (23,24) that morphologic aspects of vasculature
have lognormal distributions. Also corroborating the ideas
are in vitro data from an ovarian carcinoma cell line (25):
FDG uptake was proportional to cell density, whose distribu-
tion is lognormal (6) and relates to S.

The range noted for the CVs orss of FDG among

malignancies can also be discussed within the context of
Equation 1. From Bartlett’s test result, ranging was wider
than would be expected if all cancers had the same intrinsic
CV. However, the test showed that this range, 0.11–0.32 for
s in Table 1, was not excessively large for 25 investigations.
Some insight might come from isoleucine uptake (26) in
normal rat brain as a well-defined tissue type: CVs remain-
ing essentially constant in spite of PS values being made, by
concentration changes, to span a factor of 200. Perhaps in
line with this, diverse cancer categories, with no doubt
widely varying PS values, might be expected to have at least
not a drastically wide range of CVs.

Potential Applications in Diagnoses
Considering our results and the above discussion, specific

applications in the diagnostic process arise.
Quality Assurance.Checks are desirable for a new tracer

investigation or for an institution initiating PET studies in a
particular category. With sufficient patient and lesion num-
bers (perhaps 20 or more), multiple comparisons with row
values in Tables 1 and 2 can provide stringent tests for the
newer work. This testing is whether it is within expectations
relating to means and CVs measured in prior investigations.

Outliers and P Values.Advantages of transforming data to
a Gaussian variable to facilitate statistical testing have been
discussed by Bland and Altman (16). One reason for doing
this is to permit the use of parametric tests that require
Gaussian behavior. Such tests have more statistical power
(i.e., use fewer patients or reduce chances of error in
conclusions [or both]). This contrasts with the required use
of less powerful nonparametric tests on skewed SUVs.
Some instances in which investigators have tested skewed

TABLE 4
Various SUV Definitions of Avril et al. with Their Receiver-Operating-Characteristic (ROC) Areas for Breast Cancer Diagnosis

Method of obtaining SUV*† Benign
(n 5 46)

Malignant
(n 5 51)

FOM

ROC area

ROI choice
Partial
volume

Correction

Glucose Body fat SUV CV SUV CV Formula Curve fit†

Average Yes No No 1.5 0.50 4.2 0.60 1.319 0.906 0.91 6 0.03
Average Yes Yes No 1.1 0.58 3.2 0.62 1.258 0.896 0.92 6 0.03
Maximum Yes No No 2.0 0.43 5.1 0.61 1.254 0.895 0.87 6 0.04
Average No Yes No 1.0 0.40 2.7 0.70 1.232 0.891 0.87 6 0.04
Maximum Yes Yes No 1.5 0.51 3.9 0.62 1.190 0.883 0.87 6 0.04
Average No No No 1.4 0.36 3.6 0.71 1.187 0.882 0.86 6 0.04
Average No No Surface area 3.8 0.35 9.2 0.66 1.184 0.882 0.87 6 0.04
Average No No Lean mass 1.3 0.37 3.0 0.65 1.118 0.868 0.85 6 0.04
Maximum No Yes No 1.4 0.36 3.3 0.70 1.090 0.862 0.85 6 0.04
Maximum No No No 1.9 0.32 4.3 0.70 1.061 0.856 0.81 6 0.04
Average 1.5‡ 0.42 3.7‡ 0.66
CV of average 0.22‡ 0.20‡

*PET region of interest (ROI) may use average or hottest pixels, possibly with corrections for partial-volume effect and departure from
population averages for glucose plasma concentration or body surface area. Lean or total body mass might also be used in whole-body
specific activity calculations.

†From Avril et al. (22).
‡All methods except 1 based on surface area are combined.
FOM 5 figure of merit defined by Equation 2.
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SUV data, rather than Gaussian log10SUVs, using paramet-
ric methods are now known to be incorrect; false conclu-
sions could have resulted possibly from erroneousP values.
It is easy to appreciate that forcing an assumed Gaussian
shape on a skewed distribution such as Figure 1A can lead to
a very poor representation of the tails, which influence
statistical decision making.

Receiver-Operating-Characteristic Curves.Receiver-
operating-characteristic (ROC) curves now can be con-
structed more accurately over wider ranges with fewer
patient data. After transforming SUVs to log10SUVs, a
2-parameter fit to a Gaussian distribution is possible. This
provides a basis for extrapolations into distribution tails
beyond data. If need be, it is even possible with limited data
to use historical information ons. This would permit
approximating a distribution when only its measured mean
is available. Once the best distribution curves for available
numbers of patients for both malignant and benign or normal
categories are gotten, the construction of an ROC is
straightforward (Appendix).

Figure 3 illustrates generic ROCs on double probability
paper (Appendix). Noteworthy is its primary dependency on
only a ratio of SUVs. Secondarily, there is also as
dependence that is not shown because this ROC uses its
generic 0.23 value for both malignant and benign or normal
distributions.

A 2-tailed diagnostic test using 2 SUV cutoffs to discrimi-
nate among 3 conditions is a unique example. In a lung
cancer investigation (27), adequate benign (with lower
SUVs) and malignant (with moderately higher SUVs) cases
existed for construction of a reliable ROC. However, 2 cases

of blastomycosis were encountered with very high SUVs
(10.8 and 16). The lognormal distribution of the latter (based
on a geometric mean of 13 and a representative 0.23s for
logarithms) was then approximated. When used with that of
the malignant cases, it then becomes feasible to construct a
preliminary additional ROC—that is, an ROC for discrimi-
nating malignant cases from blastomycosis—using an addi-
tional high SUV cutoff.

Test Figure of Merit.The diagnostic capabilities of 2 tests
having lognormal test values x, such as SUVs, may be
compared using a simple figure of merit (FOM). Suggested
is (Appendix, geometric mean usage)

FOM 5 [log10(xmal/xnorm)]/st, Eq. 2

where

st 5 [(s of malignants’ log10xs)2

1 (s of normals’ log10xs)2]1/2 Eq. 3

may be used to characterize test effectiveness. The larger the
FOM, the larger the ROC area, which, using the probability
function (Appendix), isF(FOM). Figure 4 shows this
function. When lacking better information, thest may be
approximated with an average over all tissue types, (0.232 1
0.232)1/2 5 0.33, based on Tables 1 and 2.

An example of this FOM is using Equations 2 and A7 for
the calculated set of results appearing in Table 4. The
intention is to find the most appropriate SUV definition for
breast cancer diagnosis. Table 4 shows that the simply
obtained analytic results agree well with areas from special
ROC curve-fitting software. Moreover, formulas can help to
understand why a particular method is superior to another.

FIGURE 3. Generic ROCs for use in approximately describing
any cancer category. Parameter shown identifying line is
log10(SUVmal/SUVben), where subscripts indicate malignant and
benign, respectively. Better straight-line descriptions are pos-
sible, provided there is sufficient number of patients. These would
improve on 0.23 used for SDs of both malignant and normal
log10SUVs in calculations here.

FIGURE 4. ROC area for comparing tumor diagnostic proto-
cols. Parameters identifying these lines are total SDs—that is,
square root of sum of squares of ss belonging to benign and
malignant log10SUV distributions. For central line, its (0.232 1
0.232)1/2 5 0.33 is typical st of cancer categories of investigations
here.

1670 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 41 • No. 10 • October 2000



Interinstitutional Comparisons.Keyes (14) has critically
questioned the use of published SUVs outside an investiga-
tor’s institution. As discussed above, when there were 3 or
more investigations of the same cancer category (which
often included various histopathologic types), the results
were significantly different. It would be especially inappro-
priate for an institution to blindly use a (benign versus
malignant) cutoff SUV recommended by another institution.
This is because of a need to thoroughly compare protocols
and makeups of patient populations and to agree with
outcomes’ cost–utility assignments explicitly or implicitly
made in optimizing cutoff.

Until standardized approaches are adopted, the options in
Table 4 and other protocol variations known to affect SUVs
should be recognized (1,12–14). Sometimes a choice of a
best SUV definition is recommended for a given tissue, as in
the work of Avril et al. (22). For the present, the practice of
an author attaching a designator to the SUV acronym is
commendable, though rare. As an example, SUVavl(55)
would indicate average pixel values, lean body mass, and 55
min after injection.

It is also important to heed proper characterizations of
patient populations. From the discussion of Equation 1,
patient factors, rather than PET factors, are implied as the
more important contributors to SUV variability. Noted in the
discussion of Table 3 was identification of patient factors
(11,12) as helpful in reducing CVs of cerebral glucose
metabolic rates. One step in this direction in oncology is the
often-seen listing of SUVs with the histopathology, along
with other descriptive disclosures.

SUV Ratios, CVs, and Geometric Means.These quantities
arise out of relationships from usage of logarithms (Appen-
dix) and are intrinsically more appropriate to use than SUV
differences, SDs, and arithmetic means. In particular, in light
of Figure 2, the use of severity, as SUV4 a population’s
SUV, departing from unity is a universal measure that is
independent of cancer type.

CONCLUSION

This work should bring out an awareness of an inherent
logarithmic and multiplicative nature of tracer uptake.
Distribution data supporting this are convincing. It is
encouraging to note this commonality of a Gaussian distribu-
tion of log10SUVs of all cancer and other tissue categories
with many other lognormally distributed quantities in biol-
ogy. On the other hand, more work is needed for a
quantitative understanding of a possible explanatory law of
proportional effects unfolding in tracer uptake at the cellular
level.

On the basis of our findings, several practical diagnostic
aids are suggested. These lead to a belief that benefits in
information portability among institutions could result from
steps taken in at least 2 directions: standardizations of PET
protocols along lines of reducing variabilities and more
attention to detail regarding factors within a cancer category
population that might influence individual SUVs. Narrowly

defined subcategories that are based on histologic character-
istics may be the ultimate groupings for defining SUV
distributions.

APPENDIX

Lognormal Distribution and Associated Parameters
A value x (such as SUV) is lognormal (28) if the

distribution of n values of its logarithms can be adequately
described by the Gaussian distribution probability density

Plog(x) 5 n exp[2(log10(x/x))2/2s2]/Î2ps. Eq. A1

The lognormal distribution of xs is then

Px(x) 5 n exp[2(log10(x/x))2/2s2]/2.303Î2psx. Eq. A2

Here s is the SD of the log10(x) values andx is their
geometric mean having relationships

log10(x) 5 Slog10xi/n 5 log10(Pxi)1/n 5 log10x. Eq. A3

The CV of the xs can be related tos when variations are
not too large.

s2 5 5(ln[ x(1 1 dx/x)])2 2 [(lnx)]26/(2.303)2

< 5(lnx 1 dx/x)2 2 (lnx)26/(2.303)2. Eq. A4

s < [(dx)2]1/2/x/2.3035 CV/2.303. Eq. A5

For data of the type in Table 1, the error of this approxima-
tion is,10% in about two thirds of its applications.

For any distribution of values y (whether SUVs or
log10SUVs), skew is defined as

skew5 (y 2 y)3/[(y 2 y)2]3/2. Eq. A6

It is 0 for perfectly symmetric distributions but otherwise is a
quantitative measure of asymmetry. Its SE when there are n
samples is (6n/[(n2 1)(n2 2)])1/2.

Cumulative Distribution Function and Associated
Graphs

The integral of Equation A1 or Equation A2 up to the
value x is the cumulative distribution function nF(x). The
probability integralF appears commonly in mathematic
tables and software. nF(x) is the number of values occurring
below a cutoff x. For a malignant population, 12 F(x) is the
sensitivity; for a benign or normal population,F(x) is the
specificity.

Plots ofF against its argument can become straight lines
if the F axis is distorted into a probability paper’s axis. This
ordinate (Figure 2), invisibly marked off in uniform units of
numbers of SDs, has the corresponding values of 12 F
visibly marked at desired locations. If the abscissa’s indepen-
dent variable on this probability paper is Gaussian, data
points will then define a straight line. The slope (in SD units
per abscissa unit) is the reciprocal of the independent
variable’s SD. For lognormal data, a logarithmic paper’s
axis can be convenient, as in Figure 2.
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ROCs
An ROC can be constructed from 2 cumulative distribu-

tion function plots, a malignant distribution plot and a
benign or normal distribution plot. If overlapping Gaussian
distributions are involved, theirFs are straight lines on
probability paper. This linear behavior then carries over to
the ROC. Figure 3 shows 2 probability axes used. Thus,
straight-line graphic ROC fitting is an alternative to more
complex fitting requiring special software.

A commonly used measure of diagnostic capabilities,
especially in comparing tests, is the area under an ROC. It
has been shown (29,30) that for overlapping Gaussian
distributions

ROC area5 F (difference of 2 means4 st ), Eq. A7

wherest is the square root of the sum of squares of the 2
SDs. The means’ difference for lognormal SUVs is
log10SUVmal 2 log10SUVnorm 5 log10(SUVmal/SUVnorm),
with geometric means used. Thus, a large means ratio and a
smallst result in a large ROC area and a highly discriminat-
ing test.

Law of Proportionate Effects
A set of yis can have its distribution of values influenced

by how changes among these individual values occur. In
many processes, small changes are proportional to existing
values (28).

Dyi 5 yi11 2 yi 5 ri 3 yi Eq. A8

or ln(yi11/yi) 5 ri,

a random number somewhat below 1. Eq. A9

For example, in the angiogenesis process y would be S, the
total capillary vessel area per gram, which increases by some
random fractional amount ri in each time interval. When
Equation A9 is summed on both sides, the result on the left,
ln(final y 4 initial y) and, hence, ln(final y), is Gaussian. The
reason stems from the central limit theorem for generating
Gaussians from random numbers: When many of the latter
are summed, the total is Gaussian. Thus, in the example
here, lnS is Gaussian because many generations of random
growth factors occurred.
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