
tion of scattered photons from primary (i.e., nonscattered)
photons using a conventional Nal gamma camera.

Various methods have been proposed to compensate for
the adverse effects of scatter, and most evaluations have
focused on measures of the fidelity of image pixel values and
quantitative accuracy. Several reviews and comparative

assessments of some of these methods have been presented
(1â€”5).

A common strategy used for scatter compensation in
volves the subtraction of an estimate of the scatter within the
photopeak energy window from the photopeak image. The

assumption is that scatter represents an error with respect to
the primary image, and methods for reducing or removing
scatter represent an attempt to correct an image. Various
methods for scatter subtraction have been proposed. Some
approaches use scatter images acquired outside of the
photopeak region of the energy spectrum to estimate the
scatter distribution in the photopeak image. Increased quan
titative accuracy and contrast were reported for the dual
window subtraction method (6), where pixels of an image
from a Compton scatter window were scaled by a factor, k,
and subtracted from the photopeak image. However, the
subtraction resulted in increased noise fluctuations, which
gave a signal-to-noise ratio (SNR) that was comparable to
that in the uncorrected image (6). A similar method,
proposed for obtaining accurate SPECT quantitation, was
based on the assumption that the shape of the scatter energy
spectrum can be approximated at each pixel with a triangle if

there is a single emission peak or with a trapezoid if scatter
spills down from multiple peaks (7). By using scaled,
narrow windows abutted to either side of the photopeak
window, the triple energy window method gives an im
proved estimate of the scatter distribution. However, the low
number of counts detected in the narrow windows may
present a disadvantage in comparison to the dual window

subtraction method (8).
Other proposed subtraction methods estimate scatter

using only the data contained within the photopeak image. A
convolution-subtraction method was proposed, which esti
mated the scatter image by convolving a decaying exponen
tial function with the photopeak image (9). Other methods
have been based on dividing the photopeak into two

The purpose of this investigation was to examine the effects of
subtractivescattercompensationmethodson lesiondetection
and quantitation. Methods: Receiver operating characteristic
(ROC) methodology was used to measure human observer
detectionaccuracyfortumorsintheliverusingsyntheticimages.
Furthermore,ROC resultswere comparedwith mathematical
models for detection and activity quantitationto examine (a) the
potentialforpredictinghumanperformanceand (b) the relation
ship between the detection and quantitationtasks. Imageswith
both low and high amounts of scatter were compared with the
ideal case of images of primary photons only (i.e., perfect scatter
rejection) and with images corrected by subtracting a scatter
image estimated by the dual photopeak window method. Re
suIts: Withlowcontrasttumorsin a lowcountbackground,the
results showed that scatter subtraction improved quantitation but
did not produce statistically significant increases in detection
accuracy. However, primary images did produce some statisti
cally significant improvementsin detectionaccuracywhen com
pared with uncorrected images, particularly for high levels of
scatter. Conclusion: Although scatter subtraction methods may
provide improvedactivity quantitation,they may not significantly
improve detection for liver SPECT. The results imply that signifi
cant improvement in detection accuracy for the conditions tested
may depend on the developmentof gammacameraswith better
scatter rejection.

Key Words: lesiondetection;receiveroperatingcharacteristic
analysis; scatter correction

J NucI Med 1999;40:1011â€”1023

cattering of photons within the patient is one of the
several sources of degradation in image quality and quantita
tive accuracy in SPECT. Scattered photons primarily reduce
contrast and also degrade spatial resolution. Quantitation is
affected by the presence of scattered photons that are

mispositioned in the image with respect to the location of the
emission of the photons. The problems presented by scatter
are particularly important for low energies, such as those of
201Tland 99mTc,where the change in energy due to Compton
scatter is often small enough to prevent adequate discrimina
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subwindows, where either a direct difference of the two
images was used to remove scatter from one (10, 11) or a
ratio of counts in the two windows was used to subtract an
estimate of scatter from the summed subwindow images
(12, 13). For any of these corrections, a gain in contrast or in

quantitative accuracy comes at the expense of reducing the
counts in the projection images set and altering the noise
characteristics of the reconstructed SPECT images.

The references cited for reviews and assessments of
scatter compensation methods provide a fairly good represen
tation of the means that have been used to evaluate the
methods. They include comparison of total counts in images
with and without correction to a reference image of the
source in air (2), spatial resolution before and after correc
tion (2) and the corrected image to a reference image using
the normalized mean square error (3,5). Additional means
used to evaluate the methods include measurements of
lesion contrast with and without correction (2,3), calcula
tions of SNRs using lesion contrast and the standard
deviation of counts in the background (2,4), activity recov
cry ratios (2,3), the root mean square of the percent relative
error in the corrected image (5), plots of concentration ratios
from corrected images versus the true concentration ratios
(4) and plots of countsin correctedimagesversusthe true
counts (4).

Given that scatter correction by any method will change
the contrast and the magnitude and texture of noise in an
image, it cannot be assumed that the result will necessarily
provide improved detection accuracy for human observers.
A thorough examination of the effect of scatter correction
must include an assessment of detection accuracy. Receiver
operating characteristic (ROC) analysis is the widely ac
cepted methodology for testing human observer detection
accuracy in medical imaging (14,15).

ROC analysis was used in a study that had implications
for the effect of scatter on detection in planar images (16).
Rolland et al. (16) evaluated the effect on detection of
deconvolution filtering of long-tailed point spread functions,
which can arise from physical processes such as scatter. The
authors reported significant improvement in detection accu
racy as a result of the filtering.

The effect of scatter reduction on detection in SPECT
images was studied by Staffet al. (17), with a comparison of
uncorrected images with spatial filtering by the energy
weighted acquisition method (18). Three human observers
were required to locate and detect â€œcoldâ€•lesions in a
cylindrical phantom that presented an unstructured, hot
background and in a Hoffman brain phantom. The results
were pooled over observers and were analyzed with methods
typically used for ROC studies of the simple detection task
(i.e., where localization is not part of the task). Examination
of the ROC curves reportedly demonstrated a statistically
significant increase in the area under the curve for energy
weighted acquisition compared to no correction, but only for
the cases with structured background (i.e., the brain phan
tom).

Similarly, we have shown with ROC studies that the
removal of scatter may increase the accuracy of the simple
detection task only for particular conditions (19). For low
contrast, â€œcoldâ€•tumors in synthetic hepatic SPECT images,
our dual photopeak window (DPW) scatter subtraction
method (13) did not produce a statistically significant
increase in detection accuracy. However, the ideal case of
primary images showed significantly higher detection accu

racy in comparison to the uncorrected photopeak images.
Given that ROC experiments can be costly in terms of

time and resources, there has been an interest in finding
ways to predict human observer performance for various
tasks. Based on signal detection theory, mathematical algo

rithms have been derived to serve as â€œmodelobserversâ€•for
the assessment of image quality (20â€”22).These mathemati
cal observers can produce task-dependent, physical SNRs
based on image parameters (23,24) and have been used to
evaluate or optimize the design of imaging systems or to
evaluate or predict human observer performance (25,26).

In the context of medical imaging, detection of a signal
(e.g., a lesion) and activity quantitation are examples of
classification and estimation tasks, respectively. Barrett (23)
has presented several mathematical models for calculating
figures of merit for these tasks in terms of SNRs. Further
more, mathematical relations between the SNRs of several
analogous pairs of classification and estimation tasks were
derived (23).

With a need for additional information regarding the
effect and utility of scatter correction in SPECT, we con
ducted experiments that were designed to study the effects of
scatter subtraction on detection and quantitation. By using

synthetic images, we intended for the experiments to

approximate clinical imaging conditions, while isolating the
effects of scatter subtraction. The effects on the simple
detection task were evaluated with human observers using
ROCanalysis. Furthermore,detectionandquantitationwere
evaluated with one pair of analogous mathematical models.
The object was a focal lesion in the liver, and both cold and
hot contrasts were considered.

For evaluation of quantitative accuracy, the region-of
interest (ROI) estimator, although suboptimal, represents a
common approach to extracting quantitative information
from image data (23). Counts within an ROl applied to a
reconstructed image are simply summed. The related detec
tion model is the non-prewhitening (NPW) matched filter, a
quasi-ideal model observer. Whereas the ideal observer
detects all information needed for a given task and maxi
mizes the sensitivity at any prescribed level of specificity
(21), the accuracy of both the human and NPW observers is

degraded by noise correlations (24,26), which can either
mimic or mask the lesions to be detected in SPECT images.
We compared ROC results from human observers with the
results from the NPW observer and ROI estimator to
examine the potential for predicting human detection perfor

1012 THEJOURNALOFNUCLEARMEDICINEâ€¢Vol. 40 â€¢No. 6 â€¢June 1999



â€˜, â€˜5,

â€˜, â€˜Sb

mance and the relationship between the accuracy of detec

tion and of quantitation.

MATERIALS AND METHODS

Simulated Clinical Conditions
Synthetic SPECT images were used for the experiments, be

cause they enabled us to determine the truth regarding the presence
of a lesion and to separate the primary and scatter components of an
image. The SIMIND Monte Carlo simulation software (27) was
used to propagate photons through a digitized, anthropomorphic
phantom obtained from CT images (28). High-count projections
were produced with primary and scatter images saved separately
(26 millionphotonswereemittedperSPECTprojectionset).

The biodistribution of F023C5 anti-carcinoembryonic antigen
(CEA) antibody fragments was approximated (29). From averaging
over 7 patients at 3 to 5 h postinjection, the percent dose (and
standard deviation) in the whole organ was 9. 1 (Â±2.2), 1.3 (Â±0.8)
and 18.7 (Â±6.1) for the liver, spleen and kidneys, respectively.
Motivated by results from preliminary ROC experiments, we
increased scatter into the liver region by increasing the dose in the
spleen to a level 3 SDs higher than the mean. The simulated activity
distribution had 22.8% of the total activity in the liver, 8.8% in the
spleen and 46.6% in the kidneys, with the remaining 21.8%
distributed throughout other organs as an approximately uniform
background. Given that the specificity of the F023C5 anti-CEA
antibody fragment could result in either cold or hot tumors relative
to the uptake in the normal liver, each contrast polarity was studied
in separate experiments.

To produce images representing multiple patient cases, several
locations in the liver were used for simulated tumors and multiple,
independent Poisson noise realizations were added to the projec
tion images. Tumors were represented by 2.5-cm-diameter spheres,
a size that was considered sufficient to allow changes in contrast
which were produced by varying the amount of scatterâ€”to be
perceived, even though partial volume effects could reduce the
measured activity contrast by about 20% (30). Locations were
selected such that the distance to any liver boundary was greater
than the tumor radius plus twice the full width at half maximum
(FWHM) of the camera system to avoid having a tumor easily
recognized by a change in the appearance of the edge of the liver.
(This constraint required elimination of normally cold regions,
such as hepatic veins and arteries, and the biliary tree.) Tumor
projection sets were scaled to obtain the desired contrast and were
then either added to or subtracted from the liver projections to
produce hot or cold tumors, respectively.

The locations studied are illustrated in Figure 1, which shows

high-count (i.e., approximately noise-free) primary SPECT images
of both contrast polarities. The locations were selected to represent
a range of location-dependent SNRs, as measured in the projection
data by the ideal observer (19). The contrast was specified by the
ratio:

, Eq.1
where Ntmrand Nivrwere the numbers of photons emitted per voxel
from the tumor and liver, respectively. A contrast of 13% (â€”13%
for cold tumors and + 13% for hot tumors) was determined in
preliminaryexperimentsto producean appmpriatelydifficulttask (/9).

The simulated SPECT camera system approximated the charac
teristics of a Picker PRISM camera (Picker International, Inc.,
Cleveland, OH) with a low-energy, ultra-high-resolution (LEUHR)
parallel-hole collimator, a circular radius of rotation at 2 1.5 cm,
9.4% FWHM energyresolutionat 140 keV, and an intrinsic
resolution ofO.28-cm FWHM. With a pixel size ofO.36 cm, 128 X
128 projection images were produced at 128 viewing angles.

For both contrast polarities, five treatments of SPECT images
were evaluated: ideal scatter subtraction, represented by photopeak
images containing only primary (i.e., nonscattered) photons; @mTc
images with no scatter correction and scatter fractions typically in
the range of 0.4â€”0.5(denoted as low scatter); images of a
hypothetical radioisotope with scatter fractions in the range of 1.0â€”
I .2 (denoted as high scatter), which could arise from cases of
multiple emission energies (e.g., 20111and WIn); and images with
DPW scatter subtraction applied to both the low- and high-scatter

cases. The DPW method, which was being considered for clinical
use when our initial ROC studies were being designed, was
selected as a clinically feasible method that was fairly representa
tive of the various energy-based, scatter subtraction methods that
use multiple energy windows to estimate scatter in the photopeak
region. The five treatments are listed in Table 1, with the total
counts in the projection sets used to obtain the SPECT images.

Acquisition of the projection images was simulated with a 20%
energy window centered on 140 keV. Projections for the high
scatter conditions were produced by scaling the scatter component
of the 99mTcprojections by a factor of 2.5. The DPW correction of
projections was implemented as described by de Vries and King
(/3), using simulated calibration experiments. The dual windows
were 5% and 15% in width and abutted at 7 keV below the
photopeak (i.e., WL, 126â€”133keV; W@, 133â€”154keV). The scatter
estimate for the total 20% window was obtained from a power
function that related the scatter-to-total count ratio (STR) in the
total window to the lower-to-total window count ratio. For the ith

Ntmr Nivr
contrast =

N1@

FIGURE1. Fromleftto right,the tumor
locations that gave lowest, mid-range and
highest SNRs, which were calculated us
ing ideal observer applied to noise-free
primary projection set. Arrows point to
lesionfor bothcold (upperrow)and hot
(lower row) contrast polarities. (Threshold
ing was applied to increase the visibility.)
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TreatmentTotal
countsin

projectionsetA:Primary

(ideal correction)8.77 X10@B:Uncorrected
low-scatter12.50 x10@C:Uncorrected
high-scatter21 .82 x10@D:DPW-corrected

low-scatter8.55 x1O@E:DPW-corrected
high-scatter8.25 x 106

pixel of the total photopeak image, the calculated STh was:

I WL[iJ \B
STR[i] = A x I@WL[i+ WU[i])@ C,

upper threshold, above which pixels values were clipped. Given the
high activity in the spleen and kidneys, the clipping of high values
did not occur in liver pixels.

An image contained either one lesion or none, and the locations
evaluated by the observers in the lesion-present images were the
same locations evaluated in the lesion-absent images. As each
image was presentedsequentially,a continuousscale from â€œdefinitely
absentâ€•to â€œdefinitelypresentâ€•wasusedtorate an observer'sconfidence
regardingthe decisionaboutthe absenceorpresence ofa tumor (35).

For each treatment, there were 240 images for rating in the study
sessions. These images were produced from the three tumor
locations, each having two signal conditions (i.e., present or
absent) and 40 different Poisson noise realizations for each signal
condition. The 240 images were divided into two subsets of 120
images each, with the reading order of the images in the subsets
randomized for each observer. The subsets for each of the five
treatments were arranged in 10 study sessions, such that the subsets
were read in a different order by each observer.

Before each study session for a particular treatment, an observer
was trained by first viewing the noise-free signal-present and
signal-absent images for each tumor location and then rating 60
noisy images (10 noise realizations for each of two signal
conditions at three tumor locations). When the observer entered a
confidence rating, the corresponding noise-free image was dis
played adjacent to the noisy image, and the observer was told
whether or not a tumor was present. The 60 images were presented
in a different order before the reading of the second subset of study
images for a treatment. From this experience, an observer was
expected to learn to identify lesions and to set rating strategies.

Images from each treatment were read independently by seven
observers, who were members of the medical physics research
group of the Department of Nuclear Medicine at the University of
Massachusetts Medical School. Readings took place in a dark
room, with no constraints on either the time allotted for reading
images or the viewing distance. However, observers were not
allowed to change the brightness and contrast levels of the display
monitor, given that a constant transfer function for mapping
gray-scale pixel values to luminance was desired.

The transfer function of the monitor was modified with a
mapping that ensured that equal steps in gray-scale values would be
perceived as equal differences in luminance, given that the human
visual system response as described by Weber's Law shows a
logarithmic relationship between intensity and perceived bright
ness (36). The modified mapping produced the desired log-linear
transfer function and, thus, the effects of monitor characteristics on
displayed contrast were reduced. The measured luminance ranged
from 0. 1 to 57.4 foot-lamberts (0.343â€”196cd/m2). The mean
background luminance in the liver was in the range from 3.0 to 3.5
foot-lamberts. To eliminate background luminance from all regions
except the region used for reading and rating the images, we placed
a mask on the monitor.

For each observer and treatment, a fitted ROC curve and the area
under the curve (AUC), A5, were estimated using the LABROC1
program (35). The average ROC curve for each treatment was
produced by averaging the curve parameters, a and b, from the
seven observers. The perceptual SNR of the human observers was
then calculated by converting the AUC to the detectability index,
d1, using the relation

1 1 d@
AUC =@ +@ erf -@,

Eq.2

where the values of the coefficients, A, B and C, were A = 2.792,
B = 1.015andC = â€”0.2749for the low-scattercondition,and
A = 2.539, B = 0.6865 andC = â€”0.5486for the high-scatter
condition. The product of the STR and counts in the total image at
each pixel produced the scatter estimate, which was smoothed with
a Wiener low-pass filter before subtraction (13).

The synthetic images provided the ability to increase the
statistical power of the ROC analysis through the use of correlated
images (31). For a particular tumor location and noise realization
(i.e.,a â€œcaseâ€•),an image for each fl@eatmentwas constructedby adding
the appropriatescatter image to the primary image to produce tmccr
rectedand DPW-corieCtedimagesfor both levelsof scatter.

SPECT images (128 X 128, 0.36-cm pixels) were reconstructed
with techniques that were typically used in our clinic with
commercially available software. Ramp-filtered backprojection
was used, with noise-suppression prefiltering by a two-dimensional
Butterworth low-pass filter (order 4; cutoff frequency 0.25 cycles/
cm). The SPECT images, which contained at most one tumor, were
reconstructed through the center ofthe tumor. Multiplicative Chang
attenuation correction was applied (32), using an elliptical attenua
tion map that approximated the cross section of the slice. The
narrow-beam attenuation coefficient at 140 keV, used by the Monte
Carlo program (ji = â€”0.1546 cm'), was applied to primary and
DPW-corrected images. Effective attenuation coefficients (ps) and
build-up factors (B0) for bmad-beam attenuation were calculated
(33) and applied to the uncorrectedimages(liE = â€”0.1163cm@
andB0 = 1.O79forlowscatter; p@= â€”0.0831cm@ andB0 = 1.177
for high scatter).

Human Observer Detection Accuracy
The detection experiments were designed for signal-known

exactly (SKE) conditions, in which lesion size and shape were
constant and the location to be evaluated was indicated by cross
hairs, which could be toggled on and off by the observer. Software
developed at the University of North Carolina at Chapel Hill was
used for the display and rating of images (34).

Before display, each SPECT image was magnified by a factor of
3 using bilinear interpolation, and the central 256 X 256 pixel
region was extracted to fill an area of 25 cm2 on the display
monitor. Furthermore, each image was scaled such that the
background (i.e., liver) would be displayed at nearly the same gray
level for both cold and hot tumor experiments. Pixel values that
were negative or zero were mapped to a gray level of zero; the
mean liver pixel value (excluding the tumor) was mapped to the
mid gray-scale level (out of 127 levels). The scaling determined an

TABLE I

Treatments Studied and Count Levels

Eq.3
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where erf(.) is the error function. The value of da was regarded as where g is raw image data with M pixels arranged as an M X 1
the human observer SNR. vector, the N X 1vector f is the discrete representation of the object

To perform multiple comparisons of treatment SNRs while (i.e., the pixelized distribution of activity in the patient), H is an
limiting type I errors (i.e., rejection of a true null hypothesis), we M X N matrix that represents the imaging system and n is an M X
conducted a two-way analysis of variance (ANOVA) to determine 1 vector representing noise in the image (23). An estimate, f, of the
whether or not there was evidence of a real, nonrandom difference object is obtained from g by the reconstruction process. An
between the treatment means (averaging over observers). The null observer, whether human or mathematical, performs the simple
hypothesis, H0, was that all treatments were equal, whereas the detection task by comparing a test statistic, X(f), to a threshold to
alternative hypothesis, HA, was that there were real differences classify images as either signal present or signal absent.
between the treatments. The null hypothesis was rejected when the For comparison to the human observer, the NPW observer was
value of the calculated test statistic was greater than the critical implemented as a matched filter. Filters, or templates, were formed
point of the upper 5% of the F distribution with degrees of freedom by reconstructing a noise-free image through the center of the
of4 and 24, that is, F4,24= 2.78 for a = 0.05. tumor for each of the three locations and five treatments. The

When the null hypothesis of the ANOVAwas rejected, ScheffÃ©'s appropriate template, w, was cross-correlated with the SPECT
test for multiple paired comparisons was applied (at the 5% level) images, producing a linear combination of the pixel values from f.
to examine the significance of seven differences in mean SNRs This value, the test statistic, is given by the weighted sum:
between treatments: primary versus uncorrected low scatter (A
versus B); primary versus uncorrected high scatter (A versus C);
primary versus DPW-corrected low scatter (A versus D); primary
versus DPW-corrected high scatter (A versus E); uncorrected low . .

. With w having the profile of the tumor, the highest values of w were

scatter versus uncorrected high scatter (B versus C) DPW- . . -â€˜placed on the locations in f where the tumor was expected to be and
corrected low scatter versus uncorrected low scatter (D versus B) . .

. . the values of w decreased to zero with increased distance from the

and DPW-corrected high scatter versus uncorrected high scatter (E .@ . centeroftheprofile.Byusingforfthesameimagesthatwererated
versus C). The null hypothesis for Scheffd s test was .by the human observers in the ROC expenments, the effects of

scaling the images for display were taken into account.
Eq. 4 With the lesion-present images having a signal in the presence of

noise and the lesion-absent images having only noise, the NPW
observer produced a distribution of test statistics for both signal
present (sp) and signal-absent (sa) images. For each of the five
treatments and each lesion location, the mean and variance ofthe sp
and sa distributions were used to calculate a physical SNR from the
detectability index, da:

Eq. 9

N

Mo 1=1 Eq.8

where the number of sp and sa images for a given tumor location
and imaging treatment were equal. The means ofthe test-statistic
distributions are denoted E(X(f)Isp) and E(X(f)Isa), and the
variances are denoted by var(X(f)Isp) and var(X(f)Isa). The
numerator and denominator in equation 9 are measures of the
square of the signal and of the noise, respectively. For a sine
lesion location and additive Gaussian noise, the NPW SNR is@
Given that the noise in the liver of the SPECT images was a good
approximation of additive Gaussian noise, that three different
tumor locations were rated by the human observers in a random
order and that the location to be evaluated was specified, the signal
and the noise were first calculated for each location and then were
averaged over location. The average signal was divided by the
average noise for each treatment to calculate an NPW SNR (25).

Using the average human SNR, the statistical efficiency of the
human observer with respect to the NPW observer was calculated
for each treatment with the ratio:

H@: @k@SNR1=0,

where there were c treatments; SNR1 was the mean SNR for
treatment i (averaged over observers) and the ks were constants
assigned the values â€”1, 0 or + 1, which summed to zero and
produced the desired differences between pairs of SNRs. The
ScheffÃ©test statistic was given by

SNR@1@@= d@=

Eq.5

, Eq.6

where @2was the residual mean square from the ANOVAand r was
the number of human observers. Furthermore, the bounds on the
95% confidence interval were calculated from

where@ was the difference between a pair of SNRs. Equation 6
was solved for L, and the lower and upper bounds were equal to the
minimum and maximum roots, respectively. A statistically signifi
cant difference between treatments at the 5% level required a test
statistic greater than F4,24= 2.78 and 95% confidence intervals that
did not include zero. The calculations required for two-way
ANOVA, ScheffÃ©'stest and the bounds on the confidence interval
were obtained from Pollard (37).

Comparison of Human and Non-Prewhitenlng
Observers

An imaging system can be mathematically described by

g = Hf + n,

/@@p@2
I humani

Efficiency = ttSNR2Npw)@ Eq. 10

For many tasks, this efficiency has been in the range of about 0.5 Â±
0.2, when the displayed contrast was sufficient for the specified task
(21).

Eq. 7 The relation between the SNRs of the human and NPW
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observers was examined using nonparametric correlation analysis which is equal to the sum of the mean square bias and the variance.
for two reasons: (a) Knowledge of the probability distribution Finally, the squared SNR of the ROI estimator was defined as the
functions from which the SNRs were drawn was unavailable; and reciprocal of the EMSE normalized by the square of the object
(b) with a relatively small number of SNRs to be examined, the strength (23):
assumption of normal distributions for the SNRs was questionable.
By assigning integer ranks to the SNRs, a correlation between @.16
SNRs was examined using the linear correlation coefficient of the
ranks. Spearman's rank correlation coefficient, Ps was used, with a
null hypothesis of no correlation between the human and NPW The estimation of activity in ROIs was performed using the
SNRs (i.e., H@:p5= 0). The alternative hypothesis, HA, was that tumor-present images ofthe ROC experiments before the interpola
there was a direct correlation of human SNRs with NPW SNRs tion and scaling to gray-level values for display. For both cold and
(i.e., a tendency for large human and NPW SNR values to be hot tumors, the calculation of the â€œtrueâ€•value of activity, 0, was

paired), so a one-tailed test of the significance of Ps was performed. done using the noise-free primary SPECT image for each tumor
location. These images were corrected for attenuation but did not

Comparison of Detection and Quantitation havethe Butterworthlow-passfilteringthat wasappliedto the
Activity quantitation is an example of a task where the strength noisy images.

(or magnitude) of a parameter, 0 (e.g., the number of counts in a With the noise-free primary SPECT image of the tumor as the
region), is desired. The strength of the parameter in a region of an standard for the EMSE calculations, activity estimates from the
object, f, may be defined as the sum of the elements that are prim@y images were affected only by noise. Therefore, the ROI
containedwithinaregiondefinedbyatemplate,w. Withtheobject sr'u@fortheprimaryimageswasbydefinitionthebestcase.Thisis
and the template represented as arrays of N elements, the true value similar in concept to the detection experiments, where the primary
of 0 is given by: image was defined as the ideal scatter subtraction.

N The ROl SNR of the activity estimates was calculated for each

0 =@ w1f@. Eq. 11 treatmentandthenwascomparedwiththedetectionSNRsfromthe
1=I human and NPW observers. Spearman's rank correlation coeffi

cient was used to test for correlation between SNRs of the detectionWhen ROI estimation is used to measure activity in an estimate of
andestimationtasks.Thenullhypothesis,H0,wasthatPs 0; thethe object (i.e., an image), the same template is applied directly to
alternative hypothesis, 11A'was that there was a direct correlationtheestimate(23),1,whichwasareconstructedSPECTimageinour
of the estimation SNR values with the detection SNR values.experiments. The ROl estimate of 0 is given by:

N

0ROi @:@ E@. 12 RESULTS
i=1

Human Observer Detection Accuracy
In contrast to the NPW template, which had the profile of the The average ROC curves for each treatment are shown in

lesion, the template for the ROl estimator was a circular disk,
having the diameter of the lesion and pixel values of either one or Figure 2, for the cold and hot tumor experiments, respec
zero for pixels located entirely inside or outside of the ROI, tively. For both lesion contrasts, comparison of the curves
respectively. If a fraction of a pixel was included in the ROl, from primary images with curves from uncorrected images
subsampling of the edge pixels of the disk provided pixel values of both low- and high-scatter conditions showed an obvious
between zero and one. Thus, the ROI estimator simply summed the decrease in detection accuracy (i.e., the AUC or SNR) as the
counts detected within the ROI. amount of scatter increased. The effect of DPW scatter

Barrett (23) recommended the use of the ensemble mean square correction on detection was not as clear.
error (EMSE) as a figure of merit for the ROI estimator to account The results of the two-way ANOVA of the SNRs gave
for both bias and variance. Using notation similar to Barrett's, the strong evidence for the existence of real, statistically signifi
bias of the estimator was given by the difference between the cant differences between treatments. As shown in Table 2,

averaged estimates and the true value of 0: the calculated F statistics were 13.45 (P = 0.7 X 10@) and

bRo! E(ORoI)fl!f @, Eq. 13 20.26 (P = 0.2 x 106) for cold and hot tumors, respec

lively. With F4@24= 2.78 for a = 0.05, the null hypothesis
where E(O)@j@is the estimate of activity in the ROI averaged over n that the differences between average SNRs of the treatments
noise realizations for a particular object, f (i.e., a lesion at a were equal to zero was rejected for both contrast polarities.
particular location). The mean square bias was defined as the The results of applying Scheffd's multiple comparisons
squared bias averaged over all objects: E(b@01)@.The variance of the

test for paired samples to the differences in the averageestimator was given by
human SNR between selected pairs of treatments are

var(ORoI) E([OR0I Â°ROI])n.f, Eq. 14 presented in Table 3 and in Figure 3 for cold and hot tumors,

respectively. The primary images gave a statistically signifi
where the average ofthe squared differences between estimates and cant (P < 0.05) increase in detection accuracy over the
themeanestimateis takenoverall noiserealizationsandoverall

uncorrected low-scatter images (A versus B) only for hot
lesion locations. The EMSE was then defined as the average

lesions. Although the ROC curves for the cold lesions appearsquared difference of the estimates and the true parameter value, 0:
to have a real difference, the null hypothesis (i.e., the

EMSE(OROI) E([ORol 0]2)@f, E@. 15 difference is equal to zero) could not be rejected. However,

E(O2)@
cx@i@2 _ _______________

ROl@
EMSE(OROI)
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(B). Taskwas detectionof 2.5-cm-diameter
tumor; whk@hhad contrast of 13% (-13% cdd
and +13% hot) and was located at one of
threepossiblesites.AUGand corresponding
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for both contrast polarities, primary images gave a signifi
cant (P < 0.05) increase in detection accuracy in compari
son to uncorrected high-scatter images (A versus C), and

uncorrected low-scatter images gave significantly greater
(P < 0.05) detection accuracy than uncorrected high-scatter
images (B versus C).

Visual inspection of the ROC curves for the comparison
of DPW scatter correction with uncorrected low-scatter
images (D versus B) showed little difference in detection

accuracy. For the high-scatter condition, curves for the
comparison of DPW-corrected images versus uncorrected

images (E versus C) showed more noticeable separation as

the difference in the SNRs (derived from the AUCs)
gradually increased. However, given the variances of the

curve fits and resulting AUCs, as well as the sacrifice of
power with the conservative approach to reducing type I
errors inherent in ScheffÃ©'s multiple comparisons test, the

difference in SNRs for any comparison of DPW scatter
correction with uncorrected images was too small to demon
strate statistical significance (i.e., the null hypothesis could
not be rejected).

For the comparison of primary images with DPW
corrected low-scatter images (A versus D), the null hypoth
esis could not be rejected. However, detection accuracy was

significantly greater for primary versus the DPW-corrected
high-scatter images (A versus E).

Comparison of Human and Non-Prewhitening
Observers

The average human SNR, the NPW SNR and the human
efficiency are reported for each treatment and contrast
polarity in Table 4. Both the human and NPW observers
produced lower SNRs for the hot lesions in comparison to
the cold lesions.

A positive correlation between the human and NPW
observers is evident in Figure 4, with an apparent separation

Of the points associated with the DPW-processed images (D

and E) from those of uncorrected images (B and C). Linear
fits to the primary and DPW-corrected data (slope 0.41,

intercept = 0.42) and to the primary and uncorrected data
(slope = 0.7 1, intercept = â€”0.40), which are shown in

Figure 4, further emphasize the apparent difference in the
way the human and NPW observers responded to the
DPW-corrected images.

With cold and hot tumor SNRs pooled, Spearman's rank
correlation coefficient gave a strong and significant correla

tion betweenthe ranksof humanand NPW observerSNRs
associated with the primary and non-DPW treatments (A, B

and C) and the primary and DPW treatments (A, D and E).
The correlation remained significant but decreased when all
treatments were considered together. Therefore, correlation

between the human and NPW SNRs was demonstrated,

TABLE 2
Two-Way ANOVA ofAverage Human Observer SNR
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GoldlesionsHotlesionsDifference

of Test95% ConfidenceDifference ofTest95%ConfidenceComparison
meanSNAs statistictintervalmeanSNAsstatistictintervalAversus

B 0.16 1.61â€”0.05, 0.380.203.200.01 ,0.39Aversus
D 0.19 2.16â€”0.03, 0.410.151.71â€”0.04,0.33D

versusB â€”0.03 0.04â€”0.24, 0.190.050.23â€”0.13,0.24B
versusC 0.27 4.310.05, 0.480.275.810.08,0.46Aversus

C 0.43 11.190.22, 0.650.4717.640.29,0.66Aversus
E 0.34 7.020.13, 0.560.328.300.14,0.51E

versus C 0.09 0.48â€”0.13, 0.310.151 .74â€”0.04,0.34differences

aresignificant(P <0.05).tCritical
value:F4,24= 2.78,P <0.05.ROC

= receiveroperatingcharacteristic;SNR= signal-to-noiseratio.

TABLE 3
ScheffÃ©'sPairwise Multiple Comparisons Testfor ROC Results*

andthenullhypothesisthatp,=OwasrejectedwithP<
0.05. The results are reported in Table 5. The P values were from
the one-sided test with HAspecifying direct correlation.

Comparison of Detection and Quantitation
The results of activity quantitation using the ROl estima

tor are summarized for both cold and hot tumors in Table 6
and Figure 5. Note that the magnitude of the EMSE is
inversely proportional to the SNR for the ROI estimator.
The bias and variance for the primary images (A) were
affected only by the random noise due to counting statistics,

given that the noise-free primary image corrected for
attenuation was used as the standard against which all
activity estimates were compared. Bias increased as the
amount of scatter in the uncorrected images increased from
low (B) to high (C), with a decrease in variance as the
number of counts in the images increased. The DPW

corrected images for both low and high scatter (D and E,
respectively) showed the decreased bias obtained by scatter
subtraction, with the cost of increased variance due to a

reduction in the counts in the projection image set and an

alteration of the noise characteristics of the reconstructed
SPECTimages.

The SNR of the ROI estimator reported in Table 6 is
shown in Figure 6, which provides a visual comparison with
the average human SNR and the NPW SNR. Like the
detection SNRs, the ROI estimator SNR was greatest for the
primary images and decreased as the amount of scatter in the

images increased. Unlike the detection SNRs, a notable
increase in the ROl SNR was produced by the DPW scatter
subtraction.

With cold and hot tumor SNRs pooled, the comparison of
the average human SNR with the ROI SNR using Spear
man's rank correlation coefficient resulted in rejection of the
null hypothesis (i.e., p. = 0) at the P < 0.05 level only when
SNRs from all treatments were considered together. For the
comparison of the NPW SNR with the ROI SNR, the null

hypothesis was rejected at the P < 0.05 level only when the
SNRs of the non-DPW treatments (i.e., A, B, and C) were
considered. The results are reported in Table 5. The P values
were from the one-sided test with HA specifying direct
correlation.

DISCUSSION

The ROC experiments indicated that human detection
accuracy in SPECT images decreased as the amount of

scatter present increased. For both contrast polarities, uncor
rected low-scatter images gave significantly higher detection
accuracy than the uncorrected high-scatter images. Further
more, although the higher detection accuracy was statisti
cally significant only for hot lesions when primary images
were compared with uncorrected @mTc(i.e., low scatter)
images, the increase in accuracy was significant for both hot
and cold lesions when primary images were compared with
uncorrected high-scatter images.

However, the subtraction of estimated scatter by means of
the DPW method failed to demonstrate statistically signifi
cant improvement in detection accuracy over uncorrected
images. Moreover, for the high-scatter images of both
contrast polarities, primary images gave significantly better
detection accuracy than the DPW-corrected images. Whereas
the primary and DPW-corrected images had count levels
that were lower than the levels in the uncorrected
images, the DPW-corrected images generally exhibited
more prominent correlated noise blobs than either the
primary or the uncorrected images for both low- and
high-scatter cases.

The noise characteristics of the DPW images may have
differed from those of the other treatments due to overcorrec
tion of the projection sets (as seen in Table 1) and to the
subtraction of smoothed estimates of scatter from the
projections, as opposed to the rejection of the true scatter
before image acquisition. It is known that noise correlations

have an adverse effect on the ability of the human observer
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Cold lesionsHotlesionsAverage

humanNPWHumanAveragehumanNPWHumanTreatmentSNA
(SE)SNRefficiencySNA(SD)SNRefficiencyA1

.67 (0.04)2.970.311 .40(0.02)2.610.28B1.51
(0.02)2.450.381.19(0.02)2.260.28CI

.23 (0.02)2.290.290.92 (0.01)1.980.22D1

.48 (0.02)2.390.381 .25(0.01)1.980.40E1

.33 (0.01)2.020.431 .07 (0.03)1.810.35SNA

= signal-tonoiseratio;NPW= non-prewhitening.

to detect lesions in a background (26). The liver presented a
large, fairly uniform, region of activity in the SPECT
images, in which noise blobs provided the primary source of
distraction for the observers.

Both the human and the NPW observers indicated that
detection accuracy was somewhat lower for hot lesions in
comparison to cold lesions. However, the difference in

magnitude did not affect the conclusion that increased

scatter in the SPECT images decreased the detection SNR.

Nor did the difference affect the fact that the DPW scatter
subtraction produced inconclusive results with respect to
detection.

The correlation of the NPW and human SNRs indicated
that the NPW observer can be a useful predictor of how
human observer detection accuracy is affected by scatter in
SPECTimagesundercertainconditions.Therewasa strong,
direct correlation between human and NPW observer SNRs
when uncorrected results and DPW-corrected results were
considered separately. However, the NPW observer ap
peared to be somewhat less effective for predicting the
human observers' performance when DPW-corrected and
uncorrected images were considered together. The DPW

correction generally caused an increase in the human SNR
with respect to the uncorrected images, while the NPW SNR
decreased.

The discrepancies between the two types of observers
may indicate that they responded differently to the effect of
the DPW correction on noise correlations. It is possible that
human observers were able to do some decorrelation of
image noise with partial prewhitening (38). Perhaps a model
observer that included the effects of spatial frequency

selective channels in the human visual system would
provide an improved prediction of human performance
(24,26).

As expected, for the task of estimating activity, the
results showed that quantitative accuracy decreased as
the amount of scatter present increased. In addition, the
SNR of the ROI estimator indicated that scatter sub
traction improved the accuracy of quantitative measure
ments on average. Although the ROC experiments did not
demonstrate a significant improvement in detection accu
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FiGURE 3. Comparisons of human observer signal-to-noise
ratios (SNR5) from ROC experiments for selected pairs of
treatments are presented for cold (A) and hot lesions (B).
Between-treatmentcomparisonswere made using ScheffÃ©'s
methodof multiplecomparisonsof pairedsamples(teststatistics
are reported in Table 3). Mean difference in detection SNAs,
averaged over seven observers, was plotted for each compan
son. Bars indicate 95% confidence intervals. Nullhypothesis was
that mean difference was equal to zero. Statistically significant
differences are labeled with P < 0.05.

TABLE4
Average Human Observer SNR, NPW Observer SNA and Human Efficiency
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racy with DPW scatter subtraction, DPW substantially
decreased the bias at the cost of increased noise, as
evidenced by the increased variance. Furthermore, where
as the ROl SNR for DPW-corrected images was better
than that of uncorrected images (comparing treatments D
to B for low scatter and E to C for high scatter), it was
always lower than the ROI SNR of primary images (treat
ment A).

A strongdirectcorrelationwasseenbetweenthehuman
and NPW detection SNRs, but the correlation of the ROI
estimator SNRs with both detection SNRs (i.e., human and
NPW) was weaker. Barrett (23) gave the relationship
between the NPW SNR and the ROI SNR as

strength of the correlation between the SNRs for the two
tasks.

Before generalizing the results of the ROC experiments,
several considerations regarding the conditions under which
they were conducted should be considered. First, for the
clinical application considered, the attenuating medium was
nearly uniform, unlike locations such as the thorax and
certain regions of the head. Second, the experiments tested
only the simple detection task under SKE conditions. This
required the use of images with low contrast and low counts

(i.e., high noise) to obtain suitable areas under the ROC
curves. Other tasks that are part of clinical decision making
were not considered, such as the ability to correctly locate or
to correctly determine the size of a lesion. Third, filtered
backprojection was used to reconstruct the images, which
produces particular artifacts and noise characteristics that
differ from other algorithms, such as the iterative methods.
Fourth, observers were not allowed to adjust the transfer

function of the display monitor to their liking. The display
monitor was carefully controlled throughout all of the

where Q is a product of factors, which accounts for the
different effects that characteristics of images (e.g., bias and
correlated noise) have on the detection and estimation tasks.
Some of these factors may explain the difference in the

TABLE5
Spearman's Rank Correlation Coefficient for Comparisons of Detection and Estimation SNR5*
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Coldlesions (counts in AOl =74.1)Hot lesions (countsin AOl =87.3)Mean

estimatedMean-squareMean estimatedMean-squareTreatmentcountsbiasVarianceEMSEAOl
SNRcountsbiasVarianceEMSEAOlSNRA73.90.64.75.332.386.90.45.25.637.0B71.911.23.614.819.381.342.73.245.912.9C87.3200.62.9203.55.295.188.32.490.75.2D74.70.89.09.823.788.51.710.011.725.5E72.05.714.820.516.486.90.215.715.921.9SNR

= signal-to-noiseratio.

TABLE 6
Region-of-lnterest (ROl) Estimation ofActivity Using the Ensemble Mean Square Error (EMSE)

experiments to maintain a consistent log-linear transfer
function and thus to minimize effects of the display on the
outcome of the experiments. Fifth, pooling the results from
the several lesion locations had an averaging effect that
obscured the differences in detection and estimation SNRs
that can arise due to location (39). Finally, statistically
significant differences are not necessarily equivalent to
clinically significant differences.

CONCLUSION

For both hot and cold tumors in the liver, primary images
produced detection and quantitation SNRs that were supe
nor to the other treatments. The greatest improvement was
seen in the cases where the scatter fraction was high. Scatter
subtraction with the DPW method produced an increase in
quantitative accuracy that was greater than the increase in
detection accuracy. The NPW observer model was fairly
effective at predicting the trends of the average human

observer performance; the ROl estimator was less effective
in predicting detection accuracy. The results suggest that to
achieve improved accuracy for both detection and quantita
tion either scatter correction algorithms must produce results
that approach the ideal conditions of primary images or
detectors must have improved energy resolution for scatter
rejection.

ACKNOWLEDGMENTS

This study was supported by the National Cancer Institute
under grant CA-42l65. Its contents are solely the responsi
bility of the authors and do not necessarily represent
the official views of the National Cancer Institute. We
thank Drs. Stephen C. Moore and Harrison H. Barrett for
helpful conversations and advice regarding the design
and implementation of the experiments discussed in this
article.

FIGURE5. Regionof interest(ROI) esti
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