Quantitative Bone Metastases Analysis Based on

Image Segmentation

Yusuf E. Erdi, John L. Humm, Massimo Imbriaco, Henry Yeung and Steven M. Larson
Department of Medical Physics, Nuclear Medicine Service, Department of Radiology, Memorial Sloan—Kettering Cancer

Center, New York, New York

Preliminary evidence indicates that the fraction of bone containing
metastatic lesions is a strong prognostic indicator of survival lon-
gevity for prostate and breast cancer. Our current approach to
quantify metastatic bone lesions, called the Bone Scan Index, is
based on an inspection of the bone scan, estimating visually the
fraction of each bone involved and then summing across all bones
to determine the percentage of total skeletal involvement. This
approach, however, is time consuming, subjective and dependent
on individual interpretation. Methods: To overcome these problems,
a semiautomated image segmentation program was developed for
the quantitation of metastases from planar whole-body bone scans.
The user is required to insert a seed point into each metastatic
region on the image. The algorithm then connects pixels to the seed
pixel in all directions until a contrast-dependent threshold is
reached. The optimal threshold for cessation of the region growing
is determined from phantom studies. On the images, lesion delin-
eation and size measurements were performed by the algorithm.
Each delineated lesion is associated with a bone site using pull-
down menus. The program then computes the fraction of lesion
involvement in each bone based on look-up-tables containing the
relationship of bone mass with race, sex, height and age. These
look-up-tables were obtained by multiple regression of the skeletal
mass measurements in humans. The total fraction of skeletal in-
volvement is then obtained from the individual fractional masses. For
individual fractional mass, values given in International Commission
on Radiation Protection Publication No. 23 were used. Results: The
bone metastases analysis system has been used on 11 scans from
6 patients. The correlation was high (r = 0.83) between conventional
(manually drawn region-of-interest) and this analysis system. Bone
metastases analysis results in consistently lower estimates of frac-
tional involvement in bone compared with the conventional region-
of-interest drawing or visual estimation method. This is due to the
apparent broadening of objects at and below the limits of resolution
of the gamma camera. Conclusion: Image segmentation reduces
the delineation and quantitation time of lesions by at least two
compared with manual region-of-interest drawing. The objectivity of
this technique allows the detection of small variations in follow-up
patient scans for which the manual region-of-interest method may
fail, due to performance variability of the user. This method pre-
serves the diagnostic skills of the nuclear medicine physician to
select which bony structures contain lesions, yet combines it with an
objective delineation of the lesion.
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More than 50% of patients with Hodgkin’s disease or breast
and prostate carcinoma have osseous metastases at autopsy (/).
Similarly, other carcinomas frequently demonstrate osseous
metastases ranging from 12% to 50% of cancer patients (2).
The fraction of bone containing metastatic lesions is a strong
prognostic indicator of survival longevity for cancer (3,4).
Especially in prostate cancer, the presence of bone metastases
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outside of the pelvis and lumbar spine is a prognostic indicator
of short survival time (5). However, to quantitate all bone
metastases (BMets) in patients is a time-consuming task, since
patients with metastatic involvement usually have more than
one disease site. For example, one study identified 403 bone
lesions in 62 patients (6). To evaluate and quantitate the fraction
of metastatic deposits of BMets for such a group of patients
may take up to 30 min per patient. In addition, the quantitation
of skeletal disease is a subjective task based on the experience
of the physician. To minimize the interobserver variability of
the reading, usually more than one independent bone scan
reader is used. In two recent studies, the extent of skeletal
metastatic involvement was estimated as a percentage of the
total skeletal area as independently determined by two bone
scan readers (7,8). The values for each scan were then averaged
for each observer to reduce the magnitude of interobserver
variability.

Visual analysis of bone scans is a common method to
estimate the extent of skeletal disease. In a recent study, the
extent of skeletal disease was graded into five categories based
on the number of bony metastases (9). Another study used a
bone scan scoring system from 0 to 2, where 0 represents
normal uptake, 1 means one or several uptakes and 2 signifies
diffuse uptake (/0). In a Mayo Clinic study, a similar bone scan
interpretation schema was used as negative, positive or inde-
terminate (/7).

Our current bone scan index (BSI) method is based on a
subjective interpretation of the bone scan, in which the fraction
of each bone involved is estimated visually. Each bone is then
assigned to constitute a given fraction of the skeleton. By
summing the fractional contribution of each bone, one arrives at
the total percentage for the involved skeleton (/2). This method
uses the concept of standard man from International Commis-
sion on Radiation Protection (ICRP) Publication No. 23 (13),
where 123 of the major bones in the body are listed by name,
with their estimated fraction of the total skeleton. Physicians
interpreting bone scans estimated the fraction of each involved
bone by reference to an atlas. The sum of the involved area in
the 123 bones was estimated by summing the fractions times the
percentage of the skeleton for each bone involved.

A study was conducted at our institution to assess the
interobserver variability of the BSI method. A series of 69
whole-body bone scans was read by 3 independent blinded
observers. This was done after the 3 observers participated in a
training session involving 10 images, in which they graded the
images together to reach a consensus. Excluding the time spent
for the training session, evaluation of each patient in this group
took an average of 13.5 min per reader (Imbriaco M, Yeung H,
Larson SM, personal communication, 1996). The results of this
study demonstrated that when the bone involvement is less than
20% of the total skeleton, the interobserver variability is less
than 10%. The variability, however, can differ by 15% for
greater total skeletal involvement.
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In this work, our motivation was to reduce the evaluation
time and interobserver variability by a semiautomated computer
algorithm. Using this method, one should be able to objectively:
(a) segment metastatic bone regions from a user (physician)-
selected initial seed, (b) measure the fraction of metastatic
tumor involvement of each individual bone and (c) estimate the
total tumor burden (mass) of the metastatic disease in a shorter
time than the current BSI method.

MATERIALS AND METHODS

Image Segmentation

Region growing is an image processing procedure that groups
pixels into larger regions (/4). The algorithm starts with a user
defined “seed” pixel and grows into regions by appending to the
seed pixel, neighboring pixels that have similar gray levels. In
brief:

PC=(x+1iy +j)
= {1if (Gyx,y) — Gulx + i,y + j)]<= T(c) X Gs(x,y)
0if (Gy(x,y) — Gulx + i,y + j)] > T(c) X G4(x,y))
-1L0, + 1; -1,0, +1}, Eq.1

j =

where

G,(x, y): gray level of the seed pixel at x, y,

G,(x + i, y + j): gray levels of the neighbor pixels,

T(c): contrast-dependent optimal threshold,

PC(x + i, y + j): pixel connectivity of the neighbor pixels.

Determination of Stopping Thresholds by
Phantom Experiments

The optimal threshold, T(c), for cessation of the region-growing
process is a function of the activity concentration ratio between the
BMet and the background. To determine this optimum stopping
threshold, we conducted a series of phantom studies to simulate
BMets. In this experiment, an abdominal Jaszcsak phantom was
used. To simulate BMets, two spheres with volumes of 4 ml and 21
ml, and an ellipsoid with a volume of 7.4 ml, were injected with a
1 #Ci/ml of ®™Tc and placed at various locations in the phantom.
Target-to-background activity concentration ratio was changed
from infinite (no background activity) to 3 by adding **™Tc into the
background.

An ADAC Genesys SPECT system equipped with a low-energy
high-resolution collimator was used in planar mode for data
acquisition. A 20% window was centered at 140 keV and the data
acquired in a 128 X 128 X 16 bit pixel matrix for 15 min. The
images were transferred to a Silicon Graphics 4D/240GTX (25
MHz) workstation for region-of-interest (ROI) analysis. The opti-
mal stopping thresholds were computed for each contrast level and
fitted into a linear curve through regression.

Measurement of the Fractional Metastatic
Tumor Involvement

To individualize the size or the mass of each bone for patients
with metastatic tumor, we created look-up-tables (LUTs) based on
measurements of individual bones given by Merz et al. (/5). In that
study, a series of 204 skeletons from the Terry Collection was used:
American whites and blacks of both sexes between the ages of 16
and 91. The Terry Collection data were used to determine the mass
of the skeleton by using seven independent variables: age, height,
femur-length, area of midfemur, femur-mass, area of compact bone
in femur by radiograph and measurement. For retrospective patient
analysis, however, some of these independent variables are not
readily available. Therefore, we performed multivariate linear
regression to estimate skeletal massess of both race and sex groups
using age and height variables (Table 1).

We then performed ROI analysis for every visible bone on
normal anterior and posterior scans. In this way, the projected area
of the individual bones was determined in terms of pixels. The total
projected areas were used to normalize the area of metastatic
involvement, such that:

Fumix = Awmix/Asixs Eq. 2

where

Fuix: Fraction of metastatic involvement of ith bone in Patient
Xy

Apmix: Area of the metastases in ith bone of Patient X (pixels),

Agix: Area of the ith bone of Patient X (pixels) in which

Agix = (Pwx/Pwn) X Agin.

Pwx: Skeletal mass of Patient X (g),

Pwn: Skeletal mass of a patient with a normal bone scan (g),

Agin: Area of the ith bone of a patient with a normal bone scan
(pixels).

Equation 3 states an important assumption, namely, that the area
of each skeletal bone scales linearly with total skeletal mass. After
the computations of each F,;« for Patient X, those fractions can be
converted to absolute masses using:

Wuix = Fmix X (Wpi/100) X Pyx,

Eq.3

Eq. 4

where

Wuix: Percent mass of the ith metastases in Patient X (g),

Wp,;: Percent mass of the ith bone (total skeleton = 100%),

Pwx was computed using age and height correlated regression
analysis as described in this section. To find the total mass of the
metastatic lesions (Wy,x), all Wy« values are added together.
Regression Analysis

The images obtained from phantom experiments with two
spheres and one ellipsoid were analyzed by the region growing
algorithm (Eq. 1) initiated by the selection of a seed pixel into the
spheres and ellipsoid. Connectivity of pixels surrounding the seed
pixel were determined by Equation 1. Optimum region stopping
thresholds [T(c)] have been adaptively determined for each vol-
ume-object/background activity concentration ratio to minimize
the difference between the actual object area of the central slice and
measured (by region-growing) object area. A correlation (r = 0.92)
between contrast (the gray level difference between object and
background regions divided by the object gray level and multiplied
by 100 to express as a percentage) and T(c) was found as

T(c) = 0.82 X Contrast(%)/100
T(c) = 04
Skeletal Mass Computation

Linear equations were obtained by multivariate linear regression
of skeletal mass, age and height data from Merz et al. (/5) data
(Table 1) using the IDL Version 4.0 program. Linear equations
were used to generate LUTs and were in the form of

Skeletal Weight (g) = Cp + C; X Age(yr) + C,
X Height (cm).

if Contrast <= 75%

Eq.5
if Contrast > 75%. 3

Eq. 6

The fit parameters for each race and sex group were given in
Table 2.

To tie the projected bone areas from a bone scan to actual
individual bone masses, it was necessary to carefully outline all the
bone structures for a reference man of known height, sex, age and
race. This reference patient was a 71-yr-old white man 174 cm in
height with a normal (a scintigraphic study not showing patholog-
ical areas of increased radiotracer uptake) bone scan. We estimated
4437.4 g of skeletal mass using our regression analysis. The pixel

1402  ThEe JourNAL oF NUCLEAR MEDICINE ¢ Vol. 38 « No. 9 « September 1997



TABLE 1
Temnry Collection Data

Age interval Age (yn) Height (cm) Skeletal weight
No. of cases o mean * s.d. mean * s.d. mean * s.d.
Black female
12 16-29 22+39 1616 + 84 3736 + 487
7 30-39 357 +35 162.1 = 8.1 4030 + 790
8 40-49 445+ 26 164.4 £ 6.9 3920 * 646
8 50-59 548 + 3.3 160.0 = 3.5 3388 + 443
6 60-69 638 +22 158.8 = 3.5 3827 + 656
9 70-79 73.0 = 31 160.0 + 5.6 3373 = 634
5 80-91 838+ 45 1584 +75 3268 + 628
White female
7 17-39 30.0 = 6.2 163.3 + 5.0 3197 + 543
4 40-49 465 + 1.7 1612 =78 3002 * 844
7 50-59 55.0 + 2.1 164.6 = 5.8 3320 + 507
8 60-69 65.0 29 158174 2984 + 400
8 70-79 730*27 1614 +7.8 3022 + 709
5 80-89 864 + 34 153.6 = 8.3 2182 + 400
Black male
8 18-29 241 +43 1749+ 7.0 4915 = 715
8 30-39 342 +29 1785+ 44 5621 + 675
9 40-49 457 +28 1706 + 84 4882 + 1009
8 50-59 56.2 + 2.3 1714 £ 56 4976 * 890
8 60-69 62.8 + 3.5 167.9 + 10.2 4988 * 480
8 70-79 736 + 35 172.8 + 104 5340 * 946
5 80-91 864 + 4.2 167.8 * 6.4 4611 + 832
White male
4 18-29 215+ 44 172.0 = 123 4445 + 999
8 30-39 351+ 34 173.1 £ 105 4245 * 624
9 40-49 449 + 30 1730+ 7.0 4860 + 710
9 50-59 55.8 + 4.0 1717 £ 47 4369 * 569
9 60-69 66.2 + 2.3 1721 £ 49 4432 + 701
8 70-79 736+ 33 168.1 = 2.8 4575 * 349
8 80-87 829+ 25 1689+ 7.5 3955 + 457

Data were modified from Reference 16.

areas of all the bones were delineated on the anterior and posterior
bone scan images. Bone pixel-area values found by ROI analysis
were stored in a LUT table. These pixel areas were then used to
normalize the individual patient bones with metastatic disease.
Each normalized disease area was then multiplied with the frac-
tional mass of that particular bone obtained from ICRP Publication
23 (13). Because the individual skeleton mass was estimated by
regression analysis from the patient body mass, height, sex and
race, it was then possible to compute the mass of each metastatic
lesion.

A schematic diagram of the bone metastases analysis is illus-
trated in Figure 1. The user enters the patient’s age, height, sex and
race into the BMets analysis program. Using the linear regression
parameters given in Table 2, the total skeletal mass of the patient
is computed. Seed points are entered within each lesion by a mouse
click in anterior or posterior whole-body scan of the patient. If the
same lesion is visible on both scans, the scan with a higher lesion
contrast is selected to introduce the seed pixel. The algorithm then

TABLE 2
Fit Parameters and Correlation Coefficient (r) for Black Female,
Black Male, White Female and White Male

Race/Gender Co C, C, r

Black female —3863.8 -6.3 489 0.74
Black male —8696.8 22 78.6 0.62
White female -12299.3 -0.7 95.2 0.98
White male 262.3 -24 25.0 0.57

applies region growing, calculates the number of pixels in each
region, adjusts those regions with the reference scan pixel values
(from a patient with no bone disease). Those normalized values are
multiplied with bone fractions obtained from ICRP 23 (/3).
Fractional values are then multiplied with total skeletal mass of the
patient to obtain the mass of each lesion.

Adaptive contrast normalization was applied if the lesion/
background activity concentration ratio is equal to or less than 4
(assume lesion = 100 counts per pixel, background = 25 counts
per pixel, then Contrast = (100 — 25)/100 = 0.75 or 75%). In that
case, the optimal threshold was selected based on the relation given
in Equation 5. However, when the activity concentration ratio is
greater than 4, then the optimal threshold converges to a fixed
value of 0.4.

RESULTS

To determine the fraction of metastatic involvement in each
bone and to calculate the mass of bone disease, we performed
a BMets analysis for 11 bone scans from 6 patients (mean
age = 66). Figure 2 shows the delineation of all metastatic
regions for the anterior image of Patient 1. A similar analysis
was performed on both anterior and posterior images for the rest
of the patients. The results of this analysis are summarized in
Table 3. The percent of bone lesion involvement in the 11 scans
studied ranged from 2.4% to 6.5% by the BMets analysis
method as compared with 3.1% to 14.0% by the BSI approach.
The BMets analysis took between 1 and 4 min for each patient
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[Enter patient’s age, height, sex, and race |

l

[Estimate total skeletal weight of the patient

lusing linear regression analysis

Insert a seed pixel in each metastatic region and
ly region growing

In low-contrast, use adaptive
contrast normalization to re-
mpute stopping threshold of

jon-growing process
in number of pixels in each
ith the normal scan pixel values.

Bone fractions look-up-table
total skeleton = 100%)

ient pixel-area values of

From look-up-table, normal

[Estimate weight of each individual metastatic
region. Sum and normalize to the total weight
of the skeleton.

report of each lesion and the
fraction of bone involvement

FIGURE 1. Overall schema for quantification of metastatic bone lesions and
the total disease burden.

depending on the number of lesions and the visibility of those
lesions.

Due to the errors incurred by ROI drawing (or visual
estimation) by the BSI method, BMets analysis is more sensi-
tive to small changes in disease mass due to the objectivity in
the region growing algorithm (Patient 4, first and second scans).
Estimates of the lesion size by the BSI are greater then by the
BMets method in all cases. This is due to an overestimation by
the physician during the visual inspection, and not underesti-
mation of the area by the BMets analysis program, as substan-
tiated by phantom measurements in which the volume of the
lesions are known. The BMets results are approximately one-
half those obtained by BSI irrespective of lesion size. Obtaining
one-half of the size with an automated method is in good
agreement when using an approximately 50% threshold of the
maximum gray level in clinical practice to delineate the lesions
16).

A correlation coefficient (r) of 0.83 was found between the
BSI method and the BMets analysis. Furthermore, the BMets
analysis estimated the mean mass of the disease (198.1 *
67.4 g), which is not available in the BSI method, except by a
crude visual estimation of the fraction of skeletal involvement
multiplied by an assumed skeletal mass. A generated scan
analysis report itemizes the mass of the metastatic lesions in
each involved bone. An example of such a report was given in
Figure 3 for Patient 1.

DISCUSSION

Manual techniques to delineate and estimate the fractional
volume of metastatic bone involvement are based on the
physician’s experience at defining the extension of those
lesions. We are concerned that the reproducibility of manually

FIGURE 2. (A) Anterior bone scan of Patient 1. (B) The same image with the
lesions delineated. Total delineation time for all lesions was less than 75 sec
on a 25 MHz UNIX workstation.

drawn ROIs is low, especially for small lesions in areas of low
contrast, due to the edge blurring of the lesion. Furthermore,
since the perceived size of the lesion is a function of the display
contrast, regions drawn with a fixed threshold are prone to
error, especially in low lesion-to-background ratios (16). Le-
sions smaller than twice the full width at half maximum of the
system look larger on the display, due to the limited system

TABLE 3
Bone Metastases Analysis by the BSI and BMets Methods for Six
Prostate Carcinoma Patients
Patient Disease weight Involvement (%)
no. Scan date (9) BMets BSI BMets

1 08/17/93 109.2 8.0 24

2 10/28/93 2274 10.6 5.4

3 02/01/85 1274 3.1 29

4 09/23/94 123.8 5.1 28
10/31/94 161.7 5.1 36

12/28/94 165.1 54 37

03/15/85 176.6 6.1 4.0

08/21/85 256.1 9.9 5.8

5 10/26/93 2739 11.6 59
12/01/93 301.7 11.0 6.5

6 07/19/85 256.4 140 5.9
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MSKCC-NUCLEAR MEDICINE

Report of Bone Metastasis Analysis

Patient Name: #1 MRN#: 00000000 7/10/96
Order: Dr. Larson

8/17/93 BONE SCAN:
Skeletal Weight:4597.10 gm
Radionuclide: 5.0 mCi Tc99m MDP

CLINICAL HISTORY: 67 year old male patient with prostate carcinoma is
referred for baseline study on exteat of disease

PROCEDURE: Two hours post infusion anterior, posterior whole body images
FINDINGS: There is an increased uptake of Tc99m involving thoracic and lumbar

vertebrae. Increased uptake also noted in the right and left ribs, left scapul, illium,
and pubic bone.

BONE METASTASIS REGIONS

Region Area (pixels)  Percent Involvement Discase Weight (gm)
1- skull 61 0.88 5.75
2- Iscap 422 179 218
3- lhumerus 33 2.12 1.84
4- lilium 81 348 250
5- rpubis 91 134 4383
6- RR3 66 16.2 2.87
7- RR4 48 112 1.99
8- RR7 30 6.71 119
9- Sternum 316 17.1 8.08
10- T4 54 10.0 3.07
11- TS 42 9.27 2.12
12- T6 49 9.69 224
13- T 51 9.7 293
14- T8 46 9.54 2,67
15- iy 42 9.27 2.12
16- T10 38 9.04 2.02
17- L2 52 103 3.19
18- L3 58 114 3.56
19- LS 68 134 4.18
20- rischium 86 127 9.17
21- lilium 53 227 1.63
22- rilium 58 248 1.79
23- LR3 83 203 3.61
24- LRS 145 259 4.60
25- LR6 42 7.78 1.38
26- RR2 47 149 2.65
27- RR4 86 20.1 3.56
28- RRS 35 6.26 LIl
29- RR12 40 18.0 1.06
TOTAL Regions= 29

TOTAL Discase Weight (gm)= 109.23348
TOTAL Skeletal Involvement (percent) = 2.37

IMPRESSION: Abnormal Bone Scan. Metastatic prostate cancer to bone.

FIGURE 3. An example of an output report generated after application of
BMets to Patient 1. Some regions were delineated from the posterior image.

spatial resolution and edge blurring, which result in an overes-
timation of the lesion size with manual ROI methods as seen in
Table 3. This finding is in good agreement with the analysis
performed by Long et al. (/7). Their results (Fig. 3A in
reference /7) show that operator-drawn ROIs significantly
overestimate even large volumes up to 120 ml. Overestimation
of lesion size may not be the case in BMets analysis since the
adaptive threshold for region growing adopted edge information
derived from phantom experiments, with known lesion size and
contrast levels.

In its present state, the BMets analysis system has limitations.
A preliminary work using digitized bone scan films from other
medical centers with various magnification factors created a
scaling problem, since the BMets algorithm was normalized by
a standard patient scan with a matrix size of 512 X 1024.
Therefore, the images obtained in smaller matrices require
multiplication by a zoom factor with region pixels artificially

changing the quantitation values. Smaller matrix sizes may
reduce the accuracy of BMets and decrease the reproducibility
of visual inspection or manual ROI methods.

The quantitation of digitized bone scan films was signifi-
cantly less accurate than 16 bit digital camera images. In
comparison with 8 bit (256 gray levels) or 16 bit (65,536 gray
levels) digital data, scanned films generally demonstrate only
approximately 65 gray levels. This reduced number of gray
levels resulted in several erroneous connections between the
background pixels into the ROIs by the semiautomated region-
growing algorithm. It is also not possible to visualize all
metastatic involvements in the image for seed insertion due to
the limited dynamic range of the film. The quantitation of
digitized films contains inaccuracies arising from two sources.
First, film exhibits a nonlinear H and D response curve altering
the edge gradient and interfering with the predetermined con-
trast-dependent threshold levels. Second, there is an inherent
variability in film response, which depends on the film proces-
sor, temperature, age of the developer, etc. As a consequence,
two films of the same patient bone scan can produce different
results.

Another shortcoming of the BMets program is its inability to
differentiate skull bones. The whole-body sweep images pro-
vide two-dimensional projections of a three-dimensional struc-
ture. The BMets program performs fractional metastatic deposit
measurements on these two-dimensional data. Bones that are
perpendicular to the image plane become grouped together. For
example, all the bones in the skull were considered as a single
bone in the program, and metastatic fractions were computed
with respect to the whole skull.

The effectiveness of BMets analysis is reduced at low
lesion-to-background ratios (e.g., 3) due to the increased noise
at the region boundary, which interferes with the accuracy of

~ the region growing process. To overcome this problem, we have

integrated an adaptive contrast adjustment program that mea-
sures lesion-to-background ratio and adjusts the stopping
threshold (see Eq. 5) of region growing according to the results
of phantom measurements.

Future refinements of the BMets analysis program will
consider the region growing process in combination with a
statistical decision-making algorithm in which stopping thresh-
olds are computed based on the local information density. It will
also be useful in investigating prefiltering of the images to
remove noise while preserving region boundaries [e.g., edge-
preserving smoothing algorithm (/8)]. Although prefiltering
may alter pixel values near the edges, the absolute quantitation
of the pixels is not necessary since the BMets program attempts
to find the size of the area rather than actual pixel values.

CONCLUSION

A new BMets quantitation method has been developed. This
method uses an adaptive contrast adjustment scheme in order to
minimize the lesion delineation error, which would generally
result in different lesion sizes at variable contrast levels. Two
clinical goals have been achieved: (a) a reduction in the time for
delineation of bone lesions by at least two times compared to
BSI method and (b) increased objectivity and reproducibility in
assessing the fraction of the metastatic involvement of each
bone considering 15% interobserver variation with the BSI
method. These advantages release the physician from laborious
ROI drawing, replacing this chore by the more appropriate
diagnostic task of “point and click” at lesions in the skeleton,
and preserve the physicians diagnostic skills to recognize bony
lesions, and combines it with an objective method to determine
the lesion area (and from it the fractional mass). This objectivity
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makes the technique user independent. Interphysician variabil-
ity only occurs when the interpretation of the involvement of
individual bones differs. Another significant advantage of this
method is the analysis of repeat bone scans of the same patient
after treatment. In this circumstance, the reproducibility of the
region growing will give a precise result of the change in
disease status, which could readily be overwhelmed by the
uncertainties in the ROI drawing, even when the scans are
delineated by the same physician. The assessment of bone scans
in a quantitative manner will enable a more objective evaluation
of therapies directed at the treatment of bone metastases. The
quantitation of metastatic fractions on an individual bone basis
and the generation of a treatment report (Fig. 3) that classifies
the fractional involvement of each bone allows response to be
determined for each lesion.
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FIRST IMPRESSIONS
Renal Ectopia in Bone Scanning

Figure 1. Figure 2.

PURPOSE

A 45-yr-old male athlete underwent bone scintigraphy for hip
pain, a left femoral neck stress fracture being suspected. The
intense focal uptake of “Tc-HDP in the anterior pelvic view at
the Sl level (Fig. 1) was demonstrated in the LAO view (Fig. 2)
to be extra-osseous. Review of the initial blood-pool image
(Fig. 3) identified the focus as residual radioactive urine in a
renal calyx of his midline ectopic pelvic kidney.

TRACERS
Technetium-99m-HDP (900 MBq)

ROUTE OF ADMINISTRATION
Intravenous

TIME AFTER INJECTION
Dynamic and blood pools immediately after administration.
Delayed static images at 2.5 hr.

INSTRUMENTATION
General Electric 4000 XRT

CONTRIBUTORS
Clayton J. Frater and I. Provan. C. Murray, Nuclear Diagnostics
Randwick, Sydney, Australia.
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