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Consequences of Using a Simplified Kinetic Model
for Dynamic PET Data
Pamela G. Coxson, Ronald H. Huesman and Lisa Borland
Center for Functional Imaging, Lawrence Berkeley National Laboratorv and Department of Physics, University of California,
Berkeley, California

We compared a physiological model of 82Rb kinetics in the myo
cardium with two reduced-order models to determine their useful
ness in assessing physiological parameters from dynamic PET data.
Methods: A three-compartment model of 82Rb in the myocardium

was used to simulate kinetic PET ROI data. Simulations were
generated for eight different blood-flow rates reflecting the physio
logical range of interest. Two reduced-order models commonly
used with myocardial PET studies were fit to the simulated data, and
parameters of the reduced-order models were compared with the
physiological parameters. Then all three models were fit to the
simulated data with noise added. Monte Carlo simulations were
used to evaluate and compare the diagnostic utility of the reduced-
order models. A description length criterion was used to assess
goodness of fit for each model. Finally, fits to simulated data were
compared with fits to actual dynamic PET data. Results: Fits of the
reduced-order models to the three-compartment model noise-free
simulated data produced model misspecification artifacts, such as
flow parameter bias and systematic variation with flow in estimates
of nonflow parameters. Monte Carlo simulations showed some of
the parameter estimates for the two-compartment model to be
highly variable at PET noise levels. Fits to actual PET data showed
similar variability. One-compartment model estimates of the flow
parameter at high and low flow were separated by several s.d.s for
both the simulated and the real data. With the two-compartment
model, the separation was about one s.d., making it difficult to
differentiate a high and a low flow in a single experiment. Fixing
nonflow parameters reduced flow parameter variability in the two-
compartment model and did not significantly affect variability in the
one-compartment model. Goodness of fit indicated that, at realistic
noise levels, both reduced-order models fit the simulated data at
least as well as the three-compartment model that generated the
data. Conclusion: The one-compartment reduced-order model of
82Rb dynamic PET data can be used effectively to compare myo
cardial blood-flow rates at rest and stress levels. The two-compart
ment model can differentiate flow only if a priori values are used for
nonflow parameters.
Key Words: PET; physiological models; rubidium-82; myocardial
blood flow
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\_xompartmental models represented by systems of linear
differential equations are used to describe the time evolution of
kinetic ROI data from PET (7). A three-compartment model of
the disposition of s2Rb in the myocardium is shown in Figure

la, and the corresponding system of differential equations is:
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X,(t) = -
F PSÂ«,

Vi V,

PScap
Xl(t) + -^X2(t) + Fu{t), Eq. l

x2(t) =
PS,cap

v,
x,(t) - PS'cap PS'cell

x2(t)
PSce||

PScei, PScell
~r, x2(t) w*~

x3(t), Eq. 2

Eq. 3

where ^Â¡(t)denotes the time derivative of xÂ¡(t),which is activity
in compartment / per volume of tissue.

The compartments are identified with physiological spaces-
capillary, interstitial space and intracellular space. The input
function u(t) consists of blood pool concentration of X2Rb

(activity per volume of blood). The transfer rates between
compartments are expressed in terms of specific volume blood
flow (F), permeability surface products (PS) for two physiolog
ical barriers, fractional volumes (VÂ¡)of the interstitial and
capillary spaces and the apparent volume of distribution factor
(V*) of X2Rb in the intracellular space. Thus, we refer to this

model as a physiological compartmental model. More complex
models incorporating features such as heterogeneous flow rates,
variable capillary length and axial diffusion have been used to
fit multiple tracer dilution data (2-4). However, we will be
making comparisons with smaller models and will refer to this
three-compartment model as the physiological model and to its
parameters as the physiological parameters.

PET data consist of estimated total emissions from an ROI.
Regions have linear dimensions on the order of millimeters,
which are too large to provide separate data for capillary,
interstitial and intracellular compartments. Emission counts
estimated from tomographic line integrals are affected by
numerous sources of error reflecting both physical limitations
(5- 8) and methodological factors (9-77). Because of the

coarseness of the measurements and the cumulative effect of
errors in the measurements, it is not feasible to estimate all of
the parameters of Figure la from the PET data alone.

For this reason, PET kinetic analysis has typically been
performed with lower order compartmental models. The two-
and one-compartment models shown in Figures Ib and c are
among those that have been employed (Â¡2-14). The parameter
of interest in most PET kinetic studies of the myocardium is
specific volume flow (per min), and models are judged on their
ability to distinguish between rest-flow rates around 1 per min
and stress-flow rates of 3 or 4 per min.

For all models considered here, the PET measured data y(t)
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are simulated as a fraction (fv) of the plasma concentration plus
the sum of all compartments {xÂ¡}:

FIGURE 1. Compartmental models of
82Rb Â¡nthe myocardium, (a) The three-

compartment physiological model has
parameters PS,^ and PScel|,permeabil
ity surface products for the capillary and
cell walls, fractional volumes (V,) of the
spatial compartments and specific-vol
ume blood flow (F). (b) In the two-com
partment model, plasma and interstitial
compartments are lumped on the as
sumption that they equilibrate rapidly, (c)
The one-compartment model has uptake

and washout parameters only.

PScell

V, +V,
Eq. 8

y(t) = fvu(t) Eq. 4 Eq. 9

where n is the number of compartments. Individual measure
ments y, represent mean activity over the scanning interval,

1
y(t)dt. Eq.5

Two models are mathematically equivalent if they produce the
same measurement values y(t) for the same input function u(t).
The two-compartment model would be equivalent to the phys
iological model if PScap were infinite. In that case, Compart
ments 1 and 2 of the physiological model could be lumped into
a single compartment corresponding to the first compartment of
the two-compartment model, and the parameters of the reduced
model would be as follows:

k2, = F,

k,2 = V, + V2*

Eq. 6

Eq. 7

All parameters ky are in units of inverse minutes.
Since PScap and PSccn are not infinite, both the two-compart

ment and the one-compartment models are distinct from the
physiological model, and estimates of the physiological param
eters based on these models will be biased. In the current study
we use simulations to examine the effect of fitting the param
eters of the one- and two-compartment models to data generated
by the physiological model.

MATERIALS AND METHODS

Noise-Free Simulations

Eight simulated PET dataseis were created by calculating y(t) for
the physiological model with F (flow) set to 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5 and 4.0 per min, covering the range of physiologic interest.
Other model parameters were kept fixed at the following values:

PScap= 5 muT1

PSccii= 1 min"1

V,=0.05 fv = 0.1

V2 = 0.25

20000

1

I1
u

15000

10000-

5000

time (min)

FIGURE 2. Physiological model simulated data. The blood input function
taken from an actual Å“Rb PET study is shown (solid line) along with

simulated myocardial ROI data for two flow rates. The long dashed line
denotes simulated data for flow equal to 0.5 per min, and the short dashed
line denotes simulated data for flow equal to 4.0 per min.

Values for these physiological parameters do not appear in the
literature in any one place. Volumes of the capillary, interstitial and
intracellular space for the rabbit heart are given as 0.07 ml/g, 0.20
ml/g and 0.60 ml/g in (75), based in part on detailed measurements
in (16). The proportion of myocardial wall comprised of larger
blood vessels is given as 0.08 ml/g, which would be part of the
vascular fraction in this model. Fractional interstitial fluid volume
in the left ventricle of a dog is estimated to be 0.28 in (17). PSu..,p
is assumed to be much greater than PSL.cn.In setting values for
these permeability parameters, we also took into account findings
in Sheehan and Renkin (IX) and Conn and Robertson (17). PScap
was selected to be large, perhaps out of the physiological range, to
give the benefit of the doubt to the hypothesis of instantaneous
exchange between capillary and interstitial fluid. V* was chosen to

be consistent with experimental data collected in our group.
An actual s2Rb left ventricular blood pool ROI dataset was used

for the input function u(t). The input function and simulated
measurement values y( are shown in Figure 2 for the two extreme
rates of flow (F = 0.5 per min and F = 4.0 per min). AH
simulations and fits were performed with an in-house fitting
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FIGURE 3. Dynamic PET datasets at rest
(low flow) and stress (high flow). The up
per two plots display data from a human
subject study, and the lower plots contain
a similar pair of datasets from a dog
study. In each plot, the blood input func
tion u(t) is shown as a solid line with error
bars along with the tissue time-activity

curve for a single myocardial ROI (solid
line with filled circles and error bars) im
aged at one of the two physiological
states.

program, using closed-form solutions to the linear differential
equations (19). A weighted least-squares criterion was used to
determine a best fit, with the weight on each measurement yÂ¡equal
to the reciprocal of yf. (These weights were needed to avoid bias
relative to the noisy fits, due solely to the weighting choice for the
noisy simulations.) The two reduced-order models were fit to the
simulated data from the physiological model.

Monte Carlo Simulations
To test the robustness of the parameter estimates, Monte Carlo

simulations were performed with relative error of zero mean and
1%, 5%, 10% or 20% s.d. added to the measurement values .yÂ¡for
the physiological model. The assumption of constant percent
measurement noise is reasonably close to our experience with PET
data. In dynamic PET datasets, the percent error increases some
what with time due to isotope decay but then drops with an increase
in scanning time. Since scanning intervals are increased in part to
compensate for isotope decay, the effect is to keep the noise level
steady. The two reduced-order models were fit to 1000 noisy
simulations at each of the eight flow rates for each noise level.
Weights for the weighted least-squares fit were equal to the inverse
variance of yj.

PET Studies
The three models studied here were also fit to existing x2Rb PET

datasets and the results compared to the simulation fits. Data were
selected from a database of human volunteer and animal subject
rest-stress studies conducted at the Center for Functional Imaging,

Lawrence Berkeley National Laboratory. Human subjects were
imaged with a Siemens/CTI ECAT EXACT HR tomograph and
were analyzed in 16 three-dimensional volumes of interest defined
as described in (20). Dog study data were collected with the 600
Crystal Donner Positron Tomograph under a protocol as described
in (14). Model parameters were estimated in fifteen 8-mm diameter
ROIs in a single-slice image through the left ventricle. One human
subject rest-stress pair of datasets and one dog study pair are used
to draw comparisons with the simulated data results. Data from one
region imaged at rest (low flow) and stress (high flow) are plotted
in Figure 3 for both of the representative studies.

These dynamic PET datasets differ from the simulated data in a
number of ways. The blood input function is the same for all ROIs
from a single dynamic dataset, but each separate dataset is
generated from a separate injection of K2Rb.The stress state input

function differs from the rest state input function because of the

FIGURE 4. Reduced-order model fits.
The best-weighted least-squares fit (solid
line) of the reduced-order model to the
physiological model is plotted for low flow
(F = 0.5 per min, open circles) and high
flow (F â€¢4.0 per min, filled circles) data.
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TABLE 1
Noise-Free Simulation Parameter Fits

Two-compartmentF0.51.01.52.02.53.03.54.0Â«210.5030.9351.3191.7082.0722.4012.6563.020k122.2533.4845.0846.3557.7389.23210.15611.578k323.7303.2863.4913.3453.3603.4933.4893.462k230.1710.1750.1840.1790.1780.1820.1810.181fv0.0990.0980.1000.0970.0960.0980.0970.095One-compartmentk2i0.3460.5290.6300.7010.7480.7790.8020.820k120.0920.1370.1610.1750.1830.1890.1920.197fv0.1090.1190.1300.1370.1440.1520.1570.162

variability inherent in the injection procedure and also because the
different physiological state affects the blood levels so that even
two identical injections would produce different blood-time activ
ity curves. The blood activity data, collected from the left ventric
ular blood pool, are noisy. ROI data have error percentages that are
nonuniform across time and can be different for rest and stress
studies in the same subject. The dog study rest state dataset (Fig. 3)
has 12% to 24% error and the stress dataset 8% to 17% error at
most time points. A similar difference holds for the human study,
with rest state percentage errors somewhat greater than stress state
errors. Perhaps most important, the underlying dynamic that
generated the PET data is not known perfectly and is surely more
complex than the three-compartment model used to generate the
simulated data.

Goodness-of-Fit Model Comparisons
The weighted least-squares criterion used to determine the best

fit of a particular model is not useful for comparisons between

models because it tends to decrease with increasing model com
plexity. Model comparisons have to take complexity into account,
and there are several ways to do this. We compared fitted curves
based on the physiological model and the two reduced-order
models using the description-length criterion (21):

m m f Ã„\2
DL = m log 2ir + 2 log O o-i+ E * _/' + ^ log m.

i-i ,=. Â°i

Eq. 10

The description length (DL) of a fitted curve consists of twice
the negative log likelihood function plus a term that adds a penalty
for the number of fitted parameters (p) and number of data points
(m). of denotes the variance of yÂ¡.yÂ¡denotes the best-weighted
least-squares fit, obtained previously. A smaller value for DL
indicates a better fit. Some readers will be more familiar with the
Akaike information criterion (AIC) that differs only in the form of

TABLE 2
Noisy Simulation Parameter Fits 1000 Monte Carlo Simulations with 20% Noise

Two-compartment

(lower quartile median upperquartile)F

k2.0.410.5

0.500.650.721.0

0.911.151.051.5

1.361.711.352.0

1.712.091.662.5

2.112.541.893.0

2.392.912.173.5

2.743.362.444.0

3.013.61k

i\120.451.534.691.243.136.362.174.698.683.255.9110.074.537.3811.845.298.6012.916.5110.2215.687.2110.7816.95l<320.682.305.661.272.705.031.462.805.001.772.844.631.913.054.602.123.024.532.263.194.662.283.144.84K23-0.090.060.190.010.110.210.060.140.230.080.150.220.100.160.230.090.160.220.110.160.220.110.170.22fv0.090.100.110.090.100.110.080.100.110.080.100.120.080.100.120.080.100.120.080.100.120.080.100.12One-compartment

(lower quartile median upperquartile)k2i0.330.350.370.500.520.550.600.630.670.660.700.740.710.750.790.730.780.820.760.800.850.780.820.87k120.060.090.120.100.130.160.130.160.200.140.180.210.150.190.220.150.190.220.150.190.230.160.200.23fv0.100.110.120.110.120.130.120.130.140.130.140.150.130.140.160.140.150.170.140.160.170.150.160.18
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FIGURE 5. Plots of k21estimates for 10%
and 20% noise simulations. Mean values
of the k21 estimates from Monte Carlo
simulations are plotted with error bars
representing the sample s.d. Estimates
for the 20% noise case are shown with
open circles and have the larger error
bars.

the penalty term. AIC and DL give essentially the same results for
the models examined here.

RESULTS

No-Noise Fits
Figure 4 shows the best fit of the two reduced-order models

to the simulated data from Figure 2 for high and low flow, using
the weighted least-squares criterion described earlier. The
two-compartment model gives a very good fit to both high- and
low-flow data. The one-compartment model is visibly different
in shape, especially apparent in the high-flow fit.

Parameter values for fits at all eight rates of flow are
displayed in Table 1. The two-compartment k21 parameter
underestimated flow, with the greatest disparity at high flow. If
one were to assume that PSL.apwas infinite, the two-compart
ment model parameters would give estimates of V,+ V2, PSc.cn

and V* that are within 15% of the corresponding values in the

physiological model:

v, + v2

V*

Physiological
model

0.3
1
5

Two-compartment

estimates
0.26 Â±0.01
0.89 Â± 0.03
4.99 Â±0.06

The one-compartment k2, parameter increased modestly with
increasing flow as did the other two parameters k,2 and fv.

Monte Carlo Simulations
Statistics for the 1000 sets of fitted parameters resulting from

the Monte Carlo simulations are summarized for the case of
20% s.d. in Table 2. Quartiles (25th percentile, median and 75th
percentile), rather than mean and s.d., are displayed because the

2-Compartment Model 1-Compartment Model

5 10
realization #

10
realization #

2-Compartment Model
all parameters fixed except k,

6-1 1 1

3-Compartment (Physiological) Model
all parameters fixed except now

5 10
realization #

10
realization #

15 20

FIGURE 6. Twenty realizations of k21 at
F = 1 per min and F = 3 per min. The first
20 of 1000 k21estimates based on Monte
Carlo simulations of the physiological
model with 20% noise are displayed for a
low and a high flow. The upper plots
show values based on fits of all parame
ters to the two- and one-compartment
models (note that the y-axis scales are
different for the sake of readability and
comparison of qualitative features).
Lower plots show the estimates obtained
for the two- and three-compartment
models if all parameters except k^ (or
flow) are fixed or constrained.
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TABLE 3
Parameter Fits to Dynamic PET Data

Two-compartment One-compartment

Dogstudy(n
= 15 regions) k210.40

Rest 0.50
0.680.66

Stress 0.82
5.24Human

study
(n = 16 regions)k^0.31Rest

0.35
0.521.13

Stress 1.76
2.91k120.17

0.38
2.130.15

0.23
29.90k120.280.44

1.582.18

4.32
7.60k320.32

1.81
4.950.09

0.37
2.72K-1.5550.99

97.051.41

1.55
2.33k23-0.11

0.02
0.11-0.22

0.04
0.13KÂ»0.105.70

18.600.17

0.21
0.32fv0.16

0.25
0.260.16

0.25
0.31fv0.340.42

0.540.23

0.32
0.37k210.36

0.39
0.440.63

0.69
0.73k2i0.310.33

0.360.53

0.58
0.63k120.05

0.08
0.110.10

0.11
0.14ki20.040.07

0.100.17

0.18
0.20fv0.17

0.25
0.310.25

0.31
0.35fv0.390.43

0.540.39

0.48
0.55

distributions of some of the parameter estimates are non-
Gaussian with tail values that distort the mean. Comparing this
table with the noise-free results in Table 1, it is clear that the
parameter estimates in the noisy case have significant bias and
variation.

Although all of the physiological parameters are of interest,
we will focus our attention on the flow parameter with the
clinical objective of differentiating flow and detecting a three
fold increase in flow. In both reduced-order models, the uptake
parameter k2, is used as the indicator of flow. In Figure 5, the
sample mean and s.d. for the k2, estimates are plotted as a
function of flow for both the 10% and 20% noise simulations.

It should be noted here that dynamic PET data with 10%
noise would be considered to be very good, and 20% noise is
not uncommon. Overlapping distributions of k2) values at high
flow suggest that neither model would be able to differentiate
between different large flow rates such as F = 3 per min and
F = 4 per min, even at the lower noise level. The one-
compartment model k21 is relatively insensitive at high flow,
while the two-compartment model k21 estimate is sensitive
enough but too variable. The k21 estimate of the highest flow
(F = 4 per min) is separated from that of the lowest flow (F =

0.5 per min) by more than one s.d. in the two-compartment
model and by several s.d. in the one-compartment model, at the
20% noise level.

To visualize the separability of a conservative flow differen
tial, we have plotted the first 20 of 1000 realizations of k2, for
a low (F = 1 per min) and an elevated (F = 3 per min) flow for
each reduced-order model for the case of 20% noise (Fig. 6).

Variability of the two-compartment model k2l estimates
could be reduced if reasonable estimates of some of the other
parameters were available so that those parameters did not have
to be estimated. Two plots are included in Figure 6 to illustrate
this in the best possible case where values are known for all
model parameters except flow. For the three-compartment
model, parameters were set to their known values used to
generate the simulations. The estimates of k2) shown for the
two-compartment model were obtained with parameters k23,k32
and fv set to 0.15, 3.0 and 0.1, respectively, and k,2 constrained
to be k21/0.3.There are various alternative strategies for fixing
parameters of the two-compartment model, and the result is
qualitatively the same for all the ones we tried (true values
assuming infinite PScap;mean values observed in fits; values
chosen to tune the model to known flow values, etc.). Variabil-

5% Noise 10%Noise1500

I0ft50J~|-~1

5T

i150;â€¢

o1*Â»â€¢;

son2

2.5 3 3.5 4rr.t_
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FIGURE 7. Description lengths for model fits to simulated data for 5%, 10% and 20% noise levels.The mean description lengths computed from fits of the
three-compartment model as well as both reduced-order models are shown with eight sets of bars corresponding to the eight flow rates. The speckled bars
represent the one-compartment model, the dark solid bars represent the two-compartment model and the white bars represent the true three-compartment

model.
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ity of the one-compartment model k2, estimates is not signifi
cantly improved by fixing or constraining other parameters.

PET Studies
Data from dog and human PET studies were fit with the two

reduced-order models studied here, and the resulting parameters
are shown in Table 3. The values in this table can be compared
with the simulated data parameter estimates in Table 2. The
earlier table is based on a sample size of 1000 simulations
compared with the 15 or 16 ROIs available from the PET study,
so we would expect the parameter medians and the variability
(represented here by the interquartile range) to be quite variable
from one study to the next, even in the ideal case where the data
satisfied all of the modeling assumptions.

Several similarities and differences are immediately apparent
from the tables. The k2, estimate increased significantly with
flow in the simulations and in the PET studies, with both
models. All three parameters in the one-compartment model

increased with flow for the PET studies, as predicted by the
simulations. For both the simulations and the PET data, the
most variable parameter values are the k,2 and k32 estimates for
the two-compartment model. As expected, the variation is
greater in the PET study tables. The other two-compartment
model parameters and all one-compartment model parame
ters have significantly smaller interquartile ranges in the
simulation table and also, with a couple of exceptions, in the
PET data tables. The vascular fraction estimates are much
greater in the PET studies than the 0.1 value used in the
simulations.

If parameters other than k2, are fixed or constrained, then k2,
variability is reduced. For our PET study examples, the fixed
values were chosen to be the same as for the fixed parameter fits
to the Monte Carlo simulations described in the previous section,
with the exception of the vascular fraction which was fixed at 0.25
for the dog study and 0.40 for the human study. In general, fixing
and constraining the other parameters in the two-compartment
model reduced the interquartile range for k2, by at least one-third.
Variability of the one-compartment model parameters was not
significantly reduced.

Goodness-of-Fit Model Comparisons
The mean description lengths (DL) for the fits of each model

to the noisy simulated data are shown in Figure 7, with separate
plots for the 5%, 10% and 20% noise simulations. With 5% or
10% noise, the two-compartment model has a smaller descrip
tion length than either the one-compartment model or the
three-compartment model that generated the data. The one-
compartment model description length increases with flow, and
the increase is greater at the lower noise levels. With 20% noise,
the one-compartment model gives fits that are more comparable
to the other two models, having a description length that is
somewhat less than the others at low flow and somewhat greater
at high flow.

Description lengths computed for fits to the sample dog and
human PET study data fell in the range 120-130, similar to the
20% noise case in the simulations. For the two-compartment
model, the mean high flow (stress) values of DL were 126 and
128 in the dog and human studies, respectively. The mean low
flow (rest) values were 129 in both dog and human studies.
Simulation data predicted higher values of DL for high flow
studies with the same noise level, but noise levels were lower in
the stress data (see Methods for discussion). The description
length criterion docs not significantly differentiate between the
one- and two-compartment models. This outcome is predicted
by the simulations at low flow, but at high flow with less than

20% noise the simulations predict a measurably better fit by the
two-compartment model.

DISCUSSION
Taking a three-compartment physiological model as a refer

ence point, we have compared two reduced-order models and
have examined some of the consequences of the model mis-
specification in both cases. Specific model misspecification
artifacts included parameter bias and systematic parameter
variation where none was expected. In the two-compartment
model, both flow and volume are underestimated. In the
one-compartment model, all three model parameters increased
with flow.

Monte Carlo simulations provided insight into the additional
bias and variation induced by errors in the PET measurement
data. Two parameters (k,2 and k,2) of the two-compartment
model were particularly sensitive to the noise. Variability of the
k2| estimates was reduced when other parameter values were
fixed or constrained. When the two reduced-order models were
fit to actual PET dataseis, the parameter estimates were gener
ally consistent with the simulation results. The two-compart
ment model parameter estimates were more variable than the
estimates based on simulated data. This difference was expected
due to the smaller sample size, but the magnitude of the
difference may reflect the presence of errors and variation not
accounted for in the model simulations. The variability of k2,
estimates for the PET data was reduced by fixing the other
parameters, even though the values chosen were based on the
simulated conditions and not the true parameter values which,
of course, are not known.

The description length goodness-of-fit criterion computed for
all three models showed that the two-compartment model fit the
simulated data very well at noise levels from 5% to 20% and
that the one-compartment models fit relatively poorly, espe
cially at high-flow values, except at the 20% noise level. Fits to
the actual PET dataseis differed in thai Ihe descriplion lenglh
was aboul Ihe same or slighlly lower for both reduced-order
models at Ihe higher flow rale. Also, Ihe one-compartmenl
model gave a fil lhal was as good or beller than the two-
compartment model, even at high flow.

CONCLUSION
The noise-free and Monle Carlo simulalions laken logelher

help us to assess the ability of both models to estimale
underlying physiological paramelers and lo differenliale be
tween relevanl clinical stales. The Iwo-compartmenl model
provides, in theory, a good representation of the Ihree-compart-
menl reference model and Ihe possibilily of oblaining eslimales
of permeabilily surface producÃs,volumes and flow wilh only
small misspecificalion error. Measuremenl error, however,
erodes the parameter eslimale accuracy so lhal it is difficult to
use the model for this purpose. The one-compartmenl model is
substantially betler al differenlialing flow in Ihe lower range
and is also belter in Ihe range of clinical inleresl. The Iwo-
compartmenl model can differenliale flow only if a priori values
are used for nonflow parameters.

The use of simplified models for PET kinelic analysis is a
standard practice necessitaled by measuremenl limilalions and
variability. This sludy has helped us to understand the conse
quences of this praclice in a particular example.
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