
methionine or leucine is more suitable for hyperglycÃ©mie
patients.
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1 O ^Intrathecal 5-[ I]Iodo-2'-Deoxyuridine in a Rat

Model of Leptomeningeal MÃ©tastases
Shailendra K. Sahu, Patrick Y.C. Wen, Catherine F. Foulon, James S. Nagel, Peter McL. Black, S. James Adelstein and
Amin I. Kassis
Departments of Radiology, Neurology and Surgery, Harvard Medical School, Boston, Massachusetts

The antitumor effect of 5-[125l]iodo-2'-deoxyuridine (125IUdR)was

examined in a rat model of leptomeningeal mÃ©tastases.In this
model, 50% of rats develop paralysis of hind limbs in 9.20 Â±0.02
days and die in 12.1 Â±2.1 days after intrathecal (i.t.) implantation of
5 x 10s 9L rat gliosarcoma cells. Methods: Three days after
implantation of 9L gliosarcoma cells, 125IUdR was administered

intrathecally to rats as: (a)a single injection (500 /nCi/rat), (b) five daily
injections (100 /j.Ci/day) or (c) a continuous 5-day infusion (0.5 pilAir,
total of 500 /MO),and the animals were monitored for the onset of
paralysis. Control groups received physiologic saline. For biodistri
bution studies, rats received a bolus injection of 125IUdR(10 fÂ¿Ci)5
days after tumor-cell implantation and were killed 1,8,24, and 48 hr
later. Tissues and organs, including the spinal cord, were isolated
and their radioactive content determined. The results were ex
pressed as percent injected dose per gram of wet tissue. Histolog-
ical sections of the spinal cord were also prepared and used for
autoradiographic detection of DNA-incorporated 125IUdR.Results:
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Treatment with i.t. administered 125IUdR (500 /xCi/rat) significantly
(p < 0.005) prolonged the median time of paralysis to 11.2 Â±0.1,
12.3 Â±0.1 and 15.2 Â±0.4 days for the single-dose, five daily
injections and continuous infusion groups, respectively. Radioactiv
ity cleared rapidly from all tissues except the thyroid and tumor cells
growing within the spinal cord. Autoradiography demonstrated that
normal cells in the tumor-bearing spinal cord were void of radioac
tivity. Conclusion: The results suggest that a selective antitumor
effect could be achieved in treating leptomeningeal mÃ©tastaseswith
i.t. administered 125IUdR.

Key Words: leptomeningeal mÃ©tastases;intrathecaltumor; iodine-
125-IUdR; gliosarcoma
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-Lieptomeningeal mÃ©tastasesare a serious complication of
cancer characterized by neurologic dysfunction at multiple
levels of the neuraxis. This disease develops in 5%-8% of
patients with solid tumors, in 5%-29% of patients with non-
Hodgkin's lymphoma and in 11%-70% of patients with leuke
mia (1,2). The prognosis of patients who develop leptomenin-
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geai mÃ©tastasesis poor. Without therapy, the median survival is
4-6 wk. With current treatment regimens, the median survival
is 3-6 mo (1-3).

Iodine-125 is a prolific emitter of low-energy (<1 keV)
electrons (â€”20electrons per decay) that dissipate their energy

typically within nanometer distances from the decay site (4,5).
Consequently, the biologic toxicity of this Auger electron
emitter resembles that of high-LET radiations (exponential
decrease in survival of mammalian cells) when I decays in
close proximity to DNA (5,6-8). The thymidine analog 5-iodo-
2'-deoxyuridine radiolabeled with 125I is readily incorporated

into DNA of proliferating cells during DNA synthesis. The
DNA-incorporated 125IUdR is retained in the cells and their

progeny and has been shown to be extremely radiotoxic to cells
(5-7). Intravenously administered l25IUdR, however, is un

likely to be useful as an antitumor agent because of its
nonspecific uptake by all proliferating cells (9,10) and its rapid
dehalogenation (TVi = 5-7 min) in the liver (9,11,12). On the

other hand, locoregional administration of lUdR radiolabeled
with the Auger-electron-emitting radionuclide 125I or 123I has

been shown to be therapeutically effective in mice with intra-
peritoneal ovarian tumors (13,14) and in rats with solid brain
tumors (75). In this investigation, we demonstrate the therapeu
tic effectiveness of intrathecally administered 125IUdR in a rat

model of leptomeningeal mÃ©tastases.

MATERIALS AND METHODS
A modification of the leptomeningeal mÃ©tastasesmodel devel

oped by Kooistraet al. (16) was used. MaleCDF (Fischer344) rats,
weighing about 300 g, were anesthetized with an intraperitoneal
injection of ketamine-xylazine-acepromazine malÃ©ate(75 mg-3.9
mg-0.75 mg per kg body weight). The anesthetized rats were
secured on a special stand with their heads elevated and the long-
axis of the body at a 90Â°angle. The atlanto-occipital membrane

caudal to the external occipitalprotuberancein the neck region was
surgically exposed and punctured using a 20-G needle. Approxi
mately 8 cm of a polyethylene catheter (PE-10 tubing prethinned
by stretching) was inserted through the puncture in the atlanto-
occipitalmembraneinto the subarachnoidspace dorsal to the spinal
cord. The external end of the catheterwas sealedand tied under the
skin before closing the wound in three layers. Rats were observed
for 1wk and only those rats free of any signs of paralysiswere used
in the study.

Monolayersof exponentiallygrowing 9L gliosarcomacells (17)
were trypsinized, washed and suspended in phosphate-buffered
saline, pH 7.2, and 5 X IO5cells were implanted intrathecally in
rats (n = 17)in a bolus of 5-Â¡uvolumethrough the catheter already
in place, which was then flushed with 10 /xl0.9% saline. The cell
suspensionwas replacedwith phosphate-bufferedsaline, pH 7.2, in
the nontumor-bearingrats (n = 9). The rats were observeddaily for
symptomsof paralysis, defined as the inabilityto walk and to stand
on all four limbs.All rats that developedparalysisof the hind limbs
were killed except in one experiment where death caused by the
growth of intrathecaltumor was recorded. In this experiment, food
and water were lowered into the cage so they could be easily
accessed by the paralyzed rats. Routine laboratorytechniqueswere
used to prepare histology slides of tumor-bearing spinal cords.

Carrier-free l25IUdRwas prepared by a method developed in

this laboratory (18), solubilized in 0.9% saline and sterilized by
0.22-ju,mMillipore filtration before use.

Biodistributionstudies using 125IUdRwere performed in tumor-
bearing (n = 9, injected i.t. with 5 X IO59L gliosarcomacells) and
in nontumor-bearingcontrol (n = 10, injected i.t. with 5 /nl PBS)
rats. In these experiments, each rat received 10 /xCiof l25IUdR(a
bolus of 5-jLtlvolume, i.t. injection) five days after i.t. administra-
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RGURE 1. Paralysis (â€¢)and death (O) of rats (n = 17) injected Â¡ntrathecally
with 5 x 10*91 gliosarcoma cells. Ã’ontrol rats (n = 9) injected intrathecally

with saline (D). Insert contains data previously obtained indicating relation
ship between number of tumor cells injected and onset of paralysis.

tion of the 9L tumor cells or PBS. The rats were killed at 1, 8, 24
and 48 hr after 125IUdRinjection. Various tissues and organs were

isolated, blotted and weighed; their radioactive content was deter
mined in a gamma counter, and the results were expressed as
percent injected dose per gram of wet tissue. The entire spinal
column of each rat was also excised and fixed in 10% buffered
formalin before isolating the spinal cord from the surrounding
bones and measuring the radioactive content in 1-cm slices.
Forty-eight hours after the '25IUdR i.t. injection, histolÃ³gica!
sections (6-/j.m thick) of fixed spinal cords from tumor-bearing rats
were also prepared and used for the autoradiographic detection of
DNA-incorporated 125IUdR.To this end, the slides were washed in
methanol at â€”20Â°C,coated in NTB emulsion (Kodak), and stored
at 4Â°C.After 14 days of storage in total darkness, the slides were
developed with Kodak developer D19 for 3 min at 15Â°C,fixed with
Kodak fixer for 5 min, and washed and stained with hematoxylin-
eosin. Finally, the slides were dehydrated and mounted in Per-
mount.

Treatments of i.t. tumors with l25IUdR were performed in four
groups of 11-12 rats with a total dose of 500 /Â¿Ciof 125IUdR/rat

administered i.t. as: (a) a single injection (20 jil), (b) five daily
injections (100 /Â¿Ci/20/Ltl/day)or (c) a continuous 5-day infusion
(0.5 ju.l/hr,20 /il) using micro-osmotic pumps. Rats in the control
group received 0.9% saline i.t. The treatments were started 3 days
after 5 X IO5 9L gliosarcoma tumor cells were injected i.t. into

each rat. All i.t. injections or infusions were performed through the
i.t. catheter already in place. Rats were monitored daily for
symptoms of paralysis. The median duration for the onset of
paralysis in each group of rats was statistically compared using the
Mantel-Haenszel (log-rank) test for comparison of survival curves.

RESULTS
Approximately 95% of rats implanted i.t. with catheters into

the subarachnoid space remained free of any sign of paralysis in
the immediate period after the surgical procedure. The onset of
paralysis in the hind limbs of these rats was caused by i.t.
growth of tumor cells and was predictable (Fig. 1). For exam
ple, 50% of the rats that received 5 X IO5 tumor cells i.t. were

paralysed in 9.20 Â±0.02 days and died in 12.1 Â±2.1 days,
whereas none of the nontumor-bearing control animals with i.t.
catheter and injected i.t. with saline were paralyzed or died
during 20 days of observation. Furthermore, paralysis occurred
at an earlier time when the number of transplanted tumor cells
was increased (insert, Fig. 1).
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FIGURE 2. Photomicrograph of spinal cord of 9L-gliosarcoma-bearing rat
showing catheter and surrounding tumor.

HistolÃ³gica! examination of spinal cords revealed the bulk of
the tumor mass was around the tip of the catheter. The tumor
was confined to the subarachnoid space around the catheter and
in various places encircled the spinal cord and compressed it
(Fig. 2). In a few instances, tumor cells infiltrated the white
matter and grew around the blood vessels (data not shown).

In both tumor- and nontumor-bearing rats, the radioactivity
from i.t.-administered '25IUdR was cleared over time from all

normal tissues with the exception of the thyroid (Figs. 3 and 4).
The percentage of the injected dose in the urine, stomach, and
blood of tumor-bearing rats appeared to be higher than that in
the controls, possibly reflecting increased leakage of radioac
tivity into the systemic circulation due to the presence of tumor
within the intrathecal space. In tumor-bearing animals, 3%-4%

of the injected radioactive dose remained associated with the
spinal cord. At 48 hr, the percent injected dose per gram of the
spinal cords from tumor-bearing (2.94 Â±0.48) and nontumor-
bearing (0.23 Â±0.06) rats was significantly different (p ^
10~6, Student's paired t-test). When the radioactive content of

1-cm consecutive sections of spinal cord was plotted as a
function of distance from the cranial apex of the excised spinal
cord, the radioactivity (area under the curve) in tumor-bearing
rats was ~ 17-fold greater than that of nontumor-bearing rats
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FIGURE 3. Biodistributionof 125Iin 9L-gliosarcoma-bearing and control rats
after intrathecal administration of 10 Â¿Â¿Ci125IUdR. SC = spinal cord; SK =

skin, M = muscle, SI = small intestine, LI = large intestine, SP = spleen, L =
liver, K = kidney, LU = lung, H = heart, BD = bladder, TH = thyroid, F =
femur, U = urine, S = stomach, C = stomach contents, B = blood, BR =
brain.
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FIGURE 4. Comparison of biodistributionof 125Iin 9L-gliosarcoma-bearing
and control rats 48 hr after intrathecal administration of 10 Â¿Â¿Ci125IUdR.Insert
indicates distribution of 125I along spinal cord (0 cm = neck region) of
9L-gliosarcoma-bearing (O) and control (â€¢)rats at 48 hr. See Figure 3 for

abbreviations.

(insert, Fig. 4). The peak activity seemed to correspond to the
position of the catheter tip where the bulk of the tumor mass
was located. Autoradiography of the tissue sections from
tumor-bearing spinal cords showed no radioactivity associated
with normal cells of the spinal cord: silver grains were associ
ated only with tumor cells (Fig. 5). Since any unbound
radioactivity was washed away during processing of tissue

FIGURE 5. Autoradiograph of thin section from spinal cord of 9L-gliosar-
coma-bearing rat 48 hr after intrathecal administration of 10 Â¿iCi125IUdR,

light (top) and dark (bottom) fields.
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TABLE 1
Induction of Paralysis (days) in Rats Bearing Intrathecal Tumors

After Intrathecal Administration of 500 /xCi 125IUdR*

No. Median % Increase
of paralysis in median

Treatment animals Â±s.e.m. Range paralysis p value*

Saline
125IUdR

single injection
five daily injections
continuous five-day

infusion

11

12
12
11

9.0Â±0.1

11.2Â±0.1
12.3Â±0.1
15.2Â±0.4

3
6
11

0.0

24.4
36.7
68.9

s 0.005
s 0.005
s 0.005

'Rats were treated three days after i.t. injection of 5 x 105 tumor cells.

Control rats received i.t. saline.
Values were determined by Mantel-Haenszel (log-rank) test for compar-

ison of survival curves.

sections for autoradiography, these grains reflect DNA-incor-
porated radionuclide.

Therapy with '25IUdR in tumor-bearing rats was started 3
days after i.t. inoculation of 5 X IO5 tumor cells. The results of

these experiments are summarized in Table 1 and illustrated in
Figure 6. In the experiment shown, 50% of the control rats (with
i.t. tumor and treated with i.t. saline injection) developed
paralysis on 9.0 Â± 0.1 days. In comparison, the onset of
paralysis in tumor-bearing rats treated with 125IUdR (single i.t.
administration-500 ju,Ci, five daily i.t. injections-100 /n.Ci/day
or 5-day i.t. infusion-500 /Â¿Ci)was significantly prolonged. In
this study, the time to median paralysis was 11.2 Â±0.1, 12.3 Â±
0.1 and 15.2 Â±0.4 days, respectively, for the three experimental
groups. The paralysis curves for all three treatments were
statistically significant (p < 0.005) according to the Mantel-
Haenszel test. However, all of the tumor-bearing rats eventually
developed paralysis and were killed.

DISCUSSION
In the past two decades, efforts to develop therapy for

leptomeningeal mÃ©tastaseshave continued to be unsuccessful.
The difficulty lies in the need to treat the entire neuraxis, since
tumor cells are disseminated throughout the subarachnoid space
in close proximity to neural structures. Consequently, various
intrathecal therapies are being explored, including radioiodi-

J3
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FIGURE 6. Induction of hind-leg paralysis after intrathecal administrationof
500 /xCi 125IUdRin rats bearing intrathecal 9L gliosarcoma. Data from group

having five daily injections not shown.

nated monoclonal antibodies directed against tumor-associated
antigens (19), gene therapy (20) and chemotherapy (3,21-23).

All these attempts have been only partially effective. Although
treatment often provides good local control, leptomeningeal
mÃ©tastasesusually occur in the setting of systemic relapse, and
patients eventually die of their systemic disease. Parallel efforts
are needed to find therapies for systemic disease as well as for
leptomeningeal mÃ©tastases.

The radionuclide I25I causes predominantly double-strand
breaks (dsb) in DNA when I25I decays in close proximity to
DNA (24) or when it is incorporated into nuclear DNA (25-30).
While most of these dsb seem to be repaired at the same rate as
those observed with gamma rays (31), the decay of this
radionuclide after DNA incorporation in the form of l25IUdR is
extremely toxic to cultured mammalian cells (5-7). In compar
ison, when I25I decays outside the cell nucleus, it is quite

innocuous (5,32,33). In fact, in cultured cells, the relative
biological effectiveness of l25IUdR compared with that of
conventional gamma irradiation is ~ 8-fold greater when
125IUdR is DNA-incorporated and less than twofold greater

when it decays outside the cell nucleus (5,7,33,34). While these
biophysical characteristics demonstrate the high toxicity of
125IUdR and therefore its suitability as a radiotherapeutic agent,

the nonspecificity of this cycle-dependent agent (i.e., taken up
by all dividing cells) may limit its utility to those cancers where
local or regional administration is feasible.

In this report, 3%-4% of the administered radioactivity was
associated with the spinal cords of tumor-bearing rats after 48
hr. It is important to note that these percent injected dose per
gram values greatly underestimate the actual tumor uptake of

lUdR because the tumor mass constitutes only a small
fraction of the weighed spinal cord. Moreover, the DNA-
incorporated activity can be enhanced by the administration of
various thymidylate synthetase antimetabolites. For example,
both 5-fluorodeoxyurine (35) and methotrexate (Kassis AI,
Adelstein SJ, unpublished results) have been shown to increase
the DNA incorporation of l25IUdR in mammalian cells. Since

methotrexate is currently used in the clinic for therapy of
tumors within the spinal cord (3,21), the potential of this
combined therapy should be explored.

The data suggest the therapeutic effectiveness of intrathecally
administered l2 lUdR against intrathecal gliosarcoma tumors in
a rat model. However, while the total dose of 125IUdR was

equal in all cases, a direct comparison of the treatments cannot
be made. Nevertheless, continuous infusion for 5 days was
superior to single or five daily intrathecal injections of lUdR
(Fig. 6), an observation that is consistent with the effects of
cell-cycle-specific agents. Furthermore, five daily injections of
125IUdR had greater effect than the single injection (p < 0.05).

However, in the present experiments, there were no long-term
survivors. The failure of lUdR to cure these rats may be due
to the low growth fraction of intrathecally growing 9L tumor
cells. DNA-incorporated l25IUdR activity was observed

throughout the tumor mass (Fig. 5), clearly demonstrating that
the low molecular weight lUdR molecule can diffuse through
out the cellular layers of the tumor and be incorporated into the
DNA of tumor cells undergoing DNA synthesis. Similar prob
lems may be encountered in patients with leptomeningeal
mÃ©tastases.In contrast, we have observed the survival of ~20%

of rats bearing intracranial 9L gliosarcoma solid tumors and
mice with ascites ovarian tumors treated with locoregionally
administered 125IUdR or 123IUdR (13-15). In the studies with

rats bearing brain tumors (15), this may have been due to the
fact that 2 X IO4 9L gliosarcoma cells were transplanted only
24 hr before 125IUdR intratumoral injection, while the intrathe-

INTRATHECALlUdR IN LEPTOMENINGEALMETASTASESâ€¢Sahu et al. 389



cal tumors treated in our current studies were initiated with
25-fold more cells than used in the brain tumor model and all
treatments were begun after 3 days. Consequently, the tumor
burden in the intrathecal studies may have been approximately
75-fold that in the brain tumor studies. Unless the growth
fraction of intrathecal tumors is unity (which it certainly is not),
more of the tumor cells will escape from the cell-cycle-
dcpendent toxicity of '25IUdR with an increase in tumor

burden, leading to a diminished curability of the disease. Yet,
l25IUdR treatment increased time to paralysis by 69% in our

intrathecal tumor model. This fact suggests the therapeutic
effectiveness of 125IUdR against intrathecal tumors that have

advanced from the microscopic stage of the disease. Interest
ingly, the prolongation of survival in animal models observed
using either intrathecally administered 4-hydroperoxycyclo-
phosphamide or intrathecal gene therapy is similar in magni
tude.

Being a cycle-dependent agent, '25IUdR incorporates itself

into the DNA of any dividing cell and as such does not
specifically target tumor cells. However, since (a) very few
noncancerous cells within the central nervous system are
cycling at any one time period and (b) 125IUdR is swiftly

cleared and rapidly dehalogenated once it has entered the
vascular space, the intrathecal administration of this radiophar-
maceutical should lead to a high degree of specific uptake by
intrathecally-growing tumor cells. Our biodistribution and au-
toradiography data corroborate these expectations; none of the
normal proliferating cells in the tumor-bearing rats (i.e., skin,
intestine, spleen, and bone marrow) incorporated '25IUdR.

These results are consistent with those reported earlier after the
intracerebral injection of 125IUdR in rats with brain tumors (36).

The rapid accrual of large amounts of radioactivity in thyroid,
urine, and stomach contents which is evident in the biodistri
bution data (Fig. 3) suggests the prompt release of 125lUdR

from the subarachnoid space, its rapid dehalogenation, and the
excretion of free radioiodine through urine and stomach.

CONCLUSION
In the 9L gliosarcoma tumor rat model, intrathecal adminis

tration of the DNA precursor 125IUdR directs the incorporation
of the Auger-electron-emitting radionuclide 125Iselectively into

dividing tumor cells, which are bathed by cerebrospinal fluid.
This radiopharmaceutical is therapeutically effective against
intrathecal tumor cells. Normal proliferating cells and tissues
within the spinal cord and the remainder of the body escape the
extreme toxicity of Auger electrons produced by the decay of
I25I incorporated into DNA.
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