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Scatter Degradation and Correction Models for High-ResolutionPET

Implicit in all scatter correction models
in radioisotope imaging is the existence of
some complementary degradation model
describing the nature and processes giving
rise to the measured scattered events. The
general lack of theoretical connection be
tween the degradation and correction mod
els raises several important questions about
the status and the fate of scattered events,
and the formulation of the required scatter
correction models. For instance, the ques
tion of whether scattered photons should be
reformed or removed from society was
recently raised by Links (1). This question
is expected to become of paramount impor
tance in very high-resolution PET in which
the scatter degradation features become
more complex (2-4). The aim of this arti

cle is to present alternative models for the
degradation and scatter correction to bridge
the gap between the degrading processes
and the correction methods.

For the sake of simplicity, a high-
resolution PET system will be considered
to have two components in series: the
object and detection subsystems, as shown
in Figure 1. The response of each sub
system i to a line (point) source of unit
radioactivity is assumed to have geometric
(hig) and scatter (his) channels in parallel,
which transmit unscattered and scattered
photons, respectively. Since the imaging
system is made of two (or more) such
subsystems in series, the measured projec
tion pm is the result of a mixed channel
process. The choice to reform or remove
scattered photons emerging from each sub
system determines the normalization of the
subsystem response which, in rum, deter
mines which photons form the ideal pro
jection at the input and dictates the fate of
undesired components in the measured pro
jection. As a rule, the intensity of the
component(s) to be preserved for image
formation in each subsystem is normalized
to unity. Figure 1 illustrates several possi
ble degradation models that are the basis of
the scatter correction schemes described
below.

In the deconvolution-restoration (DR)
model (5), the useful component is as
sumed to be formed by both annihilation
and scattered photons. Therefore, the re
sponse of each subsystem to a unit source
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is normalized to unity and the ideal pro
jection t is formed by a mixture of the
annihilation and scattered photons subse
quently transmitted through the object
and detection subsystems. This ideal pro
jection is blurred by convolution (*) to
produce the measured projection:

Pm = t * h

= t * (hog + hj * (hdg + hj.
Eq. 1

where the subscripts o and d stand for the
object and the detection subsystems, re
spectively. Since the annihilation photons
transmitted through the object are not de
graded by blurring, hog is simply a delta
function weighted by a scatter degradation
factor which accounts for the loss of anni
hilation photons by scattering in the object
(6):

= (l-f0)S, Eq.2

where f0 is the relative intensity of object
scatter or ratio of object scattered to total
photons transmitted through the system.
Expanding Eq. 1 and rearranging terms, we
have:

Pm= t*{(l -fâ€ž)hdg+ (l -f0)hds

+ hos* (h<jg+ hds)}

= t * {hg+ hd + hj, Eq. 3

where the imaging system's response h =
hg + hd 4- h0 is the sum of geometric (hg),

detector scatter (hd) and object scatter (hj
components. Since the object and detector
subsystem responses (Eq. 1) are each nor
malized to unity, the measured response h
of the overall system is automatically nor
malized to unity (fg + fd + f0 = 1). The

scatter response functions hd and h0 are
respectively equivalent to the so-called
scatter kernels F0 and Fd defined previously
(2). The ideal projection t can be obtained
by inversion of Equation 3 in the Fourier
space (7):

have improved contrast, resolution and re
covery coefficients (5); preservation of
scatter increases the number of counts,
thereby producing images with less statis
tical fluctuations; and when h is symmetric,
H and the imaging system's modulation

transfer function (MTF) can be used inter
changeably. Because of such benefits, de
velopment of methods which reposition
scattered photons to their original emission
sites is a current research topic (5-7).

However, preserving scattered events in
the image also has some drawbacks. It is
not clear how restoration of the object
scatter contributes to image sharpness since
this component is confined to the low
frequencies. As a result, its inclusion would
actually reduce resolution since the inverse
(Eq. 4) usually requires a narrower low-
pass filter than when object scatter is ex
cluded to suppress high frequency noise
amplification. The inclusion of object scat
ter in images also complicates attenuation
correction. Thus, it would be imprudent to
minimize the minor effects of blurring at
the expense of more important effects
which undermine accuracy when quantita-
tion is the primary objective. In view of
these limitations, scatter removal has been
considered as an alternative since attenua
tion correction is simplified while contrast
and quantitation accuracy are improved
(2.6,8,9).

The scatter convolution-subtraction (CS)
model most commonly used for PET is
based on approximations which make scat
ter removal possible without the recourse of
low-pass filtering or shift-invariant re
sponse functions (8). Since scatter is un
wanted, the ideal projection t' is assumed to

be formed only by the annihilation (true)
photons which are transmitted through the
object and detection subsystems without
undergoing Compton interactions. As be
fore, the blurring effects are described by
convolution:
Pm= t' * h'

T = pm/H = Pm/(Hg+ Hd + H0). Eq. 4 = t' * (hÂ¿g+ h^) * (h^ + hi).

In this model, all counts are preserved
since 1/H = 1 at zero frequency. At
higher frequencies, the deconvolution fil
ter 1/H removes the blurring effects due
to intrinsic resolution (Hg), detector scat
ter (Hd) and object scatter (H0).

Conservation of all types of scattered
events for image formation is attractive in
many respects: images reconstructed from
the restored projections, free of blurring,

Eq.5

However, since only the geometric chan
nels hog and hdg transmit the desired pho
tons for image formation, each of these
distributions are now normalized to unity.
As the object subsystem does not modify
the number and distribution of the annihi
lation photons, hj,g is simply the delta func
tion (6). Expanding Eq. 5 and rearranging
terms, we get:
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FIGURE 1. Response functions of the degradation models for object (o) and detector (d) subsystems in
series. Each subsystem has a geometric (g) and a scatter (s)channel in parallel. The overall response to
the ideal projection t, t' or t" produces the measured projection pm.

h' â€”hdg+ hds + hos* (hdg+ hds)

hÂ» hd h0â€” -i-â€”- ~ _ ~ _

t,' Eq. 6

As before, the imaging system's response is

the sum of geometric, detector scatter and
object scatter components, but its intensity
has been raised by the factor 1/(1 â€”fd â€”f0)
= l/fg. After computing Equation 6, the
measured projection pnl can be expressed as
the sum of three independent components

n = t' * â€”+ t' * ht'* â€”
Hm l f f f

'g 'g *g

= Pod + Sd + S0 Eq. 7

and the scatter-free projection p^ is simply
obtained by direct subtraction of the scatter
contributions:

Pod â€”Pm so Sd

, h0 h,)= Pm - t' * - - t' * - . Eq. 8

Since the ideal projection t' is not known a

priori, one might just approximate sÂ¡=
t' * h/fg by sÂ¡= pm * h, (8,10) and expand

the equation to separately subtract the scat
ter contributions, as suggested by Links (/):

Pod = Pm - Pm * ho - Pm *

= Pm * (a - ho - Eq. 9

However, this approach would be inconsis
tent with the formulation of the model since
the detector scatter in Equation 6 does not
have any dependence on the object subsystem
and, therefore, it should not be estimated from
the measured projection which includes the
degradation effects of the object subsystem.
To overcome this difficulty, the object scat

ter-free projections p0 must first be obtained
by convolution-subtraction

Po = Pm - S0 = Pm * (8 - h0), Eq. 10

to remove all events formed by photons
which pass through the hos channel. One
can then proceed to remove the detector
scatter using similar approximations to es
timate sd by PO * hd/(l â€”f0), where the
factor 1/(1 â€”f0) is required to normalize

the detector scatter response to the intensity
of a line source in air (without the object).
This reasoning leads to the desired result:

Pod = Po - Sd

= {pm*(S-h0)}*(0-hd/(l -f0)).

Eq. 11

According to Equation 11, the CS model
seeks to obtain the scatter-free distribution
Pod, which is still blurred by the finite
resolution of the detection subsystem, in
stead of the ideal projection t'.

To overcome this limitation, as well as
the need to use the measured projection pm
as an input in estimating the scatter contri
butions, the deconvolution-subtraction
(DS) model can be used. In this model, the
ideal projection is defined as in the previ
ous CS model and, therefore, Equations
5-7 are common to both the CS and DS
models. The ideal projection is obtained by
Fourier transforming Equation 7 and invert
ing the result:

T' = Pm/H' = P. H0

Eq. 12

The subtraction capability of this model is
derived from the fact that the intensities of
the scatter components in Equation 6 are in
excess of unity. Therefore, the inverse filter
1/H' at zero frequency is less than unity by

a scaling factor fg which effectively re
moves the object and detector scattered

events in the measured projections Pm to
yield the scatter-free projection P^. At
higher frequencies, Hd and H0 in the decon-
volution filter 1/H' remove the blurring

effects of scattered events while Hg restores
resolution to produce the desired ideal pro
jection T' in the Fourier space.

In our accompanying article in this issue,
we have shown that the benefits of removing
sd are only marginal in terms of image con
trast, and are obtained at the expense of a
substantial loss of scattered events which
reasonably resolve the source. Such events
could be included in image formation (2). To
incorporate preferential treatment of selected
scatter components, we propose a deconvolu-
tion-subtraction-restoration (DSR) model in
which object and detector scatter are segre
gated as undesirable and useful events, re
spectively. In this case, the responses of the
object and detection subsystems will be de
rived from the DS and DR models, respec
tively (Fig. 1). The ideal projection t" is then

formed by all annihilation photons transmit
ted through the object. Reformation is re
quired to correct for their slight misplacement
in the detector subsystem due to Compton
scattering and finite intrinsic resolution. The
degradation process producing the measured
projection is then given by:
Pm= t" * h"

= t" * (8 + IO * (hdg+ hds)

= t" * {hdg+ hds + hos* (hdg+ hdS)}

h*= t" *

= t" * Eq. 13

Solving for t" in the frequency domain, the

DSR model yields:

HOfg+fd' fg+ fd fg:+ fd/ '

Eq. 14

T" = Pâ€ž

Again, since the intensity of object scatter
is in excess of unity in h", the inverse filter
1/H", scaled down by a factor l/(fg + fd) =
1/(1 â€”f0), effectively removes object scat

ter from the measured projection as it cor
rects for the blurring effects of intrinsic
resolution and detector scatter at higher
frequencies.

As mentioned before, the deconvolution
models have two drawbacks in common.
First, corrections performed in the fre
quency space require symmetric and shift-
invariant response functions. The nonsta-
tionarity of the object scatter response can
be fulfilled by estimating p0 by convolu
tion-subtraction as described in Equation
10. The nonstationarity of the geometric
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and detector scatter responses can be par
tially inscribed in the models using singu
lar-value decomposition (11) or piecewise
Fourier inversion (12). Second, the pres
ence of the geometric component in the
inverse requires a low-pass filter to sup
press noise at high frequency. To overcome
this limitation, a tradeoff between noise
amplification and resolution loss can be
made by setting the geometric component
in the inverse filter to a constant value equal
to its intensity. This enables one to omit the
low-pass filter, since the inverse converges
to this value at high frequency. In so doing,
the scatter-corrected projections, unrestored
for the intrinsic detector resolution, become
in the different models:

DR: Pod =

DS: Pod= P:

DSR: P^ = Pr

Hd + H0} Eq. 15a

l +

f, + Hd 4- H,

Eq. 15b

. Eq. 15c

When the detector scatter intensity is small,
such as is the case for lower resolution PET
systems, both the DS and DSR models
become identical and reduce to the gener

alized scatter correction method commonly
used in single photon emission tomography
(9). When the detector scatter spread is
narrow, a low-pass filter may still be re
quired in the DR and DSR models since the
inverse converges to a constant value above
unity at high frequency. The inclusion of
detector scatter in the desired components
for image formation (2) suggests that some
fraction of the object scatter which may not
be detrimental to image quality could, in
principle, be included as well. Such a
model would undoubtedly reconcile the
imaging goals of both reformists and pur
ists in nuclear medicine.
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A Graphical Analysis Method to Estimate
Blood-to-Tissue Transfer Constants for Tracers
with Labeled Metabolites
David A. Mankoff, Anthony F. Shields, Michael M. Graham, Jeanne M. Link and Kenneth A. Krohn
Division of Nuclear Medicine, University of Washington, Seattle, Washington; Wayne State University and the Karmauos
Cancer Institute, Detroit, Michigan

The Patlak graphical analysis technique is a popular tool for estimat
ing blood-to-tissue transfer constants from multiple-time uptake
data. Our objective was to extend this technique to tracers with
labeled metabolites, the presence of which can cause errors in the
standard Patlak analysis. Methods: Based on previously described
formulations, we generalized the graphical technique for use under
specific conditions. To test the extended graphical approach, we
applied the method to both simulated and patient data using a
preliminary compartmental model for the PET tumor proliferation
marker, 2-[11C]-thymidine. Results: When given conditions are met,

a linear relationship exists between the normalized tissue activity
(tissue activity/blood activity) and a new set of graphical analysis
basis functions, including a new definition of normalized time, which
takes the presence of labeled metabolites into account. Graphical
estimations of the tumor thymidine incorporation rate for simulated
data were accurate and showed close agreement to the results of
detailed compartmental analysis. In patient studies, the graphical
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and compartmental estimates showed good agreement but a
somewhat poorer correlation than in the simulations. Conclusion:
The extended graphical analysis approach provides an efficient
method for estimating blood-tissue transfer constants for tracers
with labeled metabolites.
Key Words: PET; modeling; carbon-11 -thymidine; metabolites
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IVidiiiiopharmaceutical imaging is frequently complicated by
the presence of labeled metabolites. The metabolites usually
have a different distribution pattern than the parent tracer and
can therefore cause errors in the kinetic analysis. When the
blood concentrations of the tracer and its metabolites are known
through blood sampling and metabolite analysis, tracer kinetic
modeling can be used to separate the contributions of tracer and
metabolites to the image and to estimate physiologic parameters
based upon the tracer of interest. Models accounting for the
behavior of the intact tracer and its metabolites are, by neces
sity, more complex and generally ill-suited for the routine

estimation of physiologic parameters. In general, only the
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