
benefit from PET in the validation of new emerging meth
oth such as functional studies with MRI (6,7). A prereq
uisite for this is accuratecoregistrationof the datafrom the
two modalities to each other. A number of registration

methods have been suggested to achieve this. These meth
ods can be broadly divided into three categories: expert
guided systems to match anatomical structures (8â€”10),
automatic or semiautomatic systems to minimize the
distance between surfaces that can be extracted in both
modalities (11â€”14)and automatic methods to maximize
a measure of image similarity (15).

Although there are specific advantages and disadvan
tages with each method, they seem to offer reasonably
accurate registration. A disadvantage of the first category

is the time an experienced worker needs to perform the
registration.The second category suffers from the difficul
ties in automaticallyextractingcommon surfaces and from
the differences in contours on images from different mo
dalities (13). A disadvantageofthe thirdcategory is manual
editing of MR images to discard all extracerebral tissue
(15).

In this article, we propose a method for performing
PET-MRI registration that is an extension of one pre
viously developed for PET-PET registration (16). By
segmenting the MR images, a PET image may be sim
ulated by assigning appropriate uptake values to cere
brospinal fluid (CSF) and to the gray and white matter.
The resulting images may then be registered to the
actual PET images using the PET-PET registration
method. The similarity between the simulated and ac
tual PET images will depend strongly on the accuracy of
the segmentation of the MR images. The PET-PET reg
istration method is, however, relatively insensitive to
moderate differences in tracer distribution (16). There
fore, we believed that crude segmentation of the MRI
data by simple thresholding would yield simulated PET
images realistic enough to permit accurate registration.
This hypothesis was tested by registering PET data
obtained with several different tracers to MRI data and
comparing the results to those obtained by expert
guided, point-pair matching. The method was also ex
amined for possible sources of error.

CombiningMRI morphologicaldata w@ifunctionalPET data
offers significantadvantages in research as well as in many
dinical s@uations.AUtOmatiCmethods are needed, however,to
coregisterthe datafrom the twomodalities.Methods: Simulated
PET images were created by simple and automatic segmenta
tionof MRimages followedbythe asulgnmentofdiflerentuptake
valuesto varioustissue types.ThesimulatedPETimageswere
registeredto actual PETimages usinga pIXel-by-pDeI,PET-PET
registration method. The transformation matrix was then applied
tothe MRimages.Themethodwas usedto registerMRIdatato
PET transmission scans and emission scans obtained with
FDG, nomtlensine and raclOpnde. ValIdatiOn was performed by
comparing the results to those obtained by matching internal
pointsmanuallydefinedinbothvolumes.Results: Emissionand
transmission PET images were successfully registered to MR
data. Compatison to the manual method indicated a registration
accuracy on the orderof 1-2 mmineach direction.Nodifference
in accuracy between the different tracers was found. The error
sensitivity for the method's assumptions seemed to be suffi
cientlylowto allowcomplete automation of the method. Con
cluslon: We present a rapid,robustand fullyautomated method
to registerPET and MRbrainimages withsufficientaccuracyfor
most dinicaiapplications.

Key Words: positron emission tomography; magnetic reso
nance imaging;automatic image registration

J NucI Med 1995; 36:1307â€”1315

he coordinated use of morphological information as
assessed by MRI and functional information as assessed by
PET offer great advantages and possibilities for both mo
dalities. By complementing PET data with MRI's more
reliable region of interest (ROl) definition (1), anatomical
identificationof activated areas (2) or local pathologies (3),
compensation for atrophy (4) and better reconstruction
methods (5) can be obtained. On the other hand, MRI can

ReceivedNov.21,1994;revisionacceptedJan. 16,1995.
For correspondenceor repdnts contact Jesper Andersson,MSc, Uppsala

UniversityPETCentre,S-75185 Uppsala,Sweden.

1307PET-MRICoregistralionâ€¢Anderssonet al.

A Method for Coregistrationof PET and MR
Brain Images
Jesper L.R. Andersson, Anders Sundin and Sven Valind

Subfemtomole Biorecognition Project, Uppsala University PET Cent,@, Uppsala, Sweden and Departments of Radiation
Sciences, Diagnostic RadiOlOgyand ClinicalP@sycholo@,Uppsala University, Uppsala@Sweden



TissuetypeVentricleWhiteGraySubcutaneousTreoere@Jrand

bonemattermatterfatFDG0014011C-ranlfer'@',e0014000122Transmission01111

TABLE I
UptakeValues for DifferentTypes of Tissue Used When

Creating Simulated PET ImagesPET
Scanners. Studies were perfonned either on a GEMS 2048-lSB

(17) or GEMS 40%-1SWB (GE Medical Systems, Milwaukee,
WI) (18) scanner. Both scanners produce 15sliceswith 6.5-mm
slicespacingandhave6-mmaxialandtranSaxialFWHM.

FDG Studies. Two adults and one child (ages 39, 43 and 1 yr,
respectively) underwent FDG-PET studies as part of the clinical

procedure prior to surgery for complex partial epilepsy. They
were positionedin the scanner so that the mostbasal slicecorre
spondedto theOMline.A doseof 22â€”6.7MBq/kgbodyweight
of [I8@TV@was injectedand scanningwas commenced.Data
from 30 to SOmin postinjection were summed and reconstructed
with a 4.2-mm Hanning filter, 2-mm pixel size, and contour finding
was used for attenuation correction (19). Due to the risk of sei
zures, the only fixationwas foam paddingsupportedby a plexi
glass head rest. The child was sedated throughout the examination
to preventexcessivemovements.

Carbon-il-Nomifensine and Carbon-Il-Raclopride Studies.
Carbon-ll-nomifensine and â€œC-raclopridestudies were per
formed in four individuals(ages 53, 54, 55 and 60 yr) randomly
selected from a group of 15 volunteers participatingin a project
studying the effects of organic solvents. The volunteers had been
exposed to organicsolvents in theirline ofwork (painters)buthad
apparentlynormalMRIscans.Theywerepositionedinthescan
ncr so that the most basalslice correspondedto the OMline.
Fixation was achieved through foam padding supported by a
plexiglass head rest and a broad adhesive tape across the forehead
attached to the head rest. A dose of3.8â€”8.3MBq/kgbodyweight
â€œC-nomifensineand 1.7â€”4.0MBq/kg body weight â€œC-raclopride
was injected. Data from 7 to 29 mm postinjection were summed
for both tracersand imageswere reconstructedwitha 4.2-mm
Hanningifiterand 2-mmpixel size. All raclopridescansand two
of thenomifensinescanswerereconstructedusinga transmission
scan for attenuation correction; the other two nomifensine scans
usedcontourfinding(19).Thestudyfromwhichdataweretaken
was approved by the Ethics Committee of the Medical Faculty,
University of Uppsala and by the Isotope Committee, Uppsala

University Hospital. Informedconsent was obtainedfromall sub
jects.

MRI
Scanning was perfonned with a spin-echo pulse sequence with

echo times rangingfrom 20 to 25 macc and repetition times be
tween 520and 550msec in six subjects. For a seventhsubject,a
turbospin-echosequencewith l2-msececho timeand540-msec
repetitiontimewasused. Imagesweresampledas transaxial6mm
thick256 x 256 matrices with pixel sizes between 0.78 and 0.90
mm and a slice gap of 0.6 mm. The numberof slices varied
between 19 and 23 but covered the entire cerebrum in all cases.

Fixationwas achievedin a mannersimilarto thatforPETscan
ning. Images were converted from their internal format to
ACR-NEMAfilesforexportto thePETcomputersystemwhere
they were convertedto the vendor-specificifie formatusedfor
PETimages.In the last conversionstep, adjacentpixels were
averagedto create 128x 128matriceswithtwicetheoriginalpixel
size.

PET-MRI Registration
Computers. A VAX-station 4000/60(Digital Equipment Corp.,

Maynard, MA) was used for all calculations. The programs per
forming calculations were written in C and were linked to libraries

writtenin FORTRANdeliveredwith the scannerand to routines
copied from Press et a!. (20).

CoordinateAxes. The coordinatesystemwas definedso that
the x-axisrunstransaxiallyin the left-rightdirection,the y-axis
runs transaxiallyin the up-down direction and the z-axis runs
axially. The letter a is used to denote rotation around the x-axis,

@ rotationaroundthe y-axisand yrotation aroundthe z-axis.The
originsof thesystemsaredefinedas thegeometricalcenterpoint
of thetwo imagevolumes,respectively.

Creation of Simulated PET Images. The voxels of the MR
images were classified as consisting of either air, ventricle and
bone, white matter, gray matter or subcutaneousfat. Classifica
tion was performedby simple thresholding.To simulatea PET
scan, each tissue category was given an uptake value that was
dependentontracertype.Alluptakevaluesusedinthisstudyare
presentedin Table1. The simulatedPETscanwas thenfiltered
with a two-dimensional Gaussian filter to yield an inpiane FWHM
of approximately7.0 mm, which is comparableto that in the
actual PET images.

Toobtainfullautomationofthe method,thethresholdsforeach
study had to be obtained automatically,or the same thresholds
wouldhave to be used for all individuals.To do the latter would
notbe practicalsincethe interindividualvariationis largeanda
separateset of thresholdswouldhave to be evaluatedfor each
MR@Iprotocol. An attempt to fit a number of Gaussians equal to
thenumberof tissuetypesfordatasegmentationto histographic
representation of all voxels in the volume did not yield satisfac
tory resultsdue to insufficientseparationbetweengray and white
matter and was therefore ruled out. We assumed instead that the
relative abundance of the four types of tissue, as measured by
MRI, was roughly equal across subjects. Given that assumption
andthefactthat35%of all nonairvoxels in a TI-weightedMRI
volumeconsistprimarilyof boneandventricle,anupperthresh
oldforboneandventricle(andthusalsoalowerthresholdforgray
matter)couldbe estimatedby integratinghistographicrepresen
tation of all nonair voxels until the integral spans 35% of the
voxels.To obtaintheupperthresholdforgraymatter,thehisto
gram was integrated from the upper threshold for bone and yen
tide until the integralspans the relativeabundanceof gray mat
ter,etc.

To obtainstandardvaluesfor the relativeabundanceof the
different tissue types, the following strategy was applied. The
remaining 11 volunteers had MRI scanning according to the pro
tocol above. Data were transferred to the PET system and ana
lyzedwiththevendor-suppliedimagedisplaysystem.Byinserting
monochromaticbands into the color scaleand interactivelymov
ing these over the scale, approximatethresholdsbetweenthe
differenttypesoftissue were subjectivelyassessed.These thresh
olds, together with the appurtenantMRI volume, were fed to a
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TissuetypeRelalive

tissue abcndance(%)Means.d.RangeVentricle

and bone38.43.433.6 -46.8Gray
matter27.72.225.3 â€”33.6White
matter24.03.619.4 â€”32.0Subcutaneous

fat9.93.94.9 â€”16.4

voxel-countprogramthatcountedallnonairvoxelsinthevolume
that fell in each tissue category. Thus, estimates of the relative
abundance of each tissue category were obtained for each of the
11subjects.Sincethisvalueis clearlydependentontheexactarea
of the brain spanned duringthe examination, only data from the
first slice in which the temporal lobes were visible to the last slice
containing cerebral tissue of the vertex were used by the voxel
count program.

These standardvalues were then used to estimate thresholds
for the seven subjectsin the validationstudyby creatinghisto
grams ofall nonair voxels from all slices above the temporal poles
and integrating them. The thresholds were then applied to all
slices in the MRI volume and to those below the temporalpoles.

Registration. Registration ofthe simulated images to the actual
PETimageswasachievedusinga previouslydescribedpixel-by
pixelimagesimilaritymethod(16)thatoperateson pixelswitha
high signal-to-noise ratio only. These pixels were identified by
differentiatingthe referenceimagevolume(the fixedvolume)and
creating a mask by thresholding the derivative volume so that only
10%ofpixelswiththe highestdatacontentinthe volumeare used.
Thiswas a smallmodificationfromthe PET-to-PETregistration
procedureinwhichonly5%ofthe pixelswereused.Byperform
ing the differentiationon the simulated PET images, the effects
fromhighlocalizeduptakes(e.g, â€œC-raclopridein the caudate
nucleus) were minimizedsince these structureswere not covered
by the mask. In PET-to-PET registration, the method behaves
robustlyandnolocalmaximaseemto existina reasonablevicin
ityof the truesolution(16).

OurexperienceofregisteringMRItoPETimagesindicatesthat
localmaximaare a problemin this context, possiblydue to initial
misregistrationsbeing larger, or to the superficialsimilaritybe
tweenthesimulatedandmeasuredPETimages.Toovercomethis
problem, multiple startingpoints were used. Six initial preregis
trations with an extensivesubsamplingof the volumeand liberal
convergence criteriawere performed.The startingvalues for axial
translation head tilting in the anterior-posterior direction were
variedbetweenthe registrations.Theseparameterswerevaried
because they were frequently found to differ substantially be
tween the PET and MRI volumes. The results from the initial
preregistrationswere checked, and the values resulting in the
largestmaximawere chosenas startingvaluesfor the finalregis
tration.

Validation
Equiva!ent Internal Points (EIP). An expert-guided landmark

registrationmethod was used as an independentmethodto vail
date automatic registration. PET and MRI datasets were re
sampledto yield twenty-nine128x 128x 2.0-mmsliceswith a
4.5-mmslice thickness. PET and MRI imageswere shown con
currentlyin a modifiedversionof the imagedisplayand manipu
lationsoftwareprovidedby the manufacturer,andhomologous
point-pairs in the two image sets were identified and their posi
tions recorded.The softwareallowsreslicingof the imagevol
umes in any directionto aid in the identificationoflandmarks.The
landmarkswere selected independently by three individualscx
perienced in studyingtomographicimages and consisted of struc
turesidentifiablein bothmodalitiessuchas the caudatenucleus
head, the thalamusand points on the cortical surfacewith high
curvature. The exact location and number of points varied de
pendingonthecharacteristicsofthe PETtracerused.Fortracers
providing little anatomical information(e.g., raclopride),a com
bination of points identified in the emission and transmission

TABLE 2
RelativeAbundance of DifferentTypes of lissue in the

Standard Group

images was used. The transformation matrix mapping the PET
dataset onto the MRI dataset was obtained by minimizing the sum
of the Eucidean distances between the pairedpoints with nonlin
ear fitting.

Emission-Transmission Comparison. Emission scans and
transmission scans were obtained during the same scanning ses
sion. It was assumed that there had been no subject movement
betweenthe scansessionsandboth the emissionand transmission
data were registered to the M@ data. A comparison of the emis
siondatato thetransmissiondataenabledestimationof registra
tion process errors, if there were no systematic errorsalso affect
ing the method when emission and transmission data are used.

Error Analysis
Registration with and without Editing Extracerebral Struc

tures.To determinethe method'ssensitivityto the presenceof
extracerebral tissue in MR images, the registration was carried out
both with and without manual editing of the MRI data to discard
extracerebral tissue such as the scalp, meningies and large yes
sels. Data were edited with vendor-supplied image display and
analysissoftwareandconsistedofmanuallydefiningROIsaround
thebrainandsettingallvoxelsoutsidetheROIsto zero.Thiswas
doneforallsevenMRIexaminationsusedinthevalidationstudy.
WhentheeditedMRimagesweresegmented,thesamethreshold
values for the nonedited data were used.

Registration with D@erent Standard Values for Tissue Corn
position. ffthe method is to be completely automatic in its present
form,the samestandardvaluesfor relativetissueabundancemust
be used for all, or close to all, individuals.Table2 shows the
spreadof these valuesencounteredin 11subjectson the order of
3%-4% for each type of tissue with a range of l0%-15%. To
examinethe effecton individualswitha tissuecompositionsig
nificantlydifferentfrom that in our standard group, registration
wasperformedwithdifferentcombinationsof tissuecomposition
values. The values for relativeabundanceof subcutaneousfatand
CSFwerevaried,andthevaluesfortheothertypesoftissuewere
adjusted accordinglyto ensure a total of 100%.We varied the
values for fat andCSF because they were expected to be the more
differing parameters (e.g., in obese individuals or in individuals
withmarkedcerebralatrophy).

RESULTS

Standard Values for Relative Tissue Abundance.
Values for relative tissue abundance obtained from the

standardgroup are presented in Table 2. These values are
in no way intended as a statement on actual tissue compo
sition, but rather, represent values for practical use for this
registration method only. The ranges far relative abun
dance of CSF and bone and subcutaneous fat are on the
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order of 15%and 10%, respectively. Thus, the range for
values to assess error sensitivity these assumptions was
larger than that encountered in this material.

Automatic Registration
All examinations used for the validation were success

fully registered with the automatic method and the results
looked qualitatively good. No apparent misregistrations
could be identifiedby visual inspection of the images. Lo
cal maxima presented no problems with the multiplestart
ing point approach. The average CPU time for the entire
registration process, exclusive of I/O and ifie transfer, was
190 sec (range 168â€”221sec). Two examples of simulated
PET images and the resultingmasks are shown in Figure 1.
The different uptake values for various tracers result in
using different parts of the images for the registration.
Figure 2 shows registered FDG, nomifensine and raclo
pride PET images overlaid on MR images. There was good
qualitative agreement between the images.

Equivalent Internal POint Registration
The mean numberof point pairs and the mean errorper

point pairare shown for each tracer in Table 3. The inter

FiGURE2@ RegisteredPETimagesover
led on T1-we@htedMRimages. Imageswere
created by mapping the MR images into a
gray scale and the PET images into the
Sokoloff pseudocolor scale. Every other
so@eenpixelwas given a hue of gray fromthe
MRimage,ancteweryotherwasgivena color
fromthe PET image. (A)FDGimage regis
tered to MR image. (B) Nomifensineimage
registeredto MRimage.(C)Racbprkleimage
registeredto MRimagefromthe same mdi
@@dualasinB.

observer variability is shown in Table 4. Table 4 indicates
a somewhat larger spread of the translation in the axial
direction and the rotation around the x-axis compared to
the other directions. This is in agreement with a general
opinion, shared by all observers, that accurate identifica
tion was hardest to achieve in the axial direction. The
largerspreadfor raclopridethanfor the other tracers is also
in accordance with the difficulties experienced by all ob
servers in identifying points in the raclopride emission im
ages and in the transmission images. The performance of
the EIP method depends on the experience and skill of the
observers and the versatility of the software used. There
fore, the values for interobserver spread reflect the perfor
mance of the method in our facility and cannot be extrap
olated to other sites without reservations.

Automatic Versus EIP Registration
The differences between the results of the present

methodand the EIP method are presented in Table 5 and in
Figure3. A comparisonofTables 4 and 5 indicates that the
difference was ofapproximately the same magnitude as the
interobserver spread of the EIP method. For the raclo

1310 The Journal of NuclearMedicineâ€¢Vol.36 â€¢No. 7 â€¢July 1995

FIGURE 1. Outputsfrom the various steps inthe reg@trationprocess. (A)T1-walghtedMRimage. (B)Simulated PET image created from
the MRimageinA,usinguptakevaluesfor11C-nomitensinefromTable1. (C)Maskconsistingof 10%ofthe voxelsofthe simulatedPET
volume(shownin B)withthe h@hestderh,ativevalues.Notehowa mbdureofbrainsurfaceregionsand bordersbetweengray and white
matter are used inthe reg@tration.(D)Carbon-i 1-nomifensinePET image after reg@trabon.(E)The same MRimage as in A. (F) Simulated
PETimagecreated fromthe MRimagein E, usinguptakevaluesfor @C-radoprk1efromTable I . (G)Maskconsistingofthe 10%ofthe
voxela of the simulated PET volume (shown in F) withthe highest derhiathievalues. (H)Carbon-i 1-radopride PET image after registration.
The image is scaled so that the madmumofthe grayscale is at 40%ofthe maximumintensityinthe basal ganglia
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Registration with and without Editing of Extracerebral
Structures

The errorsresultingfrom registrationofPET data to MR
images from which extracerebral tissue had been edited are
shown in Table 7. Strangely, there seems to be a tendency
towards largererrors when edited (Table 5) MM data are
used. The effect, however, does not reach conventional
significance. An explanation for this may be offered by
Figure 1, where the existence ofthe scalp in the MR images

_____________________________________________ clearly yields a higher degree of similarity between the
actualand simulatedPET images, especially for raclopride
(Figs. iF, H) and for nomifensine (Figs. 1B, D), than if it
had not been present.

Registration with Difisrent Standard Values
for tissue Composition

Results from the registrations performed with differ
ent assumptions for relative tissue abundance are
shown ip Table 8 and Figure 5. The analysis indicates
that this is not a sensitive parameter and no significant
difference beween the errors (paired t-test) for any two
assumptions for relative abundance of subcutaneous fat
or bone and CSF was found. The lack of significance,
however, should not be overemphasized given the small
numbers.

*Themean value of the interobserverspread (the standard devistlonover the observers) averaged over all subjects ana@izedwiththat tracer.
1Thestandarddeviationofmnterobseiverspreadwhenaveragedoverallsubjectsanalyzedwiththattracer.

FiGURE3. Acompassionbetweenthere
suitsobtainedfromtheautomaticmethodand
the EIPmethod.Translationis shownon the
leftand rotationonthe iight Translationalong
all axes and rotationaround all axes are
lumped.Thescalingof theaxes aredifferent
forthe twographs.

TABLE3
StatisticsRegarding Registrationwiththe EIP Method

FDG12.8Â±1.64.05Â±1.27Nomifensine13.4
Â±1.74.10 Â±1.03Raclopride10.8
Â±1.44.58 Â±I .67

*ThemeanremainingEUclideandistancebetweenthecorrespondmng
points in the two volumes after the transformation of one of the volumes
according to the transformation matrix that minimized this measure.

pride studies, the difference between the two methods was
surprisingly small given the large interobserver variability
for the EIP method. This may well be an effect ofthe small
numbers.

Registration of Emission Versus Transmission
PET Images

The results from coregistered MR and PET emission
images comparedto PET transmissionimages are shown in
Table 6 and Figure4. The magnitudeofthe differenceswas
of the same order as the differences between the EIP
method and automatic registrationto the emission images
(Table 5). There is the possibility of subject movement
between the emission and the transmission scan, which
adds to the estimated uncertainty of the method.

TABLE 4
InterobserverSpread for Registrationwiththe EIP Method

FDG30.69* Â±O.22@0.83 Â±0.231 .95 Â±1.271 .23 Â±0.290.84 Â±0.170.78 Â±0.24Nomifensine40.73
Â±0.130.48 Â±0.471 .80 Â±1.301 .37 Â±0.650.61 Â±0.350.70 Â±027Raclopride40.79
Â±0.500.97 Â±0.404.38 Â±2.693.22 Â±1.391.18 Â±0.800.76 Â±0.78

Automatic versus EIP registration
Rotation

0@ #3, â€¢ Mean of all observers

Translation
0 Observer #1 â€¢ 0 Observer #2

E

-20 -10 0 10 20 30
Translation with automatic method (mm) Rotationwithautomaticmethod(dog)

1311PET-MRICoregistrationâ€¢Andersson et al.



Translation(mm)

Tracer n X V ZROtatiOn

(dog)a

f3

TranSlatiOn(mm)

Tracer n X V ZRotation

(dog)a

fJ

*Thomoanvalueoftho absolutevakiosoftho ditforencebetweencoregistorodMRand PETemisslonimages and transmisslonimages averaged
over all subjects analyzedwiththat tracer.

1@Fhestandarddevistionofthe absolutevaluesofthedifferencebetweencoregisterodMRand PETemis@onand transmisslonimageswhen
av@eragodover all subjects analyzedwiththat tracer.

TABLE5
RegistrationErrorin M Directionsfor the ExaminedTracers

FDG3Qâ€¢53* Â±0@33t.41 Â±1.001 .37 Â±0.571 .25 Â±0.371 .29 Â±0.921 .66 Â±1.01Nomifensine40.33
Â±0.271 .08 Â±0.611 .79 Â±1.111 .58 Â±0.900.67 Â±0.510.46 Â±0.14Raclopride41

.44 Â±0.740.93 Â±1.261 .96 Â±1.341 .94 Â±0.791 .17 Â±0.741 .10 Â±0.74

*1110mean value of the absolute values of the difference between the result obtained with the automatic method and the result obtained withthe
EIPmethodaveragedoverthethreeobservers.

1@rhestandard devistionof the absolute values of the differencebetween the automaticmethod and the EIP method averaged over the three
observers.

to a number of other registration methods, including the
surface-fit method and the stereotactic z-frame.

Our results, with mean errors in the order of 1.5 mm in
each direction, are slightly worse than those obtained by
Woods et al. (15) using a similar method. There could be
many reasons for this. First, the validationmethod used by
Woods et al. (15) is most probably superior to the EIP
method. They used what is essentially the z-framemethod
but the z-shaped fiducial is attached to the subject's skull
rather than to a head holder in which the subject is more or
less fixed. Their measurements of fiducial-based registra
tion errors, supported by measurements by Ge et al. (25)
on a similarsystem, indicate submillimeteraccuracy. This
should be compared to mean errorsfor the EIP method on
the orderof a L3-mm translationin each direction and 1.7Â°
around each axis (21) and to the interobserver spread for
the EIP method encountered in this article (Table 4). The
errors presented in Table 5 represent a combination of the
errors in our method and in the validation method, in which
the relative contributions of each method are unknown.

Second, the slice thickness ofthe MRI data in this study
is relatively largeand yields highly anisotropic voxels. Due
to the nonlinearity of the PET image simulation process,
the partialvolume effects resulting from large slice thick
ness will affect PET and MRI data differently. This occurs
because the order of the intensity of the various tissue
types is different in Ti-weighted MR images CSF) com
paredto PET images for most tracers (gray>white>CSF).

TABLE6
Comparison between Registration of MR Images to PET Transmission and Emisslon Images

Nomifonsino 2 0.42*Â±043t 0.41 Â±0.41 1.37 Â±1.30 2.04 Â±0.50 1.20 Â±1.17 0.50 Â±0.09
Racloprido 4 0.51 Â±0.18 0.86 Â±024 1.95 Â±0.65 1.50 Â±0.57 1.30 Â±1.14 0.68 Â±0.53
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DISCUSSION

The validationofan intermodalityregistrationmethod is
a complex problemthat has been discussed by Neein et al.
(21) and can be described as follows: When using actual
data from scans obtained on humans, the true answer can
not be known and any validation involves comparing the
validation method to an independent method which will
also have errors. Thus, the registration errors measured in
that way will always be overestimated, and the results may
be limitedby the reference method ratherthan the method
being tested. On the other hand, when phantom measure
ments combined with fiducial markers (22) or simulated
data (21) are used, the true answer is known but the ques
tion is how representative is the validation for real human
data. When validatingthe method presented in this article,
the use of simulated data would clearly yield a situation
with circular evidence and was therefore not applicable.
The use of phantoms may yield data suitablefor validation
of surface-fit methods, in which the importantcriterion is
to obtain realistic head or cortical surfaces. In our method,
however, it would not suffice. First, segmentation of the
MRI data would be trivial, which is certainly not the case
for human data. Second, extracerebral tissue effects that
could potentially cause problems for a method of this kind
could not be mimicked by a phantom.

Thus, we decided to use actual data and compared the
results with those from the EIP method (8,23,21). In a
recent paper(24), the EIP method was found to be superior
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*@rhemean value of the absolute values of the differencebetween the automaticand EIP methods averaged over the three observers.
1@rhestandard deviationof the absolute values of the differencebetween the automaticmethod and EIP methods averaged over the three

observo@

The method presented in this article has many similari
ties to the one suggested by Woods et al. (15) but differs
from it in two importantaspects. First, our methodology
involves explicit, albeit primitive, segmenting of MR im
ages using information about tissue composition and the
creatingsimulatedPET images with data of relativeuptake
in differenttissue types for the specific tracer. In the algo
nthm suggested by Woods et al. (15), the segmentation and
assignment of uptake values is performed implicitly by
grouping the MRI pixels into 256 groups for which separate
means and standard deviations are evaluated. Although
elegant and self-adapting, their strategy implies that the
iterative process, apart from evaluating the transformation
matrix, is also responsible for creating simulated PET im
ages from the MRI images. Thus, the problem will be
worsened, which implies longer execution times, more lo
cal maximaand a less certified convergence. This effect is
demonstrated by the considerably longer execution times
reportedfor PET-MRIregistration(15) than for PET-PET
registration (26) and by the lack of convergence when
extracerebral tissue is present in the MR images (15). With
the explicit segmentation and simulation of additional in
formation in our method, the problem gets better condi
tioning, yields faster and more reliable convergence and
allows the existence of scalp and meningies in MR images.
The disadvantagesare the need to explicitly specify uptake
patterns for every tracer used and the risk of introducing
systematic errors. The latter seem not to be the case given
that our validation results do not indicate any bias. The
second difference lies in the use of a mask based on the
derivatives in the volume of simulated PET images. As
seen in Figure 1G,this results in automaticexclusion of the
basal ganglia from the registration process, which allows
raclopride PET scans to be aligned with MRI scans.

The present method can also register PET transmission
images to MRI data. This is an important feature since
some tracers(e.g., CO)exhibit uptakepatternsthatwill not
allow direct registration to emission images with any
method. Registration of MRI data to the emission data is
always advantageous since possible errorsfrom movement
between the transmission and emission scanning sessions
is avoided.

The 3-minexecution speed compares favorably to those

Comparisonbetweenregistration
toemissionandtransmissiondata

-@-15

2-25
I@ -25 -15 -5 5 15

Transformation obtained for emission scan.

. Rotation (deg)
0 Translation (mm)

25

FiGURE 4. Compadoon of coregistered MR images to PET
emlsslon and transmisslon images. Translation along all axes and
rotation around all axes are lumped.

Hence, when segmenting MR images, there will be a rim
on the cortex surface that is classified as CSF. The widthof
this rim will increase with increasing angles of the surface
through the imaging plane. Similarly, on the borders be
tween white matter and CSF, there will be a rimclassffied
as gray matter. The effect will again be accentuated with
increasing angles of the border through the image plane.
Thus, there will be a combined effect of apparent move
ment of cortical surface and of false rims of high activity
around the ventricles which varies throughout the volume.
Thinner slices and/or possibly other MRI sequences yield
ing intensities in the MR images in the same order as for
most PET tracers (e.g., proton density-weighted images)
would alleviate this and probably result in higherregistra
tion accuracy. The accuracy will be sufficient for most
clinical and scientific studies, and it may be advantageous
to validatethe method on MRI studies with thick slices and
highly anisotropic voxels since these types of studies are
used in most clinical examinations of the brain.

TABLE 7
RegistrationErrorin M Directionsfor the Study Tracers withExtracerebralTissue Removed fromthe MR Images

FDG30.64* Â±O.06@3.00 Â±1.661 .32 Â±0.411 .53 Â±1.162.00 Â±1.501 .01 Â±1.15Nomifensine40.43
Â±0.300.54 Â±0.511 .64 Â±1.141 .81 Â±0.910.62 Â±0.560.54 Â±0.19Raclopride41

.41 Â±0.631 .47 Â±1.06224 Â±1.623.17 Â±2.221 .24 Â±0.331 .49 Â±0.74
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TABLE8
Registration with Different Thsue Compositions

Standard
5% Fat
15% Fat
20% Fat
30% Ventricle
35% Ventricle
45% Ventricle
50%Ventricle

1.07* Â±O.92@
1.11 Â±1.05
1.14Â±0.96
1.14 Â±0.71
1.11 Â±0.76
I .09 Â±0.87
1.18 Â±1.15
1.39 Â±1.50

0.90 Â±0.74
0.85 Â±0.61
0.90 Â±0.80
0.92 Â±0.88
1.00 Â±1.04
0.88 Â±0.81
0.82 Â±0.61
0.74 Â±0.50

1.44Â±1.13
1.44Â±1.23
I .65 Â±1.07
1.65 Â±1.12
1.56 Â±1.07
1.53 Â±I .04
1.48Â±1.28
1.76 Â±1.62

1.40 Â±0.79
1.45 Â±0.73
1.70 Â±1.19
1.66 Â±1.05
1.41 Â±0.92
1.73 Â±1.13
1.56Â±0.88
1.56Â±1.29

*Themean value of the absolute values of the dUferencebetween the automaticand EIP methods averaged over all subjects and all three
directions.

1@Fhestandard deviationof the absolute values of the differencebetween the automaticand EIPmethods when averaged over all subjects and
allthreedirections.

reportedby other groups andis obtainedby excluding most
of the data from the registrationprocess with a derivative
mask. A highexecution speed, however, is less an issue for
Mifi-PET registration since considerably fewer registra
tions are done. When PET images are coregistered, there
are typically six or more studies to register, as in activation
studies, or multiple frames to register to the first frame, as
in dynamic protocols. Also, the other steps involved in
transferringMRIdatato the PET system, or vice versa, are
so time-consuming that the time spent on registration is
only a small part of the total process.

An importantproperty of our method is that it is com
pletely automatic. Previous attempts in this direction have
often involved manual interaction at some part in the pro
cess such as manual definition or editing brain contours
(11,13) or editing MRI data to discard extracerebral voxels
(15). if the method is to be completely automatic, the
values for relative tissue abundance from the standard
group must be applicable to the large majority examina
tions to be registered. The fact that the values were col
lected from one group and applied to another heteroge
neous group supports this notion. For subjects with
extensive atrophy, individual limits will have to be esti

FIGURE 5. The left penal shows registra
tionerror changes when assumptionsabout
relativeabundanceofsubcutaneousfatvary.
The nght pan@ shows the error changes
when the assumptionsabout relativeabun
dance ofbone and ventriclevary. Registration
errors are lumped along all directions and
aroundallaxes.

mated with the same technique used for the standard
group. This process is not time-consuming and typically
takes a few minutes.

The presence of large pathologies (e.g. , tumors or isch
emic areas) in the images may present difficulties. Such
areas also affect the results of PET-PET registrations (16).
For PET-PET images, errors may be avoided by manually
defining the area, drawing an ROI around it and discarding
it from the registrationprocess (16). The same strategy can
probablybe applied to PET-MRI images.

The present method has also successfully registered T2-
weighted MR images to PET images (data not shown).
Modifications to the method were limited to the collection
of new â€œstandardvalues,â€•since CSF and bone cannot be
lumped together for T2-weighted data. It is expected that
the application of the present method to any type of MBA
sequence (with reasonable separation between the princi
plc types of tissue) should be equally smooth.

CONCLUSION

Registrationof MR and PET images is an importantstep
toward realizing the full potential of both imaging modali

Errorsensitivitywithregardto assumptionsaboutrelativetissue abundance
- Translation Error for Raclopride
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ties. Our methodology can automatically register MR im
ages to PET images obtained with a wide variety of tracers
and with an accuracy of 1â€”2mm in each direction.
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