EDITORIAL

Radioimmunotherapy of Micrometastases: Sidestepping the

Solid-Tumor Hurdle

e potential of radiolabeled anti-
bodies to treat micrometastases
has long been recognized (I-6). In the
treatment of solid disease, however,
this recognition has not translated into
clinical assessment. The emphasis has
been instead on the treatment of
bulky, measurable tumors. Although
the rationale for this is relatively
straightforward, the clinician must be
able to measure tumor shrinkage to
assess therapeutic effectiveness. Its
apparent corollary, that the agent
must demonstrate effectiveness in
bulky disease before attempting treat-
ment of disseminated disease, has hin-
dered clinical assessment of
radioimmunotherapy for microme-
tastases. This corollary is founded on
principles that apply to chemotherapy
and not necessarily to radioimmuno-
therapy.

As pointed out by DeVita et al. (7)
the most important indicator of a che-
motherapeutic agent’s effectiveness is
the complete response rate, which is
the fraction of patients treated whose
measurable (bulky) disease becomes
undetectable. It has been hypothe-
sized that treatment failure in chemo-
therapy is associated with the exis-
tence of one or more drug-resistant
clones. Theoretical analysis of the
time-course by which such clones de-
velop was performed by Goldie and
Coldman in 1979 (8), who used math-
ematical modeling to predict that tu-
mor cells would mutate to drug resis-
tance at population sizes between
1000 and 1 million cells. The clinically
detectable level is 1 billion cells,
which is 1000-fold greater and corre-
sponds, approximately, to a 1-cm
mass. Even at very low mutation
rates, detectable masses would cer-
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tainly have at least one drug-resistant
clone. The absolute number of resis-
tant cells in a tumor composed of 10°
cells, however, could be relatively
small. At the time of initial treatment,
resistant clones could already be dis-
tributed and lead to distant metastases
and/or they could remain localized
and distribute following failure to con-
trol the primary tumor (9-11). This
would predict that an effective chemo-
therapeutic agent should yield a par-
tial or complete remission, which
would then be followed by repopula-
tion of resistant clones leading to a
clinically detectable recurrence. Sev-
eral conclusions emerged from that
analysis:

1. Because resistant clones arise in
undetectable tumor cell popula-
tion sizes, resistance should be a
problem even with small tumor
burdens or micrometastases.

2. Because a particular clone may
be resistant to one agent but not
another, a cure is most likely if
all available effective drugs are
delivered simultaneously (7).

In short, there is no reason to
expect effectiveness against min-
imal disease following radiother-
apy or surgery if an agent or
combined agents have not dem-
onstrated effectiveness with
measurable disease. This con-
clusion suggests that the tradi-
tional rationale for anticipating
greater effectiveness when tar-
geting minimal disease, i.e.,
there are less cells to kill so that
it should be easier to kill all of
them, is not compelling enough
to bypass the initial, bulky-tu-
mor assessment of a new chemo-
therapeutic agent.

In radioimmunotherapy, failure has
not been associated with the existence
of a resistant clone but, rather, with
inadequate delivery. A preponderance

of evidence indicates that large
150,000 molecular weight proteins do
not readily distribute throughout a
solid tumor mass, despite the in-
creased transcapillary movement that
is associated with tumor vasculature
(12-29). This evidence, along with
several studies predicting improved
effectiveness in targeting microme-
tastases (30-41) provides an additional
rationale for an anticipated improve-
ment in effectiveness when targeting
micrometastases, i.e., improved deliv-
ery.

The chemotherapeutic rationale for
requiring efficacy against measurable
disease before assessing an agent’s ef-
ficacy in an adjuvant setting is not
applicable to radioimmunotherapy be-
cause (a) failure in radioimmunother-
apy is associated with inadequate deliv-
ery rather than the existence of
resistant clones and (b) the advantage
of targeting minimal disease with radio-
immunotherapy is not limited to the in-
crease in cure probability associated
with killing a smaller number of cells. It
also includes the significant improve-
ments in delivery that are associated
with smaller tumor cell cluster dimen-
sions.

When we finally overcome the che-
motherapeutic paradigm and start ex-
amining the efficacy of radioimmuno-
therapy in an adjuvant setting, a
cautious and studied approach must
be taken. Variability in tumor-cell an-
tigen expression, the analog to clonal
resistance, may emerge as a signifi-
cant problem (42); extravascular (i.e.,
sanctuary) sites of even minimal dis-
ease may continue to pose a delivery
problem; failure may also arise from
difficulties that have no analog in
chemo- or radiotherapy.

The work of O’Donoghue et al. ex-
amines one such difficulty (43). They
demonstrated that tumor control
probability associated with different
beta-emitting radionuclides achieves a
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maximum at a tumor cell number
greater than one. In other words, the
single tumor cell presents a greater
therapeutic challenge than a cluster of
cells. As demonstrated in their article,
the optimal dimensions of a tumor cell
cluster depend on the radionuclide.
The optimal range of dimensions for
most of the radionuclides listed are
below clinical detectability. If the ki-
netics of antibody penetration are also
considered, the optimal ranges are
very likely to fall significantly below
clinical detectability for all of the radi-
onuclides (12,30-32). Does this mean
that radioimmunotherapy will only
work against micrometastases? No. It
does, however, mean that it should be
most effective in an adjuvant setting.
Clinical trials designed to assess effec-
tiveness in an adjuvant setting must be
very carefully designed and per-
formed because it may not be possible
to assess efficacy on a case-by-case
basis as is possible by measuring
bulky tumor shrinkage.

In their analysis of the clinical im-
plications of their work, O’Donoghue
et al., provide an excellent example of
how theoretical results may be used to
improve the design of clinical trials.
Unless it becomes possible to charac-
terize the number and size distribution
of micrometastases in individual pa-
tients at different times in the course
of their disease (11,44), a combination
of radionuclides intended to cover as
large a range of tumor cell cluster di-
mensions as possible is necessary.
Unless radionuclides that are efficient
at eradicating single cells are used in
radioimmunotherapy (33,45-49), ad-
juvant radioimmunotherapy will result
in cures only if combined with another
treatment modality. In a similar man-
ner, it may be necessary to combine
antibodies against different antigens to
overcome the potential difficulties of
variable or inadequate antigen expres-
sion.

To begin examining these issues,
we must sidestep the solid tumor hur-
dle. Does this mean that the therapeu-
tic response of bulky tumor to a radi-
olabeled antibody is not relevant to
the further pursuit of that particular
radiolabeled antibody for targeting mi-

crometastases? Yes. Those qualities
that make a radiolabeled-antibody
combination ideal for targeting solid
disease generally make it worse for
targeting micrometastatic disease. Yt-
trium-90 has been proposed for target-
ing solid disease in part because the
range of its emissions may help over-
come the nonuniform distribution of
antibody in larger tumors. As shown
by O’Donoghue et al., this radionu-
clide is among the least effective for
clinically undetectable micrometa-
static disease. Antibody forms that
penetrate more rapidly throughout a
solid tumor generally do so at the ex-
pense of affinity. In targeting smaller,
more penetrable clusters, such agents
are only left with the disadvantage of
reduced affinity.

Clinical evidence now exists in the
treatment of hematologic disease that
demonstrates the potential value of ra-
dioimmunotherapy in an adjuvant set-
ting (50). In solid tumor disease, the
inability to monitor shrinkage in as-
sessing effectiveness against mi-
crometastases may seem to be a se-
vere limitation. This limitation will
diminish over time as surrogate mark-
ers are developed (51). It is also im-
portant to note that much more de-
tailed pharmacokinetic information
may be obtained with radiolabeled an-
tibodies via external imaging than is
available in most assessments of new
chemotherapeutic agents. In this re-
gard toxicity is much more predictable
and, as expected, has been largely lim-
ited to the hematopoietic system.

The article by O’Donoghue et al.
(43) illustrates one of the fundamental
differences between radioimmuno-
therapy and chemo- or radiotherapy.
An acknowledgment of such differ-
ences and a reassessment of the para-
digm that is being used to evaluate the
potential effectiveness of radioimmu-
notherapy under different settings is
needed so that we may begin clinical
trial examination of adjuvant radioim-
munotherapy for solid disease.

George Sgouros
Memorial Sloan-Kettering Cancer Center
New York, New York
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