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EDITORIALScatteredPhotonsas "Good CountsGone Bad:" Are They
Reformableor ShouldThey Be PermanentlyRemovedfrom
Society?
In general, the quality of an image

can be described (quantitatively) by
its signal-to-noise ratio (/), which di

rectly affects diagnostic and quantita
tive accuracy. The signal-to-noise ra
tio describes the relative "strength"

of the desired information and the
noise (due to the statistics of radioac
tive decay, for example) in the image.
The signal is typically thought of as
the difference or contrast between a
target and the surrounding activity. In
practice, this contrast is provided in
the patient by the radiotracer's distri

bution. The goal of the imaging sys
tem is to preserve this contrast in the
image. Contrast is maintained by
avoiding blurring, which smears
counts from higher-activity regions
into lower-activity regions (and vice

versa), thus reducing image contrast.
Therefore, spatial resolution, in its
broadest sense, and contrast are
closely linked. This relationship is
quantitatively described by the imag
ing system's modulation transfer func

tion, which is the Fourier transform of
the point spread function. While the
modulation transfer function is ob
tained from a conventional measure of
spatial resolution, it is actually the ra
tio of the contrast in the image to that
in the object as a function of spatial
frequency (2). Inclusion of scattered
photons in the image reduces contrast;
this is partially reflected in a change in
the point spread function and modula-
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tion transfer function (2). The amount
of scatter depends on the distribution
of activity within the patient, the pa
tient's body habitus, the imaging ge
ometry of the system, the system's

energy resolution and the pulse height
window setting.

The design of a PET or SPECT sys
tem must address these issues by at
tempting to simultaneously maximize
spatial resolution and sensitivity,
while minimizing the acceptance of
scattered photons. In practice, these
competing design goals lead to an
"optimum" (in the designer's mind)

compromise, and real-world scanners
have less-than-ideal resolution, sensi

tivity, and scatter characteristics.
There is, thus, much interest in soft
ware-based postacquisition ap

proaches to these problems. For the
sake of simplicity, many software ap
proaches begin with the assumption of
a linear, shift-invariant system. Such a

system responds linearly to changes in
activity distribution regardless of the
position of the activity within the field
of view. In such a situation, the mea
sured projection data can be consid
ered as the convolution of the object
with the imaging system's response:

p = o * h , Eq. l

where p represents the projection
data, o the object and h the imaging
system's response (i.e., the point

spread function). The asterisk repre
sents convolution. It is important to
note that h contains both resolution
and scatter effects. The convolution
theorem states that convolution in real
space is equivalent to multiplication in
Fourier space. If we use capital letters

to denote the Fourier transform of a
function, the above equation thus be
comes:

P = OH. Eq. 2

In such a situation, o can be obtained
from p by deconvolution with a
known h (i.e., based on a measure
ment of a point source). Deconvolu
tion is usually performed in Fourier
space, where mathematically it is a
simple division:

O = P/H, Eq.3

in which o is obtained from O by tak
ing the inverse Fourier transform. H" '

is known as the inverse filter. In the
absence of noise, such a filter will per
fectly restore a blurred projection. In
practice, the use of such a filter would
lead to unacceptably large noise am
plification, and a combination of in
verse filtering and low-pass filtering

must be used. This approach forms
the basis for all Fourier-based restora

tion filtering (e.g.. Wiener or Metz fil
tering) in nuclear medicine. Such fil
ters usually are composed of an
inverse component (i.e., a boost) at
low to intermediate spatial frequen
cies, followed by a roll-off (i.e., a cut)

at intermediate to high spatial frequen
cies. Since scatter is mainly though by
no means exclusively a low spatial fre
quency phenomenon, I have previ
ously argued that the main effect of
such filtering is scatter reduction, by
the equivalent of deconvolution. Of
importance, deconvolution here re
duces scatter through a process of re
positioning of scattered events, not by
their elimination (3,4).
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Other investigators have chosen to
subtract an estimate of the scatter dis
tribution from the observed data. In
SPECT, this approach was pioneered
by Jaszczak et al., who used a second
pulse-height window positioned over
the Compton region of the pulse-

height spectrum to estimate the scat
ter distribution (5). More sophisti
cated approaches with the same
theme have now been proposed (6). In
PET, a similar approach to estimation
followed by subtraction was pio
neered by Bergstrom and colleagues
(7). In their approach, the measured
projection data are treated as true,
scatter and random coincidence
events:

p = t + s + r. Eq. 4

After correction for random coinci
dence events, the measured projec
tion data consist of true plus scattered
events. Bergstrom modeled scatter as
the convolution of the true radiotracer
distribution with a scatter distribution
function hs:

s = t * hÂ«. Eq. 5

In such a situation, the measured pro
jection data become:

p = t + (t*hs). Eq. 6

In order to directly obtain the true dis
tribution t, the above equation could
be rearranged:

t = p - (t* hj. Eq. 7

This approach requires a priori know
ledge of t, the true distribution which
we ultimately wish to know. Berg-

strom hypothesized (and subse
quently demonstrated) that a second
scatter distribution function hs' could

be derived, such that:

t = p - (p * hs'). Eq. 8

This approach forms the basis for the
article by Bentourkia et al. in this is
sue of the Journal (8). Of importance,
Bentourkia and colleagues have cho
sen to explicitly separate object scat
ter, collimator scatter and detector
scatter. Of even greater significance,
they have implemented their approach
as a nonstationary (often called shift-

variant) convolution. By so doing,

they are not forced to make the as
sumption, particularly incorrect for
ring geometry PET tomographs, that
hs is the same everywhere within the
field of view.

I am particularly intrigued by the ex
act formulation chosen by Bentourkia
et al. Like Bergstorm, Bentourkia et
al. begin by defining the measured
projection data after random correc
tion, as the sum of individual scatter
components:

p = t + s0 + sc + sd. Eq. 9

They then associate a separate (shift-

variant) h with each component. I
might have expanded Bergstrom's

equation to separately consider ob
ject, collimator, and detector scatter
as:

t = p - (p * ho) - (p *

= p* (5 - hâ€ž- hc -

- (p * hd)

Eq. 10

where 5 is the Dirac function as for
mally defined. Bentourkia et al. have
used a different formulation in which
the projection data, as modified by the
current scatter correction step, are
used as the input for the subsequent
step. That is, the object-scatter cor
rected data are used in the collimator-
scatter correction step and the object-
and collimator-scatter corrected pro
jection data are used in the detector-

scatter correction step. As stated in
the article by Bentourkia et al., the
final equation becomes:

t = p * (S - h0) * (5 - hc)

* (& - hj). Eq. 11

A creative aspect of this approach is
that each successive subtraction stage
builds on the previous stages, and, in
that sense, the operations are not in
dependent.

Bentourkia et al. were able to dem
onstrate improvement in image con
trast with their approach, and the im
portance of separating object,
collimator and detector-scatter com

ponents in the correction scheme.
They were further able to show that
subtracting detector scatter was unde
sirable because it lowered signal (or

increased noise, depending on your
point of view). They were not able to
demonstrate significant resolution re
covery. 1 am not surprised by this
finding, since the object and collima
tor scatter distribution functions are
essentially low-spatial frequency in

character. We have equivalently dem
onstrated that Fourier filtering-based

scatter reduction mainly affects the
tails of the point spread function (3,4).

In their concluding remarks,
Bentourkia et al. highlight the difficul
ties in improving image signal-to-noise

ratio. While their method improves
contrast, and thus signal overall, it
does so at the expense of noise, be
cause it involves the removal by sub
traction of counts. This is in marked
contrast to deconvolution methods
like Fourier filtering, which can simul
taneously reduce scatter and noise,
because no counts are removed (3,4).
Like Bentourkia et al., I believe that a
restoration model capable of preserv
ing (recovering) the geometric resolu
tion, removing scatter and suppress
ing noise is required in high-resolution

PET. The approaches to resolution re
covery, scatter removal and noise
suppression within such a model will
likely influence each other. With re
spect to scatter correction, a continu
ing challenge to the developers of such
a model will be the choice to reposi
tion or remove scattered counts from
the image. Such a choice will clearly
influence more than just image con
trast.

JonathanM. Links
The Johns Hopkins University

Baltimore, Maryland
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