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EDITORIAL

Are Animal Scanners Really Necessary for PET?

F‘or nuclear medicine not only to
survive, but also to prosper, it
must constantly seek out new radiop-
harmaceuticals that yield more infor-
mation about tissue physiology than
can be obtained by any other imaging
modality. This process of radiophar-
maceutical development is difficult,
time-consuming and hindered by the
lack of suitable instrumentation to fa-
cilitate evaluation of tracer pharmaco-
kinetics (1,2).

Novel pharmaceuticals are rou-
tinely being developed at considerable
cost. Human tumor lines have been
successfully replicated in animals.
Both these initiatives benefit from im-
aging procedures that can determine
the interaction of drugs on regional
metabolism, blood flow, and receptor
occupancy and the extent of therapeu-
tic intervention (3). Hence, radiophar-
maceutical imaging is poised to play
an even greater role in diagnosis, char-
acterization and management of dis-
ease and dysfunction.

Two steps are entailed in the devel-
opment of new radiopharmaceuticals
that foster this approach: (1) synthesis
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and purification of a radiopharmaceu-
tical, followed by (2) biodistribution
and imaging studies to determine re-
gional localization of the tracer. The
easiest developmental path for new
agents is by PET, since these agents
are directly compatible with natural
and man-made biomolecules. Incor-
poration of nuclides such as N, !'C
and 'F, is usually more straightfor-
ward than developing complex che-
lates from classical nuclear medicine
nuclides such as *™Tc and '"'In. The
short half-life of PET nuclides can be
helpful when utilized for human stud-
ies (a lower patient dose is required
and repeatability of imaging proce-
dures is good), but they can also
hinder successful tracer development
(specific activity is reduced over time,
rapid synthesis and quality assurance
procedures are required, long incor-
poration times are not possible, and
biodistribution studies are very diffi-
cult). But radiochemists have the
ability to develop many more PET
radiopharmaceuticals than can be
thoroughly tested. Why? Quite sim-
ply, it takes too long to realistically
evaluate whether a new radiopharma-
ceutical can be used to successfully
visualize the desired physiological or
biochemical parameter for which it
was designed. Animal biodistribution

studies must be performed for each
new agent prior to undertaking human
imaging (4-6). Numerous animals are
required to gather limited amounts of
kinetic data. The early uptake phase
of a rapidly cleared tracer is difficult to
measure by these techniques. Inter-
animal variability further increases the
number of animals that must be killed.
The cost and more importantly, the
effort to collect biodistribution data
for a few time points along this uptake
process are significant, and become
even more difficult when short half-
life PET nuclides are used. Further-
more, conventional biodistribution
methods of dissection provide no re-
gional tissue uptake information.

In this issue of the Journal Marriott
and coworkers present information
about measuring biodistribution and
regional uptake of PET radiopharma-
ceuticals in small animals (7). This
builds upon their previous work (8)
and employs avalanche photodiode
detectors coupled to conventional
BGO scintillator material. This work
embodies two important issues,
namely use of a dedicated small PET
scanner for animal imaging and the de-
velopment of new PET detector tech-
nology. The unique feature of their to-
mograph design is the application of
the avalanche photodiode as the main
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detector element. The avalanche pho-
todiode is a small, solid-state amplifier
which performs well at high photon
counting rates and replaces the con-
ventional photomultiplier tube. Dis-
crete detectors are utilized rather than
a block design in order to achieve
higher count rates and better resolu-
tion (9, 10). The avalanche photodiode
may indeed provide a necessary
breakthrough for reducing costs of
commercial PET scanners.

The concept of constructing smaller
versions of PET ring tomographs for
animal work using conventional tech-
nology is not new (2,3,11,12). Previ-
ously, it was just too costly to build a
device for such a small market. The
complexity and lack of recognition of
need have stymied acceptance of spe-
cialized animal PET scanners. The ap-
proximate resolution of PET scanners
used for human imaging is currently
4-5 mm FWHM in all dimensions.
This is not good enough to clearly vi-
sualize animal tissues in the submilli-
meter range. Dedicated animal scan-
ners for PET imaging must be capable
of at least 1-2 mm FWHM resolution
to be truly useful in biodistribution
studies and in measuring regional ki-
netic information. Imaging of animals
with conventional gamma cameras
and collimators, while possible, is far
from optimal since the thin Nal(T1)
crystal provides only minimal sensi-
tivity to the high energy 511 keV an-
nihilation photons. Lastly, epidemio-
logic issues severely restrict the use of
human facilities for animal imaging.

Animal Scanners for PET ¢ Hichwa

The need to accelerate the process
of testing and selecting promising ra-
diopharmaceuticals from a long list of
potential candidates has come of age.
The ability to quantitatively conduct
biodistribution studies without animal
sacrifice (or at best minimize it) in or-
der to obtain complete kinetic data of
tracer uptake and washout is intrigu-
ing. Marriott et al. point out limita-
tions in their work: (1) incomplete ring
geometry, (2) choice of radiopharma-
ceutical, and (3) the necessity of kill-
ing the animal. These specific issues
do not, however, detract from the
general notion that animal PET scan-
ners are realistic and necessary tools
to carry out significant radiopharma-
ceutical development.

In summary, more experimentation
is needed to test the avalanche photo-
diode system for stability, linearity
and count rate performance. PET
scanners that employ these devices
will push the conventional limits of
resolution, sensitivity and cost. But if
the challenges are met, the benefits
are significant. It is important to de-
velop dedicated, high-resolution in-
strumentation that combines new de-
tector technology with more rapid
biodistribution analyses. The future of
PET and nuclear medicine depends on
new radiopharmaceuticals entering
the imaging arena more rapidly and at
an economical cost.

Richard Hichwa
University of lowa Hospital and Clinic
Iowa City, Iowa
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