
the cell doses are to be obtained. For example, a 1-pm
error in the spatial registration of an alpha source at the
position of the cell membranecan result in a 20%errorin
the dose delivered to the cell nucleus (16). Although auto
radiography only provides information at a single time
point, it is the only currenttechnique capable of providing
spatial source distributionwith subcdllularprecision.

The large volume of data present on an autoradiograph
necessitates automated methods of data collection. Previ
ous researchers have used microdensitometiyto quantify
the activity distributionacross tissue sections (17â€”19).This
method, although rapid, presents the investigator with a
matrix ofgrain densities devoid ofits relation to the cellular
structure of tissue. This can result in errors, since the
activity and dose distribution are not associated with the
distribution of viable cells across the section.

We present a method of automaticgrainand cell nucleus
recognition from autoradiographs using image analysis.
The method is demonstrated using examples of the local
ization of radiolabeled antibodies in tumor tissue.

METhODS

lissue Section Autoradlography
Autoradiographswere preparedfromthreetissueblocks.An

EL-4 T-celllymphoma-beanng mouse was injected with 11.1 MBq
of â€œIn-labeledThy 1.2 tumor-specificantibody, and killed after
24hr. The tumorwas excised,and embeddedin LKB historesin.
Thetumortissuesectionswerecut on a Microm330resinmic
rotome,(Heidelberg,Germany)dippedinIlfordK2emulsionand
exposed for 1wk, priorto development. Then these sections were
stained with Harris's hematoxylin.The second autoradiograph
was of a kidney section from the same animal. The thirdautora
diographwas from a lung tumor (a type II pneumonocyte, pro
vided by courtesyof LM. Cobb, MRCRadiobiologyUnit, Did
cot, Oxon,England),whichhadbeeninjectedwitha â€˜@I-labeled
nonspecificThy 1.1antibodyand killed6 hr postadministration.
This tissue was para.ffinembedded. Sections were dipped in Ilford
K2 emulsion,exposedfor 2wk prior to development,thenstained
in hematoxylin and eosin.

Sincebothâ€œInandâ€˜@IareAugerelectronemitters,thehalf
density of the grain position relative to the source decay is 1 zm
(20).

Image Acquisition
Tissue sectionswere viewed on a ReichertJung Polyvar mi

croscope (Vienna, Austria) under Kohier illumination. A black
and white (512 x 480) Cohu CCD camera (San Diego, CA)
mounted on the microscope tube was used to digitize the images.

Tissuesectionautoradkgraphsareoftenpreparedto reviewthe
predse spatial locations of a radiolabeled molecule relative to
cells, such as in the study of radiolabeled antibody distribution.
TheoL@ectiveofthisworkwastodevalopandevaluatea method
to automaticallydetectbothgrainsandcellnudeifromstained
tissueautoradiographsusinga microscopeandan imageana
lyzer. Method: Using a sequenceof morphologicalimage oper
ations,thedenselystainedregionsof the section,representing
the cellnucleiare identifiedfirst,andthensubtractedfromthe
originalimage. This enables the identificationof autoradio
graphicgrainsunderconditionsof variablecontrast,bysepara
tion of the grainsoverlappingthe cell nudei from the extra
cellularspaces,permittingamoreaccurateandrobustautomatic
segmentationroutine. Results: The accuracy of the method to
detectgrainshas beenevalUatedat differentthresholdlevels.
The highestaccuracyobtainedwas approximately90%.The
accuracyinthedetectionofcellnudeiwashistology-dependent.
As examples,we haveestimatedaccuraciesof approximately:
86%, 81% and 77% for kidney,EL-4 lymphomaand pneumono
cyte sections, respectively. Conclusion: This method was
testedusingspecimensdeaignedto studyradiolabeledantibody
distribution,but ft shouldbe applicablew@icomparableaccu
racy to other radiolabeledcompoundsfor whichquantitative
informationon the heterogeneityof distributionis required.

Key Words: autoradiography;microdosimetry;image analysis

J NucIMed 1994;35:1217-1225

hen radiolabeled molecules are used for targeting
therapy, e.g., radiolabeledantibodies(1â€”6),thymidinepre
cursors (7â€”9),methylene blue (10,11), naphthoquinone de
rivatives (12), hormones (13) etc., it is important to obtain
detailed information on the spatial distribution of the
sources relative to the cells, so that the uniformity of up
take and dose to the tumor cells can be assessed. Autora
diographyis a method to obtain precise spatial information
(resolution 1 j.@)of the radiolabels, relative to the tissue
histology. Theoretical studies have shown (14, 15) the ne
cessity to determine the spatial configuration of sources
with this level of spatialresolution, if accurateestimates of
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FiGURE 1. (A) A digitizedblack and white imageof an EL-4 tumor autoradiographstainedwith Harris'shematoxylin,24 hr post
intravenoustail vein injectionwith111ln-IabeledThy 1.2 antibody.The magn@cationis 500x. (B)An attemptto detectthe autoradiograph
grainsbygreylevelthresholding.Objectsbelowthegreylevelthresholdarehighlightedinwhite.Thistechniquefails,sincenotonlydo many
grainsremainundetected,butmanydenselystainedareasofthehematoxylin-stainednucleiareerroneouslyconfusedforgrains.

The camera gain and offset were adjusted to spread the image
contrastacross the full256grey levels, withoutcamerasaturation.
Using a magnification of 500x for visualization of the autoradio
graphic grains, the camera field of view was 150 x 140 .tm2
(calibratedwith a hemocytometer)correspondingto 0.3 jmVpixel.
Image analysis was performedusing a Quantimet570-PC based
image analyzer (Leica, Deerfield, IL). Nonuniformity of specimen
illumination was corrected using a matrix-shading correction de
nved froma blankimage. Correctionsfor the pixel nonsquareness
were performedin real time using look-up-tables(LUT).

Image Analysis Method to Detect Cell Nuclei and
Autoradiographic Grains

Figure 1A shows an image acquired on the black and white
cameraof an autoradiographof the EL-4 T-cell lymphoma.Since
the autoradiographicgrainsrideon a backgroundofvariable stain
ing, simple grey level thresholding cannot be used for grain seg
mentation as demonstrated in Figure lB. Even when the grain!
background contrast is considerably more uniform, as with a

kidney section, grey level segmentationstill failed. This failureis
due to the considerableoverlapofgrains andcell nuclei in thegrey
level windows. Therefore, our approachhas been initiallyto de
tect the cell nuclei and then to break the originalimage into two
separate images, one containing only the cell nuclei, and the
second containing only the background.Grain detection is then
performedin the extra- and intra-cellnuclearregions separately.

A detaileddescriptionof the steps involved in the identification
of the cell nuclei and autoradiographicgrains is given in the
Appendix. A schematic diagram of the steps involved in cell
nuclei recognitionis shown in Figure2, and the appearanceof the
imagesfor these steps is deferred to the Appendix.In brief, the
original image is smoothed to eliminate small objects such as
grainsfromthe image,but not the largerindividualcellnuclei.All
local minima in the smoothed image are sought, to identify the
deepest stained areas of the section (Fig. 2B). These minimaare
progressively dilated, according to a grey level ramp, until a set of
ridge lines of maximumgrey level intensity between all detected
minimaare found (Fig. 2C). This filter is the watershed function
(21,22). The watershed ridge lines are segmented by grey level
thresholding,and set to zero (black).A gradientfilteris appliedto
the original image to enhance the cell nuclear boundaries (Fig.

2D). The black watershed lines and the minima from Figure 2C are
copied onto the gradientimagein Figure2D to produceFigure2E.
Applicationof a second watershedcauses the darkestpixels of the
image(the cell nuclei minimaand the watershed lines) to dilate
and converge onto the boundariesof maximumgrey level pixels
which are the gradientlines. The result is illustratedin Figure2F.
By holefillingandremovalof thewatershedlines,thecellnuclei
are detected, and the objects without closure removed.

A maskof thedetectednucleiiscreatedwhichis usedtocreate
two new images: one which copies the contents of the original

image of only those pixels underlying the mask, and a second
which copies the remainderof the originalimage.

The intra-nucleargrains are identifiedby smoothing the image
of the cell nuclei and identifyinglocal minima.The extra-nuclear

FIGURE2. (A)Schematicdiagramof an imagecontainingthe
outlinesofcellnucleiandautoradiographicgrains(blackdots).(B)
Theoperationof smoothingremovesthe autoradiographicgrains.
The searchfor localimageminimadetectsthe deepest stained
areasw@iinthecellnudei(filledblackareas).(C)TheWatershed
linesderivedfrom the imageminima(filledblackareas)of 2B. (D)
The outlines of objects using gradient analysis of the original image.
(E)Superposition ofthe image minimaand watershed lines from 2C
onto the gradientimage of 2D. (F) Resultof the second application
ofthe watershed function. The minima grow outward and thefirst set
of watershedlinesgrowinward.Thetwo meetat the gradientlines.
The enclosed watershed lines contain cell nuclei. The extraneous
linesare readilyprunedfromthe image.

1218 The Journal of Nuclear Medicineâ€¢Vol. 35 â€¢No. 7 â€¢July 1994
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.@@ sultant image. The top-hat transform is a difference image

between the original image and grey level opened image. A
grey level opening is an image erosion followed by an
imagedilationof equalmagnitudedeterminedby the kernel
size (22). An image opening removes small features from
the image, by erodingthem to nothing, so that they cannot
be reconstituted by dilation. Therefore, the application of
the top-hat transform sets all image pixels of smoothly
varying objects equal to zero (black), and highlights small

sharp features, such as autoradiographicgrains, of sizes
less than the radiusof the user-definedkernel to high grey
level values (220â€”255).The choice of the top-hat kernel
depends upon the optical magnificationused. At 500x mag
nification, typical grain sizes were 4â€”16pixels in area. The
optimum kernel size corresponds to the size of features
requiring detection. In this work, a kernel of size 2 was
used, althoughthe methodwas insensitive within the range
from 2 to 4 inclusive.

Second and more critical is the white threshold level for
segmentation of the grains from the top-hat transformed
image. The grey level stores from 255 down to 220 contain
the distribution of individual grain data in the order of
diminishing contrast relative to their individual back
grounds. Therefore, opening the grey level window by
decreasing the threshold level results in an increase in the
true grain count, but at the expense of a rapid increase in
the yield of false-positives. This is because each incremen
tal lowering of the threshold, (widening of the window)
results in a progressive lowering of the signal (true grain
count) to noise (false-positives). To investigate the depen
dence of true-positives upon threshold level, we used the
method of Giger et al. (23). In a study of an automated
detection method for the identificationof malignantlesions
in lung from radiologicalfilms, they presented the perfor
mance of their technique by plotting the incidence of true
positives versus false-positives as the thresholding level
was changed. This method, which is similar to a receiver
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FIGURE 3. Imageofthedetectedextra-andintranudeargrains,
togetherwiththeoutlinesof thedetectedcellnucleihighlightedin
whitefortheunprocessedEL-4T-celllymphomasectionshownin
Figure1A,afterapp@ingthe imageanalysisproceduresdescribedin
the appendb.

grains are identified by size and grey level thresholding which are

combined in the top-hat transform,which isolates all grey level
minimafromthe imagesmallerin size thanthe specifiedgrey level
opening kernel.

RESULTS

The Accuracy of Automatic Grain Recognition
The results of applyingthe image analysis techniques to

identify grains and cell nuclei are illustrated for the three
histologies in Figures 3, 4 and 5. The accuracy of the
method was evaluated by toggling the binary planes con
tamingthe detected grainsand cell nuclei on andoff. Three
independent observers manually scored the number of
true-positives, false-positives and undetected features.

Two operator variables define the accuracy of grain
identification: the size of the kernel used in the top-hat
transform and the grey level threshold applied to the re
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FiGURE 4. (A) A digitizedblackand white imageof an autoradiographof a Itidneysectionstainedwith Harris'shematoxylin,24 hr
postintravenoustail vein injectionwith 111ln-labeledThy I .2 antibody.The magnificationis 500x. (B)The sameimageafterapplyingthe
imageanalysisproceduresdescribedin theAppendb Thedetectedcell nudeiareoutlinedin white.Thedetectedautoradiographicgrains
are highlightedas whitedots.
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FiGURE 5. (A)A digitizedblackandwhiteimageofanautoradiographofa typeIIpneumonocytetumorsectionstainedwithhematoxylin.
The magnification is 500x. (B) Application ofthe image analysis technique described for the EL-4tumor section applied to a pneumonocyte
type II tumorsection.DeteCtedcelloutlinesare shownin turquoise,extra-nudeargrainsin red,and intranucleargrainsin yellow.

operator characteristic (ROC) curve in radiology, de
scribes the sensitivity and behavior of the method. Figure
6 presents data for the automatic grain detection method,
where each filled circle represents a change in the grey
level thresholdby 1/256.The ordinategives the percentage
of true-positives; the abscissa, the percentage of false
positives relative to the true number of grains (1,140 nor
malized to 100% in the figures) analyzed. Figure 6 shows
that we can extract 85%of the grainswith less than 1%of
false-positive grains. In order to improve the detection
level to greaterthan 95%of the truegrains, the percentage
of false-positives increased to about 5%. At this point the
overall grain count is close to 100%, since the percentage of
false-positives closely matches the percentage of undetec
ted grains. However, 5% of the grain coordinates are er
roneous. Increasing the thresholding level higher results in

FiGURE 6. The performancecharacteristicsof the automated
autoradiographicgrain detectionmethod,with the percentageof
true-positiveidentificationsonthe ordinateversusfalse-positiveson
the abscissa, using greylevelthreshold asthe variable. Percentages
are expressedrelativeto the averagenumberof grains identified
manuallybythreeindependentobservers.

an unacceptable rise in the number of false-positives with
only a small improvement in the detection of the missing
grains. The curve in Figure 6 allows one to determine the
optimum threshold for minimizing the joint error arising
from undetected and false-positive components, to a point
just before the large increase in false-positives.

Although the accuracy of the method is sensitive to the
grey level threshold, this threshold needs to be determined
only once for each specimen, since the top-hat transform is
insensitive to the absolute grey level intensity of the back
ground. All large features in the image disappear during
image subtraction and are set to a grey level equal to zero.
For example, changing the illumination in the linear re
sponse range of the camera, results in a change in the
overall brightness and contrast of the image, but has little
effect on the threshold levels required to segment grains
from the top-hat transformed image. What may change,
with the absolute illuminationintensity, is the level of noise
detected. However, since noise is a single-pixel phenome
non, it is easily removed by size thresholding, i.e., only
objects consisting of four or more adjacent pixels are
counted as grains. Therefore, fluctuations in noise at dii
ferent illumination levels are minimal. This method there
fore has distinct advantagesover techniques which employ
conventional grey level thresholding, where measurements
upon the same field may vaiy significantly dependent on
the overall specimen brightness.

Using the optimum settings for grain thresholding (de
termined from Fig. 6), the number of positively and falsely
detected grains from 1,140 individual grains are presented
in Table 1.

The data demonstrate the high accuracy of individual
grain identification. However, the method is limited to
individual grains, and does not detect grain clusters, which
are excluded due to the small size threshold applied during
the top-hat transform. Grain clusters, if they occur, need to
be identified manually.

Performance Plot
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of 3. The magnitudeof the errorsare smallerfor the normal
kidney section than for the two malignant tissues, due to
the higher staining contrast obtained for kidney. Like the
grey level threshold setting for grain detection, the yield of
correctly detected nuclei is a sensitive function of the size
of the smoothingkernel. The value of the optimumsmooth
ingkerneiwas foundto be constant for the three histologies
studied in this work. This is probably because the variation
in size of all mammalian cell nuclei is small. Therefore
application of the smoothing kernel to different tissues
viewed at the same magnification requires little or no
changes to the smoothing kernel, once it is set correctly.
The principal limit in the accuracy of the method to seg
ment cell nuclei results from the quality of differential
staining which can be achieved between the cell nuclei
relative to the non-nuclearmaterialon the section.

For a set of sections derived from the same tissue block
and stained in the same batch, the reproducibility of cell
nuclei identification is about Â±10%. This may result from
variations in the thickness of the sections, which affects the
observed inter-cellular spacing as viewed on a two-dimen
sional projection. However, largervariations in the detec
tion accuracy of cell nuclei was observed between sections
from different blocks. Whereas, for kidney sections, we
always obtained better than 75% cell nuclei identification at
the optimumlevel, for the tumorsections from one of four
EL-4 resin tumor blocks, the detection efficiency was
<50%. We attribute this to the poorer delineation of the
cell nuclei from this specimen arising from the tissue pro
cessing and embedding. Obviously inadequate fixation of
the specimen will result in poorer quality histology, which
is visible by eye, and reflected in the ability to segment cell
nuclei.

DISCUSSION

Our motivation for pursuing an accurate assessment of
source and target distributions is based on our need to
describe the energy distribution at the cellular level in
targeted therapy. The success of radiolabeled antibodies
for the treatmentof malignantdisease is highly dependent
on the uniformityof the spatial distributionof the radiola
bels relative to viable tumor cells. The accuracy with which
the spatial coordinates of the sources relative to the target
cell nuclei needs to be known is dependent upon the range
of action of the radiolabel. For long-range beta-emitters,
such as 90Y or 32P, the necessity to obtain the source
distribution with micron accuracy is unnecessary for most
radiolabeldistributions.However, studies with highly spe
cffic short-rangealpha- and beta-emitters do sanction high
spatial resolution data on the source distribution.For Au
ger emitters whose radiotoxicity may be more than two
ordersofmagnitude greaterwhen incorporatedinto the cell
nucleus compared to decays at extra-nuclear locations, the
necessity to separate the image into nuclei and non-nuclei
phases, as performed in this study, is essential.

Withthe imageanalysis methods presented in this paper,

TABLE1
The Accuracy of Automatic Grain and Cell Nuclei Detection

Expressedas the Number of Undetectedand
False-positiveObjects.

Number Undetected False-positives

The Accuracy of Automatic Cell Nucleus Recognition
For the automatic identificationof cell nuclei, morpho

logical filterswere used exclusively. The size of the kernel
of the initial image smoothing operation is the only user
defined variable. This kernel determines the size (the num
ber of adjacent pixels) over which smoothing occurs, and
consequently the numberof minimaor cell nuclei detected
from the image. The use of too small a kernel results in
insufficient smoothing of the image detail, and the detec
tion of multiple false minima(over-segmentation).The use
of too large a kernel results in the elimination of minima
correspondingto stained cell nuclei (under-segmentation).
We studied the yield of true-positive cell nuclear segmen
tation versus false-positives for a range of smoothing ker
nd sizes from 1 to 7 (Fig. 7) for the three tissue types
studied. The data are expressed as percentages relative to
the true estimate of the cell number (the average of three
independent observers) given in Table 1. The rate ofloss of
true-positive cell nuclei is small for kernel sizes 4, but
increases rapidly at higher values. Once again, the opti
mum kernel size compromising between undetected cell
nuclei and false-positive cell nuclei falls at the inflection
point in Figure 7.

Table 1 shows measured data of the accuracy of cell
nuclei recognition for the optimum smoothing kernel size

FIGURE 7. Sameas Figure6 showingthe performancecharac
tensticsofthe automatedcellnudei recognitionmethod,withsizeof
the smoothing kernel (ranging from I to 7) as the variable. Percent
agesareexpressedrelativetotheaveragenumberofcellnucleifor
eachhistologyidentifiedmanuallyby threeindependentobservers.
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individual grains were detected with an accuracy of ap
proximately 90% which was constant for a wide range of
tissue sections and illumination conditions. Areas of dense
grain clusters were not identified by our method and they
need to be delineated manually.

Alternative approaches might improve grain detection.
One approach might be to analyze the section prior to
staining. This would, however, necessitate replacing the
section precisely on the stage prior to rescanning for de
tection of the cell nuclei, and thereforediminishthe spatial
accuracy between cell nuclei and grains. We did not use
this approach, because the potential loss of spatial resolu
tion could be unacceptable for the quantitationof the radi
olabeled molecules within the cell nucleus, e.g., the thy
midine precursors. An alternativeapproachwas suggested
by Ekiund and Williams (18) to reduce interference be
tween the histological stain and the silver halide grains. In
their work, a quantitative relation of the brightfield-to
darkfield ratio was fitted by a regression relation to the
known grain densities determined by manual counting. The
disadvantage of this method is that information is lost on
the actual positions of the sources and targets, which can
be importantfor some radiolabelconfigurations(24).

Cell nuclei were detected with an accuracy of between
75% and 85% depending upon the tissue histology and
quality of staining. These percentages might be improved
with further work, although it is unlikely that major ad
vances wifi result from software development.

The shortcomings of the current image analysis proce
dures to identify cell nuclei result from the nonuniformity
of stain uptake across the specimen. This results in a com
plex variationof cell stainingintensity and contrast. Inves
tigationinto more specific nuclear stains may improve cell
nuclei recognitionaccuracy, but preliminarytests using the
more specifIc Fuelgen cell nuclearstain demonstratedlittle
improvement. The image analysis methodology is applica
ble to a wide range of tissue stains and staining intensities
used in conventional pathology. However, there are limits
to the acceptability of the staining intensity. Too weak
staining which provides inadequate cell nuclear contrast
diminishes the accuracy of cell detection. Too deep stain
ing interferes with the ability to detect grains within cell
nuclei. The intrinsic tissue histology was found to be the
largest single determinantin limitingthe accuracy of auto
matic cell recognition. For example, the greater spacing
between the parenchymal cells of the kidney results in a
lower yield of undetected cells than tissues with consider
able cell-cell contact, such as for the pneumonocyte tumor.
The applicability of the smoothing kernel is re-evaluated
for each new tissue type, and adjustedwhere necessaiy. In
general, the accuracy of cell nuclei detection increases for
histologies with greater cell separation.

CONCLUSIONS

In this paper, we presented a method for the automatic
detection of autoradiographicgrains and cell nuclei from

tissue sections. The procedure was evaluated on three
tissue sections of different histology. Results were corn
pared with manual identification. The accuracy of grain
identification was approximately 90%. The accuracy of the
identification of cell nuclei from three tissue types ranged
from 75%â€”85%,dependingon the spatial arrangementand
density of the cells. Although the examples shown in this
work were of radiolabeledantibody distributionin tissue,
these methods can be applied to any radiolabeled corn
pound for which quantitative information of the spatial
distribution in tissue is desired. Since this method detects
the numberandthe location of each source point andtarget
cell on the slide, it can be used for uniformityanalysis and
also for the determination of the distribution of doses at the
cellular level.

APPENDIX

Automatic Cell Nuclei Recognition by Image Analysis
The steps involved in the automaticidentificationof cell nuclei

from tissue sections were as follows:

â€¢The original image containing cell nuclei and autoradio
graphic grains is shown for a real tumor autoradiographin
Figure 1A, and schematically in Figure 2A. To reduce the
detail in the grey tone variationacross the field, the image is
smoothed. This operationeliminatesall sharpdetail fromthe
image includingthe grains, leaving a mosaic of coarse grey
tone variations.

. All the minima in the smoothed image are sought. This op.

erationcorrespondsto an adaptivethresholding.The deepest
grey tone pixel cluster is identifiedwhich approximatelycor
respondsto the deepest stainedareaof each cell nucleus. The
appearanceof the image at this point is schematically illus
trated in Figure 2B and for the actual EL-4 image in Figure
8A. The smoothing operation has removed the grains from
the image and the dark circles now correspond to the grey
levelminimaof thesmoothedimagerepresentingthedeepest
stained areas of the cell nuclei. The number of minima in the
image correspondsapproximatelyto the numberof detected
nuclei. This numberwill depend upon the size of the smooth
ing kernel and the relation of these parameters is analyzed in
the results section.

â€¢The smoothed image is passed through the morphological
filterknownas the watershedfunction(21,22).Thisfunction
takes the pixel minimadata and dilates each minimumby
successive increments in grey level intensity. The process

continues until contact is established between adjacent mm
ima. What remains is a series of boundary lines (the water
shed lines) depicting nearest neighbor boundaries (shown
schematically in Figure2C), and for the EL-4 tumorsection
in Figure 8B. A frequently used analogy of the watershed
process is the risingwater level in a terrainof mountainsand
valleys.Thevalleyswillcontinuetofilluntilamountainridge
is reached at which point the water levels of two adjacent

valleys meet. The ridge lines connecting these valleys are the
watershed lines. For a tissue section, the watershed lines
definea set of domainseach containinga cell nucleus.

â€¢Neither the watershed lines nor the minima correspond to the
boundariesof the cell nuclei. Applicationof a gradientfunc
tionon the originalimage(Fig. 2A) is used to detect the edges
of the cell nuclei. However, the grey tone complexity of a
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tissue image includes a largenumberof edges not associated
with cell nuclei. The gradientlines are shown schematically
by the dotted lines in Figure 2D.

â€¢Theimageminimaandwatershedlinesareusedto cleanup
extraneous gradient lines. Since the minima and watershed

lines can be readily obtained by grey level segmentation, a
binaiy mask ofboth can be constructed. A mask is an overlay
plane which can be used to confine any image operation to
only those regions of the image underlyingthe mask. Using
the gradientimage of Figure 2D, those pixels underlyingthe
masksof the minimaandwatershedlinemasks(Fig.2C)are
set to a grey level 0 (black). This step is illustratedschemat
ically in Figure 2E, and on the EL-4 tumor image in Figure
8C. The modifiedgradient image now contains well defined
maxima (the gradient lines), and well defined minima (the
deepest stained regions of the cell nuclei and the watershed
lines) both of which were set to grey level 0.

â€¢Application of a second watershed function results in the
dilationof the imageminima,in accordancewith a grey level
ramp, until the image maxima. The second set of watershed
lines are the solid lines shown schematically in Figure 2F,
and for the EL-4 tumor in Figure8D.

S The secondsetof watershedlinescorrespondscloselyto the
outline of the cell nuclei, but still contains some unwanted
lines corresponding to the convergence of the second water
shed function to extraneous detail from the gradient image.
These lines may be pruned by filling all closed domains
withinthe imageandthen subtractingthe watershed lines. In
this way a binary plane is obtained containingonly objects
with closure. Most of the detected objects correspondto cell
nuclei.

The originalimage (Fig. 1A) is separatedinto two images;one
containingcell nuclei, andone with the cell nuclei subtracted(Fig.
9A and 9B), by copyingonly the pixels eitherunderneathor
outside of the segmentationmask of the cell nuclei. Methods of
grain identificationcan now be performedseparately on the two
images with a diminished interference between the black extra
nucleargrains and the densely stained areas of the cell nuclei.

Automatic GraIn Recognition by ImageAnalysis
The steps involved in the automaticidentificationof autoradio

graphic grains are now presented.

ImageAnalysis of Autoradiographsâ€¢Humm et al. 1223
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FiGURE8. (A)FigureIA afterbothimagesmoothingandthesearchforthelocalminima.Theidentifiedminima,whichrepresentthe
darkeststainedregionsof the cell nuclei,are highlightedin white.(B)Thewatershedlines(black)derivedfromthe imageminima(white).
(C)Gradientofthe originalimage,withpixelsunderthemasksoftheimageminima(4A)andwatershedlines(4B)set equalto greylevel
zero(black).(D)Secondapplicationof thewatershedfunctionto identifytheoutlinesofthe cellnudei (white)overlaidontheoriginalimage.
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FIGURE 9. (A)The image underthe cell nucleimaskonly.Allpixelsnotunderthe mask have been set to a grey levelof 255 (white).(B)
The image of the background only. All pixels under the mask of the cell nudei have been set to a grey level of 255 (white).

â€¢From the backgroundimage (Fig. 9B), a black top-hattrans
formis applied.The top-hattransformis a filterwhich selects
onlyareasfromthe imageof smallsharpdetail.Thistrans
form performs an image opening (erosion followed by dila
tion of the same magnitude)of the image, and then subtracts
the result from the original image. Therefore, if the top-hat
kernel is set to two, all features whose centroids are not
surroundedby a layerof at least two pixels will be eliminated
by the opening operation, and will appear as high contrast
featureswhen the opened image is subtractedfrom the orig
inal. This transform is well suited for the extraction of small
blackobjects, such as the silver grainsof an autoradiograph.
It also results in the detection of single-pixel noise, and
fractal detail arising from the nonsmoothed contours of the
cell nuclei (Fig. 9A), which were subtractedfromthe original
image in Figure 1A to obtain the background image of Figure
9B.

â€¢A grey level threshold can be set to discriminateall objects
extracted by the black top-hat, including noise and fractal
detail.

â€¢The applicationof the minima function on Figure 9B corn
bined with a logic operationbetween the binaryplanes con
tamingthe grey level threshold data and the image minima,
removes fractal artifacts arising from the edges of the cell
nuclei.

â€¢Elimination of objects from the detected feature set of size
less than4 pixels removes noise fromthe image. The remain
ing features represent the detected extra-nuclear grains.

â€¢Fromthe imageof the cell nuclei(Fig.9A), adjacentpixel
smoothing (matrix kernel 2) is used to flatten variations in
nuclear stain, without removingthe grains.

â€¢Local minimawithin the cell nuclei are sought to identify
potentialgrains. Minimagreaterthan4 pixels are counted as
grains.

C Overlying the binary planescontainingthe detectedgrains
fromthe cell nuclei andthe backgroundon the originalimage
gives the resultantimage with all detected grains (Fig. 3).
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