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Tissue section autoradiographs are often prepared to review the
precise spatial locations of a radiolabeled molecule relative to
cells, such as in the study of radiolabeled antibody distribution.
The objective of this work was to develop and evaluate a method
to automatically detect both grains and cell nuclei from stained
tissue autoradiographs using a microscope and an image ana-
lyzer. Method: Using a sequence of morphological image oper-
ations, the densely stained regions of the section,

the cell nuclei are identified first, and then subtracted from the
original image. This enables the identification of autoradio-
graphic grains under conditions of variable contrast, by separa-
tion of the grains overlapping the cell nuclei from the extra-
cellular spaces, permitting a more accurate and robust automatic
segmentation routine. Results: The accuracy of the method to
detect grains has been evaluated at different threshold levels.
The highest accuracy obtained was approximately 90%. The
accuracy in the detection of cell nuclei was histology-dependent.
As examples, we have estimated accuracies of approximately:
86%, 81% and 77% for kidney, EL-4 lymphoma and pneumono-
cyte sections, respectively. Conclusion: This method was
tested using specimens designed to study radiolabeled antibody
distribution, but it should be applicable with comparable accu-
racy to other radiolabeled compounds for which quantitative
information on the heterogeneity of distribution is required.
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Wen radiolabeled molecules are used for targeting
therapy, e.g., radiolabeled antibodies (1-6), thymidine pre-
cursors (7-9), methylene blue (10, 11), naphthoquinone de-
rivatives (12), hormones (13) etc., it is important to obtain
detailed information on the spatial distribution of the
sources relative to the cells, so that the uniformity of up-
take and dose to the tumor cells can be assessed. Autora-
diography is a method to obtain precise spatial information
(resolution <1 ) of the radiolabels, relative to the tissue
histology. Theoretical studies have shown (14, 15) the ne-
cessity to determine the spatial configuration of sources
with this level of spatial resolution, if accurate estimates of
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the cell doses are to be obtained. For example, a 1-um
error in the spatial registration of an alpha source at the
position of the cell membrane can result in a 20% error in
the dose delivered to the cell nucleus (16). Although auto-
radiography only provides information at a single time
point, it is the only current technique capable of providing
spatial source distribution with subcellular precision.

The large volume of data present on an autoradiograph
necessitates automated methods of data collection. Previ-
ous researchers have used microdensitometry to quantify
the activity distribution across tissue sections (17-19). This
method, although rapid, presents the investigator with a
matrix of grain densities devoid of its relation to the cellular
structure of tissue. This can result in errors, since the
activity and dose distribution are not associated with the
distribution of viable cells across the section.

We present a method of automatic grain and cell nucleus
recognition from autoradiographs using image analysis.
The method is demonstrated using examples of the local-
ization of radiolabeled antibodies in tumor tissue.

METHODS

Tissue Section Autoradiography

Autoradiographs were prepared from three tissue blocks. An
EL-4 T-cell lymphoma-bearing mouse was injected with 11.1 MBq
of ""In-labeled Thy 1.2 tumor-specific antibody, and killed after
24 hr. The tumor was excised, and embedded in LKB historesin.
The tumor tissue sections were cut on a Microm 330 resin mic-
rotome, (Heidelberg, Germany) dipped in Iiford K2 emulsion and
exposed for 1 wk, prior to development. Then these sections were
stained with Harris’s hematoxylin. The second autoradiograph
was of a kidney section from the same animal. The third autora-
diograph was from a lung tumor (a type II pneumonocyte, pro-
vided by courtesy of L.M. Cobb, MRC Radiobiology Unit, Did-
cot, Oxon, England), which had been injected with a '*I-labeled
nonspecific Thy 1.1 antibody and killed 6 hr postadministration.
This tissue was paraffin embedded. Sections were dipped in Ilford
K2 emulsion, exposed for 2 wk prior to development, then stained
in hematoxylin and eosin.

Since both ''In and '*I are Auger electron emitters, the half-
density of the grain position relative to the source decay is <1 um
(20).

image Acquisition

Tissue sections were viewed on a Reichert Jung Polyvar mi-
croscope (Vienna, Austria) under Kohler illumination. A black
and white (512 x 480) Cohu CCD camera (San Diego, CA)
mounted on the microscope tube was used to digitize the images.
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FIGURE 1.

(A) A digitized black and white image of an EL-4 tumor autoradiog

with Harris's hematoxyiin, 24 hr post-

raph staned

intravenous tail vein injection with '''In-labeled Thy 1.2 antibody. The magnification is 500x. (B) An attempt to detect the autoradiograph
grains by grey level thresholding. Objects below the grey level threshold are highlighted in white. This technique fails, since not only do many
grains remain undetected, but many densely stained areas of the hematoxylin-stained nuclei are erroneously confused for grains.

The camera gain and offset were adjusted to spread the image
contrast across the full 256 grey levels, without camera saturation.
Using a magnification of 500x for visualization of the autoradio-
graphic grains, the camera field of view was 150 x 140 um?
(calibrated with a hemocytometer) corresponding to 0.3 um/pixel.
Image analysis was performed using a Quantimet 570-PC based
image analyzer (Leica, Deerfield, IL). Nonuniformity of specimen
illumination was corrected using a matrix-shading correction de-
rived from a blank image. Corrections for the pixel nonsquareness
were performed in real time using look-up-tables (LUT).

Image Analysis Method to Detect Cell Nuclei and
Autoradiographic Grains

Figure 1A shows an image acquired on the black and white
camera of an autoradiograph of the EL-4 T-cell lymphoma. Since
the autoradiographic grains ride on a background of variable stain-
ing, simple grey level thresholding cannot be used for grain seg-
mentation as demonstrated in Figure 1B. Even when the grain/
background contrast is considerably more uniform, as with a
kidney section, grey level segmentation still failed. This failure is
due to the considerable overlap of grains and cell nuclei in the grey
level windows. Therefore, our approach has been initially to de-
tect the cell nuclei and then to break the original image into two
separate images, one containing only the cell nuclei, and the
second containing only the background. Grain detection is then
performed in the extra- and intra-cell nuclear regions separately.

A detailed description of the steps involved in the identification
of the cell nuclei and autoradiographic grains is given in the
Appendix. A schematic diagram of the steps involved in cell
nuclei recognition is shown in Figure 2, and the appearance of the
images for these steps is deferred to the Appendix. In brief, the
original image is smoothed to eliminate small objects such as
grains from the image, but not the larger individual cell nuclei. All
local minima in the smoothed image are sought, to identify the
deepest stained areas of the section (Fig. 2B). These minima are
progressively dilated, according to a grey level ramp, until a set of
ridge lines of maximum grey level intensity between all detected
minima are found (Fig. 2C). This filter is the watershed function
(21,22). The watershed ridge lines are segmented by grey level
thresholding, and set to zero (black). A gradient filter is applied to
the original image to enhance the cell nuclear boundaries (Fig.
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2D). The black watershed lines and the minima from Figure 2C are
copied onto the gradient image in Figure 2D to produce Figure 2E.
Application of a second watershed causes the darkest pixels of the
image (the cell nuclei minima and the watershed lines) to dilate
and converge onto the boundaries of maximum grey level pixels
which are the gradient lines. The result is illustrated in Figure 2F.
By hole filling and removal of the watershed lines, the cell nuclei
are detected, and the objects without closure removed.

A mask of the detected nuclei is created which is used to create
two new images: one which copies the contents of the original
image of only those pixels underlying the mask, and a second
which copies the remainder of the original image.

The intra-nuclear grains are identified by smoothing the image
of the cell nuclei and identifying local minima. The extra-nuclear
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FIGURE 2. (A) Schematic diagram of an image containing the
outlines of cell nuclei and autoradiographic grains (black dots). (B)
The operation of smoothing removes the autoradiographic grains.
The search for local image minima detects the deepest stained
areas within the cell nuclei (filled black areas). (C) The watershed
lines derived from the image minima (filled black areas) of 2B. (D)
The outlines of objects using gradient analysis of the original image.
(E) Superposition of the image minima and watershed lines from 2C
onto the gradient image of 2D. (F) Result of the second application
of the watershed function. The minima grow outward and the first set
of watershed lines grow inward. The two meet at the gradient lines.
The enclosed watershed lines contain cell nuclei. The extraneous
lines are readily pruned from the image.
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FIGURE 3. Image of the detected extra- and intranuclear grains,
together with the outlines of the detected cell nuclei highlighted in
white for the unprocessed EL4 T-cell lymphoma section shown in
Figure 1A, after applying the image analysis procedures described in
the appendix.

grains are identified by size and grey level thresholding which are
combined in the top-hat transform, which isolates all grey level
minima from the image smaller in size than the specified grey level
opening kernel.

RESULTS

The Accuracy of Automatic Grain Recognition

The results of applying the image analysis techniques to
identify grains and cell nuclei are illustrated for the three
histologies in Figures 3, 4 and 5. The accuracy of the
method was evaluated by toggling the binary planes con-
taining the detected grains and cell nuclei on and off. Three
independent observers manually scored the number of
true-positives, false-positives and undetected features.

Two operator variables define the accuracy of grain
identification: the size of the kernel used in the top-hat
transform and the grey level threshold applied to the re-

e

FIGURE 4. (A)Adigiﬁzedandwhﬂeimageofanautotadiograph

sultant image. The top-hat transform is a difference image
between the original image and grey level opened image. A
grey level opening is an image erosion followed by an
image dilation of equal magnitude determined by the kernel
size (22). An image opening removes small features from
the image, by eroding them to nothing, so that they cannot
be reconstituted by dilation. Therefore, the application of
the top-hat transform sets all image pixels of smoothly
varying objects equal to zero (black), and highlights small
sharp features, such as autoradiographic grains, of sizes
less than the radius of the user-defined kernel to high grey
level values (220-255). The choice of the top-hat kernel
depends upon the optical magnification used. At 500x mag-
nification, typical grain sizes were 4-16 pixels in area. The
optimum kernel size corresponds to the size of features
requiring detection. In this work, a kernel of size 2 was
used, although the method was insensitive within the range
from 2 to 4 inclusive.

Second and more critical is the white threshold level for
segmentation of the grains from the top-hat transformed
image. The grey level stores from 255 down to 220 contain
the distribution of individual grain data in the order of
diminishing contrast relative to their individual back-
grounds. Therefore, opening the grey level window by
decreasing the threshold level results in an increase in the
true grain count, but at the expense of a rapid increase in
the yield of false-positives. This is because each incremen-
tal lowering of the threshold, (widening of the window)
results in a progressive lowering of the signal (true grain
count) to noise (false-positives). To investigate the depen-
dence of true-positives upon threshold level, we used the
method of Giger et al. (23). In a study of an automated
detection method for the identification of malignant lesions
in lung from radiological films, they presented the perfor-
mance of their technique by plotting the incidence of true-
positives versus false-positives as the thresholding level
was changed. This method, which is similar to a receiver-

'l " . % Sy X O SR .
of a kidney section stained with Harris's hematoxytin, 24 hr

postintravenous tail vein injection with '*'In-labeled Thy 1.2 antibody. The magnification is 500x. (B) The same image after applying the
image analysis procedures described in the Appendix. The detected cell nuclei are outiined in white. The detected autoradiographic grains

are highlighted as white dots.
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FIGURE 5. (A)Adigitized black and white image of an autoradiograph of a type Il pneumonocyte tu

. L

mor sectio

£

n stained with hematoxylin.

The maghnification is 500x. (B) Application of the image analysis technique described for the EL-4 tumor section applied to a pneumonocyte
type Il tumor section. Detected cell outlines are shown in turquoise, extra-nuclear grains in red, and intranuclear grains in yellow.

operator characteristic (ROC) curve in radiology, de-
scribes the sensitivity and behavior of the method. Figure
6 presents data for the automatic grain detection method,
where each filled circle represents a change in the grey
level threshold by 1/256. The ordinate gives the percentage
of true-positives; the abscissa, the percentage of false-
positives relative to the true number of grains (1,140 nor-
malized to 100% in the figures) analyzed. Figure 6 shows
that we can extract 85% of the grains with less than 1% of
false-positive grains. In order to improve the detection
level to greater than 95% of the true grains, the percentage
of false-positives increased to about 5%. At this point the
overall grain count is close to 100%, since the percentage of
false-positives closely matches the percentage of undetec-
ted grains. However, 5% of the grain coordinates are er-
roneous. Increasing the thresholding level higher results in
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FIGURE 6. The performance characteristics of the automated
autoradiographic grain detection method, with the percentage of
true-positive identifications on the ordinate versus false-positives on
the abscissa, using grey level threshold as the variable. Percentages
are expressed relative to the average number of grains identified
manually by three independent observers.
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an unacceptable rise in the number of false-positives with
only a small improvement in the detection of the missing
grains. The curve in Figure 6 allows one to determine the
optimum threshold for minimizing the joint error arising
from undetected and false-positive components, to a point
just before the large increase in false-positives.

Although the accuracy of the method is sensitive to the
grey level threshold, this threshold needs to be determined
only once for each specimen, since the top-hat transform is
insensitive to the absolute grey level intensity of the back-
ground. All large features in the image disappear during
image subtraction and are set to a grey level equal to zero.
For example, changing the illumination in the linear re-
sponse range of the camera, results in a change in the
overall brightness and contrast of the image, but has little
effect on the threshold levels required to segment grains
from the top-hat transformed image. What may change,
with the absolute illumination intensity, is the level of noise
detected. However, since noise is a single-pixel phenome-
non, it is easily removed by size thresholding, i.e., only
objects consisting of four or more adjacent pixels are
counted as grains. Therefore, fluctuations in noise at dif-
ferent illumination levels are minimal. This method there-
fore has distinct advantages over techniques which employ
conventional grey level thresholding, where measurements
upon the same field may vary significantly dependent on
the overall specimen brightness.

Using the optimum settings for grain thresholding (de-
termined from Fig. 6), the number of positively and falsely
detected grains from 1,140 individual grains are presented
in Table 1.

The data demonstrate the high accuracy of individual
grain identification. However, the method is limited to
individual grains, and does not detect grain clusters, which
are excluded due to the small size threshold applied during
the top-hat transform. Grain clusters, if they occur, need to
be identified manually.

The Joumnal of Nuclear Medicine ¢ Vol. 35 ¢ No. 7 ¢ July 1994



TABLE 1
The Accuracy of Automatic Grain and Cell Nuclei Detection
Expressed as the Number of Undetected and

False-positive Objects.
Number Undetected False-positives
Grains 1,140 43 49
EL-4 cell nuclei 745 89 52
Pneumonocyte 861 147 52
Kidney cell nuclei 913 82 46

The Accuracy of Automatic Cell Nucleus Recognition

For the automatic identification of cell nuclei, morpho-
logical filters were used exclusively. The size of the kernel
of the initial image smoothing operation is the only user-
defined variable. This kernel determines the size (the num-
ber of adjacent pixels) over which smoothing occurs, and
consequently the number of minima or cell nuclei detected
from the image. The use of too small a kernel results in
insufficient smoothing of the image detail, and the detec-
tion of multiple false minima (over-segmentation). The use
of too large a kernel results in the elimination of minima
corresponding to stained cell nuclei (under-segmentation).
We studied the yield of true-positive cell nuclear segmen-
tation versus false-positives for a range of smoothing ker-
nel sizes from 1 to 7 (Fig. 7) for the three tissue types
studied. The data are expressed as percentages relative to
the true estimate of the cell number (the average of three
independent observers) given in Table 1. The rate of loss of
true-positive cell nuclei is small for kernel sizes <4, but
increases rapidly at higher values. Once again, the opti-
mum kernel size compromising between undetected cell
nuclei and false-positive cell nuclei falls at the inflection
point in Figure 7.

Table 1 shows measured data of the accuracy of cell
nuclei recognition for the optimum smoothing kernel size

Performance Plot
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FIGURE 7. Same as Figure 6 showing the performance charac-
teristics of the automated cell nuclei recognition method, with size of
the smoothing kernel (ranging from 1 to 7) as the variable. Percent-
ages are expressed relative to the average number of cell nuclei for
each histology identified manually by three independent observers.
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of 3. The magnitude of the errors are smaller for the normal
kidney section than for the two malignant tissues, due to
the higher staining contrast obtained for kidney. Like the
grey level threshold setting for grain detection, the yield of
correctly detected nuclei is a sensitive function of the size
of the smoothing kernel. The value of the optimum smooth-
ing kernel was found to be constant for the three histologies
studied in this work. This is probably because the variation
in size of all mammalian cell nuclei is small. Therefore
application of the smoothing kernel to different tissues
viewed at the same magnification requires little or no
changes to the smoothing kernel, once it is set correctly.
The principal limit in the accuracy of the method to seg-
ment cell nuclei results from the quality of differential
staining which can be achieved between the cell nuclei
relative to the non-nuclear material on the section.

For a set of sections derived from the same tissue block
and stained in the same batch, the reproducibility of cell
nuclei identification is about +10%. This may result from
variations in the thickness of the sections, which affects the
observed inter-cellular spacing as viewed on a two-dimen-
sional projection. However, larger variations in the detec-
tion accuracy of cell nuclei was observed between sections
from different blocks. Whereas, for kidney sections, we
always obtained better than 75% cell nuclei identification at
the optimum level, for the tumor sections from one of four
EL-4 resin tumor blocks, the detection efficiency was
<50%. We attribute this to the poorer delineation of the
cell nuclei from this specimen arising from the tissue pro-
cessing and embedding. Obviously inadequate fixation of
the specimen will result in poorer quality histology, which
is visible by eye, and reflected in the ability to segment cell
nuclei.

DISCUSSION

Our motivation for pursuing an accurate assessment of
source and target distributions is based on our need to
describe the energy distribution at the cellular level in
targeted therapy. The success of radiolabeled antibodies
for the treatment of malignant disease is highly dependent
on the uniformity of the spatial distribution of the radiola-
bels relative to viable tumor cells. The accuracy with which
the spatial coordinates of the sources relative to the target
cell nuclei needs to be known is dependent upon the range
of action of the radiolabel. For long-range beta-emitters,
such as *Y or P, the necessity to obtain the source
distribution with micron accuracy is unnecessary for most
radiolabel distributions. However, studies with highly spe-
cific short-range alpha- and beta-emitters do sanction high
spatial resolution data on the source distribution. For Au-
ger emitters whose radiotoxicity may be more than two
orders of magnitude greater when incorporated into the cell
nucleus compared to decays at extra-nuclear locations, the
necessity to separate the image into nuclei and non-nuclei
phases, as performed in this study, is essential.

With the image analysis methods presented in this paper,
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individual grains were detected with an accuracy of ap-
proximately 90% which was constant for a wide range of
tissue sections and illumination conditions. Areas of dense
grain clusters were not identified by our method and they
need to be delineated manually.

Alternative approaches might improve grain detection.
One approach might be to analyze the section prior to
staining. This would, however, necessitate replacing the
section precisely on the stage prior to rescanning for de-
tection of the cell nuclei, and therefore diminish the spatial
accuracy between cell nuclei and grains. We did not use
this approach, because the potential loss of spatial resolu-
tion could be unacceptable for the quantitation of the radi-
olabeled molecules within the cell nucleus, e.g., the thy-
midine precursors. An alternative approach was suggested
by Eklund and Williams (18) to reduce interference be-
tween the histological stain and the silver halide grains. In
their work, a quantitative relation of the brightfield-to-
darkfield ratio was fitted by a regression relation to the
known grain densities determined by manual counting. The
disadvantage of this method is that information is lost on
the actual positions of the sources and targets, which can
be important for some radiolabel configurations (24).

Cell nuclei were detected with an accuracy of between
75% and 85% depending upon the tissue histology and
quality of staining. These percentages might be improved
with further work, although it is unlikely that major ad-
vances will result from software development.

The shortcomings of the current image analysis proce-
dures to identify cell nuclei result from the nonuniformity
of stain uptake across the specimen. This results in a com-
plex variation of cell staining intensity and contrast. Inves-
tigation into more specific nuclear stains may improve cell
nuclei recognition accuracy, but preliminary tests using the
more specific Fuelgen cell nuclear stain demonstrated little
improvement. The image analysis methodology is applica-
ble to a wide range of tissue stains and staining intensities
used in conventional pathology. However, there are limits
to the acceptability of the staining intensity. Too weak
staining which provides inadequate cell nuclear contrast
diminishes the accuracy of cell detection. Too deep stain-
ing interferes with the ability to detect grains within cell
nuclei. The intrinsic tissue histology was found to be the
largest single determinant in limiting the accuracy of auto-
matic cell recognition. For example, the greater spacing
between the parenchymal cells of the kidney results in a
lower yield of undetected cells than tissues with consider-
able cell-cell contact, such as for the pneumonocyte tumor.
The applicability of the smoothing kernel is re-evaluated
for each new tissue type, and adjusted where necessary. In
general, the accuracy of cell nuclei detection increases for
histologies with greater cell separation.

CONCLUSIONS

In this paper, we presented a method for the automatic
detection of autoradiographic grains and cell nuclei from
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tissue sections. The procedure was evaluated on three
tissue sections of different histology. Results were com-
pared with manual identification. The accuracy of grain
identification was approximately 90%. The accuracy of the
identification of cell nuclei from three tissue types ranged
from 75%-85%, depending on the spatial arrangement and
density of the cells. Although the examples shown in this
work were of radiolabeled antibody distribution in tissue,
these methods can be applied to any radiolabeled com-
pound for which quantitative information of the spatial
distribution in tissue is desired. Since this method detects
the number and the location of each source point and target
cell on the slide, it can be used for uniformity analysis and
also for the determination of the distribution of doses at the
cellular level.

APPENDIX
Automatic Cell Nuclei Recognition by Image Analysis

The steps involved in the automatic identification of cell nuclei
from tissue sections were as follows:

o The original image containing cell nuclei and autoradio-
graphic grains is shown for a real tumor autoradiograph in
Figure 1A, and schematically in Figure 2A. To reduce the
detail in the grey tone variation across the field, the image is
smoothed. This operation eliminates all sharp detail from the
image including the grains, leaving a mosaic of coarse grey
tone variations.

o All the minima in the smoothed image are sought. This op-
eration corresponds to an adaptive thresholding. The deepest
grey tone pixel cluster is identified which approximately cor-
responds to the deepest stained area of each cell nucleus. The
appearance of the image at this point is schematically illus-
trated in Figure 2B and for the actual EL-4 image in Figure
8A. The smoothing operation has removed the grains from
the image and the dark circles now correspond to the grey
level minima of the smoothed image representing the deepest
stained areas of the cell nuclei. The number of minima in the
image corresponds approximately to the number of detected
nuclei. This number will depend upon the size of the smooth-
ing kernel and the relation of these parameters is analyzed in
the results section.

o The smoothed image is passed through the morphological
filter known as the watershed function (21,22). This function
takes the pixel minima data and dilates each minimum by
successive increments in grey level intensity. The process
continues until contact is established between adjacent min-
ima. What remains is a series of boundary lines (the water-
shed lines) depicting nearest neighbor boundaries (shown
schematically in Figure 2C), and for the EL-4 tumor section
in Figure 8B. A frequently used analogy of the watershed
process is the rising water level in a terrain of mountains and
valleys. The valleys will continue to fill until a mountain ridge
is reached at which point the water levels of two adjacent
valleys meet. The ridge lines connecting these valleys are the
watershed lines. For a tissue section, the watershed lines
define a set of domains each containing a cell nucleus.

o Neither the watershed lines nor the minima correspond to the
boundaries of the cell nuclei. Application of a gradient func-
tion on the original image (Fig. 2A) is used to detect the edges
of the cell nuclei. However, the grey tone complexity of a
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FIGURE 8. (A) Figure 1A after both image smoothing and the search for the local minima. The identified minima, which represent the
darkest stained regions of the cell nuclei, are highlighted in white. (B) The watershed lines (black) derived from the image minima (white).
(C) Gradient of the original image, with pixels under the masks of the image minima (4A) and watershed lines (4B) set equal to grey level
zero (black). (D) Second application of the watershed function to identify the outiines of the cell nuclei (white) overlaid on the original image.

tissue image includes a large number of edges not associated o The second set of watershed lines corresponds closely to the

with cell nuclei. The gradient lines are shown schematically
by the dotted lines in Figure 2D.

The image minima and watershed lines are used to clean up
extraneous gradient lines. Since the minima and watershed
lines can be readily obtained by grey level segmentation, a
binary mask of both can be constructed. A mask is an overlay
plane which can be used to confine any image operation to

outline of the cell nuclei, but still contains some unwanted
lines corresponding to the convergence of the second water-
shed function to extraneous detail from the gradient image.
These lines may be pruned by filling all closed domains
within the image and then subtracting the watershed lines. In
this way a binary plane is obtained containing only objects
with closure. Most of the detected objects correspond to cell

only those regions of the image underlying the mask. Using nuclei.
the gradient image of Figure 2D, those pixels underlying the
masks of the minima and watershed line masks (Fig. 2C) are
set to a grey level 0 (black). This step is illustrated schemat-
ically in Figure 2E, and on the EL-4 tumor image in Figure
8C. The modified gradient image now contains well defined
maxima (the gradient lines), and well defined minima (the
deepest stained regions of the cell nuclei and the watershed
lines) both of which were set to grey level 0.

Application of a second watershed function results in the
dilation of the image minima, in accordance with a grey level
ramp, until the image maxima. The second set of watershed
lines are the solid lines shown schematically in Figure 2F,
and for the EL-4 tumor in Figure 8D.

The original image (Fig. 1A) is separated into two images; one
containing cell nuclei, and one with the cell nuclei subtracted (Fig.
9A and 9B), by copying only the pixels either underneath or
outside of the segmentation mask of the cell nuclei. Methods of
grain identification can now be performed separately on the two
images with a diminished interference between the black extra-
nuclear grains and the densely stained areas of the cell nuclei.

Automatic Grain Recognition by Image Analysis
The steps involved in the automatic identification of autoradio-
graphic grains are now presented.

Image Analysis of Autoradiographs ® Humm et al. 1223



FIGURE 9.

(A) The image under the cell nuclei mask only. All pixels not under the mask have been set to a grey level of 255 (white). (B)
The image of the background only. All pixels under the mask of the cell nuclei have been set to a grey level of 255 (white).

o From the background image (Fig. 9B), a black top-hat trans-
form is applied. The top-hat transform is a filter which selects
only areas from the image of small sharp detail. This trans-
form performs an image opening (erosion followed by dila-
tion of the same magnitude) of the image, and then subtracts
the result from the original image. Therefore, if the top-hat
kernel is set to two, all features whose centroids are not
surrounded by a layer of at least two pixels will be eliminated
by the opening operation, and will appear as high contrast
features when the opened image is subtracted from the orig-
inal. This transform is well suited for the extraction of small
black objects, such as the silver grains of an autoradiograph.
It also results in the detection of single-pixel noise, and
fractal detail arising from the nonsmoothed contours of the
cell nuclei (Fig. 9A), which were subtracted from the original
image in Figure 1A to obtain the background image of Figure
9B.

o A grey level threshold can be set to discriminate all objects
extracted by the black top-hat, including noise and fractal
detail.

o The application of the minima function on Figure 9B com-
bined with a logic operation between the binary planes con-
taining the grey level threshold data and the image minima,
removes fractal artifacts arising from the edges of the cell
nuclei.

o Elimination of objects from the detected feature set of size
less than 4 pixels removes noise from the image. The remain-
ing features represent the detected extra-nuclear grains.

e From the image of the cell nuclei (Fig. 9A), adjacent pixel
smoothing (matrix kernel 2) is used to flatten variations in
nuclear stain, without removing the grains.

e Local minima within the cell nuclei are sought to identify
potential grains. Minima greater than 4 pixels are counted as
grains.

e Overlying the binary planes containing the detected grains
from the cell nuclei and the background on the original image
gives the resultant image with all detected grains (Fig. 3).
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