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5 nuclear medicine continues to

erge the principles of imaging
with those of modern biochemistry,
biology and pharmacology, more de
manding criteria are placed on mea
surements being made. The perfor
mance of analytical imagingassays of
biological processes requires that the
methodsusedhavea definablequan
titative foundation, whether the end
result is a quantitatively reported re
sult in @mole/min/gof tissue or a qual
itatively reported clinical evaluation.
Although this editorial focuses on the
particularissue of â€˜50-waterstudies of
blood flow with PET, this is an objec
tive for planar gamma and positron
cameras,SPECF andPET imagingin
nuclearmedicine.

There are two levels of quantitation
in PET. Thefirstisquantitationof tis
sue radioactivity concentration as rep
resentedby imagesmeasureddirectly
by PET scanners. The second is the
quantitation of PET images in terms of
biological parameters in tissue. The
first level involves the consideration
of many instrumentationand imaging
issues,includingscatteredradiation,
random coincidence, deadtime, pho
ton attenuation, detector efficiency
normalization, spatial resolution (in
trinsic and reconstructed)and calibra
tion (1). The second level requires, in
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addition, the accuratemeasurementof
time-activity curves (TACs) of labeled
compoundsin blood/plasmathat,
combinedwith the quantitativemea
surementof radioactivityconcentra
tion in tissue and a validated tracer
kinetic model, can provide quantita
tive informationon biological param
eters of interest in local tissues (2).

The measurement procedure of
blood TACS is usually invasive, fre
quently requiring arterial blood sam
pling that is cumbersomeand com
plex, and deters people from using it
on a routine basis. Moreover, it could
potentially create unnecessary patient
anxiety and thus affect the normal
state of the subject being studied.
Many approacheshave thereforebeen
investigated to make the measurement
of blood TACSless invasive and more
practical. The paper by Nelson et al.
(3) is an example of such an approach
to minimize the invasiveness of the
procedure.The authorsuseda scintil
lation probe over the superior aspect
of the right lung duringa bolus injec
tion â€˜50-watercerebral blood flow
(CBF) study to measure the shape of
the 150-water TAC in arterialblood.
The measured TAC was then call
brated to radioactivity concentration
units with a calibrationstudy that
equated the probe measurement with
an equilibrium blood concentration
(measured from blood samples with a
well counter) following inhalation of
150-carbon monoxide.

Withsome clever, but somewhat ad

hoc data processings to remove the
background and to correct the time
shift and dispersion, the probe-mea
sured curve was shown to give esti
mates ofCBF comparableto those ob
tained using direct arterial blood
samples. The use of the probe mea
surement for â€˜5O-waterCBF studies
in normals is thus shown to be quite
successful.

Some limitations associated with
the lung probe approach, however,
exist. Some can be easily improved,
whereas solutions forothers are not so
trivial. For example,the useof a sep
arate 15O-carbonmonoxide study and
blood sampling for calibration is
somewhat awkwardandthe use of 150
with a short half-life of 2 mm for cali
bration is very sensitive to timing er
rors and background radiation. Al
though the use of â€˜50-waterfor
calibration, as suggested by Nelson et
al. (3), may eliminatethe needof the
â€˜50-carbonmonoxide inhalation, the
higherrorsensitivity of the calibration
due to the short half-lifeof 150 re
mains.

The probe measurement for 150
water CBF studies in normals has
been carefully validated by Nelson et
al. (3). Extension of the approach for
studies in patients, with other tracers,
or for other organs, however, requires
the validation to be repeated for each
case,becausethe applicabilityof the
approachrelies on certain special fea
tures of the â€˜50-watertracer that are
not common to other tracers/studies.
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For example,if the tracerhassome
specific uptake and retention in the
lung tissue, the probe measurement
would not be representativeof the ac
tivityinblood.If a longertimeinterval
for thebloodcurveisneeded(i.e., >2
min), the uptakeof a diffusibletracer
like â€˜50-waterin the chest wall would
beginto affecttheshapeof theprobe
measured curve and the discrepancy
betweenthe distributionof 150-car
bon monoxideand â€˜50-waterin the
lungandin theadjacenttissueswould
becomemore significantand lead to
largererrorsin the estimationof the
blood TAC.

For quantitativePET studies, there
are other approaches with different
advantagesand limitationsthat one
can consider for measuringblood
TACs without arterial blood sam
plings.The â€œarterializationâ€•of ye
nous blood from a heated hand has
beenusedsuccessfullyfor FDG stud
ies (4). This approach is usable if the
tracer has a relatively low tissue ex
traction from blood and the quantita
tion method is based on the kinetics
over a long time interval (e.g., >30
min in thecaseof FDG) thatcantol
eratea smalltimingdelayanddisper
sion at the early time of the TAC.

In cardiac studies, there is a strong
desire to use the imaged radioactivity
level (as obtained by defining a region
of interest (ROl) on PET images) in
the cardiac chambers to provide the
blood TAC (5). This approach does
not require any blood sampling and
there is no scanner-to-well counter
calibration involved. The spillover of
activity from the myocardium to the
cardiac chamberand the relatively
high noise level of the measurement
can, however, pose significant prob
lems, of which many solutions are
available(6â€”10).The approachalso
has been extended to liver and kidney
PET studies by using ROIs over the
imagedcross-sectionof theabdominal
aorta to give the shape of the blood
TAC (11â€”13).Imaging of smaller ar
teries to provide the blood TAC also
has been suggested (14). The large
partial volume effect andthe spillover
of radioactivityfrom adjacentsoft tis
sue are major concerns in cases where

the surrounding tissue-to-blood activ
ity concentrationincreases.All ap
proaches that use ROIs on PET im
ages give the total radioactivity
concentration in blood. If there are
labeledmetabolitesin bloodor there
are differentdistributionsof the tracer
betweenwholebloodandplasma,ad
ditional measurements and correc
tions will need to be made (9,15).

For certain volatile tracers, the
blood TAC can be approximated from
the measured radioactivity in the ex
pired air of the subject. This approach
has been used by Holden et al. (16) for
measuring CBF with â€˜8F-methyl-flu
oride. The simplest approach of all is
probably the use of the total adminis
tered dose per body weight of the sub
ject to normalize the imaged tissue ra
dioactivity. An underlying assumption
of this approach is that the intersub
ject variability of the blood TAC after
normalization to the administered
doseandbodyweightis small.These
variations are due to variable rates of
lipophiic and hydrophilic tissue com
position or variable systemic concen
trations of tissue componentsthat
bind the tracer per unit of body
weight. Furthermore, it is assumed
that tissue uptake is directly related to
the area of the blood TAC and the
biological process being measured.
For most PET studies, however, this
assumption is far from the reality and
the approach does not usually yield
reliablequantitativeresults(17).

The studies by Nelson et al. (3) and
their group (18) on the effects of the
enoxacin on global CBF clearly dem

onstrate that the second level of PET
quantitation(Le., quantitationof bio
logical and biochemical parameters in
absoluteunits)isnecessarytoprovide
the critical information in many PET
studies. Images of radioactivity distri
bution in tissue alone do not provide
information about global stability or
absolute changes in CBF or other bi
ological processes. These investiga
tors' useof quantitativePET alsoil
lustrates an important and growing
application of PET in pharmacology.
In this case, PET is used to study
drug-inducedbiologicalchangesthat
provide an objective means to assess

theeffectof a drugon anendogenous
process in specific tissue in the living
patient.

Another type of PET application in
pharmacologyis to examinethe trans
port, metabolism, clearance and
mechanismof drugsin tissue.Molec
ular drug action can be traced and
studiedusingthe tracer principlein
nuclear medicine. An example of the
usefulnessof suchstudieswasdemon
strated in the examination of the ef
fectsof carbidopaonL-DOPA uptake
in the human brain (19,20). By using
FDOPA as an analog tracer of
L-DOPA, it was shown that its trans
port across the blood-brain barrier
(BBB) and the uptake processof the
drug in the human brain is not directly
affected by the use of carbidopa,
whichis usedto inhibitthe actionof
aromatic amino acid decarboxylase
(AADC). Instead, carbidopa was
found to inhibitonly the decarboxyla
tion activity ofAADC in the periphery
and thus increases and maintains the
concentration of FDOPA (or
L-DOPA) in plasmafor uptakein the
striatum.This findingis quite different
from those based on experiments in
rats (21,22) and illustratesyet another
advantage of PET in allowing direct
evaluation of drug action/mechanism
in man. By eliminating the unreliable
andofteninaccurateextrapolationof
results from animals to man (23,24),
quantitative PET is expected to help
facilitate greatly the evaluation pro
cess in the development of new drugs.
This of course is taking place for nu
merous ligand-receptorassays devel
oped for use in PET and SPEC!'.
Theseanalyticalassaysareproviding
the means to titrateblocking doses of
drugs to their specific site of interac
tion in tissuein living humanswith
diseasesfor whichthe drugsare tar
geted (25). In addition to receptor
blockage, this approach has targeted
the monitoring of pharmacological
modification of enzyme concentra
tions. For example, the 11C-deprenyl
tracer assay has been used to deter
mine the percent depletion of mono
amineoxidase-B(MAO-B)byphar
macologic dose schedules of deprenyl,
as well as the slow rate of synthetic
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recovery of MAO-B afterstoppingthe
drug (26,27). An alternative pharma
cologic approach to modulating the
concentration of MAO-B in the brain
hasemployedthe reversible inhibitor
of MAO-B, R019-6327, developed by
Hoffman-LaRoche, Ltd. Again, 11C-
deprenyl has been used as a tracer to
established the percentage of MAO-B
blockage as a function of pharmaco
logically delivered doses of R019-
6327, as well as the recovery rate of
the enzyme after drug delivery is
stopped (27,28).

With rapid advances in chemistry,
geneticsandmolecularandcellularbi
ology, the target of drug design, is
shifting to molecular mechanisms of
suchprocessesassignaltransduction,
second messengers, gene transcrip
tionandproteintranslation.Biological
imaging of nuclear medicine will syn
erglstically work with modern drug
development so that the latter'sobjec
tive is to modify the function of a bi
ological process and former's is to im
age the function of that process. With
this realization,drugdevelopment and
biological imagingwill work together
to support each other to achieve a
commonobjectivein assessingthere
quirements and efficiency of drugs to
providemolecularcorrectionsof the
biological nature of disease processes.

The continued commitment to re
fining and defining the necessary him
its of analytical imagingtechniques in
nuclear medicine will furtheradvance
this new and fertile field of biological
imaging.Improvementof the practical
aspect of quantitativePET is also one
of the critical areas that needs special
attention and more concentrated ef
forts. The expected widespread use of
quantitative PET will depend on the
successof these efforts.

S.C. Huang
M. E. Phelps

UCLASchoolof Medicine
Los A,@geles,California
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