
important clinical implications.SPECT images of a Jaszczak rod phantom, a single-slice
Hoffman brain phantom and a uniform water-bath were ac
quired. Simulated noisy bar phantoms incorporating depth
dependent attenuabon and blur were produced and compared
to simulations with depth-independent attenuation and blur,
asisthecaseinPET.Followingiterativemaximum-likelihood
reconstruction,regularizationwas performed with use of
Gaussianfilters.Whilecorrectionfor attenuationis achieved
inapproximately10 iterations,spatialresolutioninthe SPECT
reconstructions, quantified by contrast in the bar simulations
and by visualinspectionof the real data, was highlynonuni
form, being poorest at the center and improving toward the
periphery. Image resolution continued to improve well beyond
50 iterationswhenregulanzationwas appliedthat maintained
a constant signal-to-noiseratio. Contrast in the simulated
PET data also improvedwith increasingiterations,but the
PET data showeduniformcontrastthroughoutthe transaxial
slices at all numbers of iterations.

J NucI Med 1992; 33:1678â€”1684

here is increasing interest in maximum-likelihood re
construction in single-photon emission computed-tomog
raphy (SPECT) (1-4) and positron-emission tomography
(PET) (5,6). In SPECT imaging, maximum-likelihood re
construction may improve quantification (2) and yield
more accurate attenuation compensation, especially in the
chest (1,7). This reconstruction technique also shows
promise in PET imaging ofthe brain (6).

Despite this widespread interest in maximum-likelihood
reconstruction, there have been few systematic, quantita
tive studies of fundamental properties of the algorithm in
tomographic reconstruction (8). This paper addresses the
following questions:

1. Are attenuation and resolution in reconstructed
slices uniform across the slice?

2. How many iterations of the algorithm are required?
Is there an optimum number of iterations?

3. Are the resolution characteristics the same in SPECT
and PET imaging?

ReCeiVedJan. 30, 1992: accepted Apr. 13. 1992.
For reprints contact: Tom R. Miller, MD, PhD, The EdWard Mallinckrodt

Instituteof RadiOlOgy,510 S. KlngshighwayBlvd.,St. Louis.MO 63110.

METHODS

The Expectation-MaximizationAlgorithmfor
Maximum-Ukelihood Reconstruction

The basic concept of maximum-likelihood reconstruction is
simple: the activity distribution in the reconstructed slice is
chosen to be the one with the â€œmaximumlikelihoodâ€•of produc
ing the observed projection data. Since no analytic solution is
available, the reconstruction must be performed iteratively, usu
ally with use of the expectation-maximization algorithm. Two
equations for the iterative expectation-maximization calculation
are in wide use (3,9). They differ only in choice ofthe â€œcomplete
data,â€• and they converge to the same final solution. The equation

proposed by Lange and Carson (9) will be used here because it
appearsto converge fasterthan the other algorithm (6).

The â€œNoiseâ€•Problem with Increasing Iterations
As the number of iterations of the expectation-maximization

algorithm increases, the reconstructed images become increas
ingly â€œnoisy.â€•This undesirable phenomenon has led several
authorsto propose stoppingat 50 iterations(2,10,11). Some have
suggestedcontinuingto iterate,believingthe reconstructedimage
will improve rather than deteriorate ifappropriate constraints are
applied. Several constraint techniques have been proposed (12-
17). In this paper, the data will be presented both without
constraints or regularization and with post-iteration Gaussian
regularization based upon the â€œmethodof sievesâ€•(12,13). The
Gaussian filters were implemented as 15 x 15 pixel convolution

filtersapplied to the reconstructedslices after iteration (18).

DifferencesBetweenSPECTand PET Reconstruction
In maximum-likelihood reconstruction, the physics of the

imaging situation is explicitly included in the projection and
backprojection steps. In SPECT imaging, the spatial resolution
and photon attenuation are both stronglydependent upon depth
(19). In PET, resolution is almost completely independent of
depth, and attenuation is usually considered to be constant along
any particularreconstructionrayor cylinderwith the attenuation
values based on a transmission measurement (19). Thus, while
the superficial form of the iterative equations for SPECT and
PET appear identical, the projection and backprojectionopera
tors are fundamentally different.

Experimental Image Data
Two setsof experimentaldata wereacquired.One wasfrom a

Jaszczak phantom (Data Spectrum Corp., Chapel Hill, NC) filled
with 20 mCi 99mTc. Half of the phantom contained only radio
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PhantomTypeDiameter (cm)Total
projection

countsRadius

of
rotation

(cm)FigureJaszczakâ€”uniformReal21

.61,750,000191Jaszczakâ€”rodsReal21
.62,870,000197Hoffman

brainReal16 X 12
(oval)212,000158Cross-hatch

(4 pixel)-bodySimulated21.7oo@252Cross-hatch
(3pixel)-headSimulated16.1cc153Vertical

bars(4 pixel)-bodySimulated21 .7500,000
or254Vertical

bars(3 pixel)-headSimulated1 6.1600,000
or Â°Â°1

5â€”*

Noise-free.

activewater,whilethe other half contained six sets of rods with
diameters from 4.8 to 12.7 mm. The other study was ofa single
slice Hoffman brain phantom (20) filled with 3 mCi @mTc.Both
studies were collected on a single-head rotating gamma camera
(Siemens Orbiter, Siemens Medical Systems, Hoffman Estates,
IL) equipped with a high-resolutioncollimator. Data were col
lected in a 128 x 128 pixel matrix at 90 angles over 360Â°.Pixel
dimension was 3.1 x 3. 1 mm. Several rows of projection data
were summed before reconstructionin the Jaszczakstudy to give
high-count, low-noise slices. Three rows were summed in the
Hoffman phantom to account for the 9 mm thickness of the
phantom. The dimensions of the phantoms, total projection
counts and radius of rotation are given in Table 1. To speed
reconstruction, the central 80 x 80 pixels of the projection data
were used for the Jaszczak study and 64 x 64 pixels were used
for the Hoffmandata; the phantomswerecenteredon the axisof
rotation to avoid missing projection data.

Simulated Image Data
Four very simple computer-simulatedphantoms were created

to assess the uniformity of spatial resolution (Table 1). The
phantoms were created with the same pixel dimensions and
matrix sizes as used with the experimental data. The first two
phantoms were in a cross-hatchpatternwith bar thicknessesof 4
or 3 pixels and dimensions typical of body and head imaging.
The spaces between the bars were of the same thickness and
containedzerocounts. The third and fourth phantoms consisted
of 4-pixel or 3-pixel vertical bars with spaces containing 50% of
the activity in the bars. The â€œbodyâ€•phantoms were produced
with diameters equal to the Jaszczak phantom, while the â€œheadâ€•
phantoms were designed with the dimensions of the Hoffman
phantom. These simulated phantoms were rotated through 90
angles over 360 and projected with use of the collimator resolu
tion-function and attenuation values described below. The total
counts and radiusofrotation for the larger(body) phantoms were
chosen to correspondto typical values for a clinical study of the
abdomenwitha triple-headcamera.Valuesfor the smaller(head)
phantoms were similar to those in a brain study with a triple
head camera. Poisson noise was added with use of a random
number generator.

For SPECTimaging,the depth-dependentspatialresolutionof
the gamma-camera was measured by planar imaging of a line
source filled with 99mTcimbedded in a lucite scattering medium.

The resolution, assumed to be Gaussian in shape, was character
ized as a function of depth, D (cm), by the full width at half
maximum (FWHM) according to the following equation:

FWHM (cm) = â€˜/(0.47)2@ (0.056D)@

A linear attenuation coefficient of 0.13/cm was used for the
SPECT simulations; a value of 0.15/cm resulted in negligible
differences in the results.

To approximatethe acquisitioncharacteristicsofPET imaging,
simulated data were also generatedwith a constant resolution of
8 mm FWHM and a constantattenuationvalueof 0.096/cm
(19).

Implementation of the Iterative Reconstruction
The iterative reconstruction algorithm was implemented for

parallel projection and backprojection rays as would be obtained
with use of a parallel-hole collimator. The computations were
performedon a modern reduced-instruction-set(RISC)worksta
tion (DECstation 5000/200, Digital Equipment Corp., Maynard,
MA).Eachiterationofthe algorithmrequiredonly 7â€”12secwith
use of an approach we have developed (21) that involves one
precomputationof the projectionand backprojectionoperators
requiring less than 100 sec with subsequent storage in computer
memory; at each iteration only a table lookup is then required
followed by simple floating-point calculations.

Data Analysis
The realexperimentaldata wereusedto analyzequantitatively

the attenuation compensation and evaluate qualitatively the
depth-dependence of resolution and the performance of the al
gorithm with increasing numbers of iterations. The spatial reso
lution was analyzed with use of the simulated phantoms. The
simulated data from the 3- and 4-pixel vertical bars were used to
quantify the depth-dependence ofresolution. Because ofthe edge
artifact present in maximum-likelihood reconstruction (12,13), a

measureof contrast betweenthe bars and spaceswasemployed
rather than a measure such as the point spread function that
wouldbe more prone to artifactualresults.The countswithinthe
full width of the central bar (C@)weresummed at the center of
the circular phantom and at one-half of the distance to the edge
of the phantom. The counts in the space between the bars were
similarly determined (C,@). The contrast at the center and at
the mid-radiuswas then computed as@ The ideal

TABLE I
Characteristics of the Real and Simulated Phantoms
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contrast of the phantoms was 0.5. Results are expressed as a
fraction ofthe ideal contrast.

When regulanzation is employed to compensate for the
â€œnoiseâ€•artifact,the resolution ofthe Gaussian regularizershould
be selected in a rational manner. We selected the regularizing
filter so that the signal-to-noise ratio (SNR) in the reconstructed
slice after regularizationwould be constant as the number of
iterations increased. The SNR of the image after 50 iterations
without regularization was selected because several authors have
proposed performing maximum-likelihoodreconstruction with
that number of iterations and no regularization (2,10,11). To
determine the SNR for the simulated data, 25 realizations of the
projection data were created with the use of a random-number
generator. Reconstructions then were performed separately for
each projection set, leading to 25 noisy slices from each phantom.
The SNR for each phantom was then computed on a pixel-by
pixelbasisas the mean of the 25 imagesdividedby the standard
deviation. Mean and SNR images were then created. The average
SNR was computed from the SNR image within the phantom
except for the 5 pixels closest to the peripherywhere there could
be edgeartifact.

It was not practicalto collect the identical experimental phan
tom data 25 timesbecauseofthe verylongtotal acquisitiontime
and the declining counting rate caused by radioactive decay.
Thus, the SNR was estimated from an annulus in the uniform
section of the Jaszczak phantom. Within an annulus of the
symmetricphantom, the mean counts will be constant and the
variance of the counts will be uniform. An annulus was chosen
ratherthan the entire phantom to avoid potential problems with
imperfect attenuation compensation and nonuniform distribu
tion ofnoise. Thus, the mean and standard deviation ofthe pixel
counts in a 5-pixel thick annulus at one-half of the phantom
radius were determined and the SNR was computed as the mean
of the counts in the annulus divided by the standarddeviation.

RESULTS

Figure 1 shows a profile through the center of the
uniform â€œwaterbathâ€•section of the Jaszczak phantom
after 10 iterations. The essentially flat shape of the profile

FIGURE1. Thecountsina cross-sectionalslicethroughthe
centerof the water bath sectionof the Jaszczakphantomis
shown after 10 iterations of the maximum-likelihood algorfthm
without regularization.

FIGURE2. Thesimulated,noise-freecross-hatchphantomis
shown for SPECT imaging with dimensions typiCal of body ac
quisition. Reconstructions are shown after 50, 100 and 300
iterations.

did not change with larger numbers of iterations except
for the well-known increase in the noise and edge artifacts
(12,13). Thus, only 10 iterations are required to achieve
complete attenuation compensation with this uniform at
tenuating medium.

Figures 2 and 3 show reconstructions of the cross-hatch
simulated, noise-free phantom for dimensions character
istic of both body and brain SPECT imaging and for the
PET-like situation. This phantom, illustrating resolution,
demonstrates that for SPECT imaging resolution is poorer
at the center of the image than closer to the periphery.
The relative resolution at the center compared to periph
erally improves with increasing number of iterations. Res
olution is independent of depth for the PET-like simula
tion. This phenomenon is quantified with use ofthe noise
free vertical bar phantoms shown in Figure 4 for body
imaging with SPECT and the similar phantoms, not
shown, for the head and PET cases. The noise-free bars
were used for analysis; the results were essentially the same,
but more variable, when the noisy bars were used. As
described above, regularization was not performed at 50
iterations. Gaussian regularizers were chosen for higher
iterations to give a SNR equal to that at 50 iterations. For
the images in Figure 4, the FWHM of the Gaussian

FIGURE3. Theupperrowshowsthecross-hatchphantom
for a simulated SPECT study with dimensionstypical of head
imaging.The lower row showsthe same phantom,but with
imagingsimilarto the PETcase.Reconstructionsareshownafter
50, 100 and300 iterations.
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FIGURE4. Theverticalbarphantomisshownforsimulated
SPECT imagingwith bodydimensions.The upperrow shows
reconstructionsfor 50, 100 and 300 iterations without regulari
zation.Thelowerrowshowsimagesafter100and300iterations
with Gaussian regularization. The marks labeled â€˜ICâ€•and @Mâ€•
representthe positionof the horizontalprofilesused to compute
contrast at the center and mid-radius of the phantom. The slight
truncationat the upper and right edges is related to the size of
the convolutionfilter mask.

regularizers was 9. 1 and 12.5 mm for the images at 100
and 300 iterations, respectively.

Figures 5 and 6 are data derived from the vertical bar
phantoms. They show the ratio ofthe contrast at the center
of the images and half-way to the edge compared to the
ideal contrast of 0.5 for the large and small phantoms
representing body and head SPECT imaging with and
without regularization. Note the gradual improvement in

contrast with number ofiterations and the inferior contrast
at the center of the images. The relative and absolute
differences between the center and mid-radius contrast
decreased with increasing numbers ofiterations. The slight
fall in contrast after regularization at the mid-radius for
the head situation at 250 and 300 iterations is due to

FIGURE5. Theratioof themeasuredcontrastto the ideal
contrastof 0.5 is shownfor SPECT imagingof the simulated
verticalbar phantomswith body dimensions.Data are shown at
thecenterof thephantomandhalf-wayto theperipherywithand
without regularization.

FIGURE 6. The contrastratiosfor simulatedhead SPECT
imaging are shown in the same format as in Figure 5.

increasing smoothness of the Gaussian regularizers, as
discussed more fully below. Results for the vertical bar
PET-like situation showed average contrast ratios without
regularization rising from 0.41 at 50 iterations to 0.87 at
300 iterations. Values differed between the center and
mid-radius by only 0.03 at 50 iterations and 0.01 at 300
iterations.

The SNR was slightly lower at the center of the simu
lated SPECT images than at the periphery. Since the
algorithm accurately compensates for attenuation, the
mean value is contrast, thus indicating that there is greater
noise at the image center. This variation is caused by
depth-dependent attenuation leading to fewer detected
counts coming from the center of the image.

To verify the quantitative SPECT results achieved with
the simulated bar phantoms, the experimental Jaszczak
and Hoffman data were reconstructed for 50, 300 and
1000 iterations, as shown in Figures 7 and 8. Regulariza
tion was applied at 300 and 1000 iterations. The regular
izer for the Jaszczak phantom at 300 iterations (10. 1 mm

FIGURE7. Reconstructlonsthroughthe rodsectionof the
Jaszczakphantomareshownafter50,300and1000iterations.
The upper row is withoutregularization,whilethe lower row
shows reconstructionsat 300 and 1000 iterationswith Gaussian
regularization.
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sources would be employed with results expressed in terms
ofthe measured full-width half-maximum. Unfortunately,
many ifitering and reconstruction techniques, including,
among others, filtering of planar images with sharp filters
such as the Wiener filter, and maximum-likelihood recon
struction, produce artifactual enhancement of object
edges. Thus, the FWHM of a point source would become
artifactually narrow and, thus, no longer representative of
the ability to distinguish adjacent structures. For this rca
son we have chosen to use a bar pattern simulation and
indirectly quantify â€œresolutionâ€•by a contrast measure.
The Jaszczak and Hoffman phantoms are evaluated in a
more subjective, visual way.

The SNR is an important measure ofimage quality that
is closely related to resolution. Differing reconstruction
factors, including the choice of filter in ifitered backpro
jection and the regularizer in maximum-likelihood, lead
to widely varying and inversely related resolution and
noise. Therefore, to simplify analysis of the results, we
have chosen to hold the SNR constant as iteration number
increases and measure the changing contrast. Similarly,
contrast or another measure related to resolution could be
fixed and noise change could be quantified.

Scatter correction has not been employed in either the
simulations or reconstructions. While the Hoffman phan
tom is very thin with negligible scatter, the images obtained
from the rod section of the Jaszczak phantom (Fig. 7) are
degraded by scatter, thus reducing overall image contrast.
If scatter correction were applied, e.g., with dual-window
correction of the projection data (22), the enhanced con
trast might make the depth-dependence of the spatial
resolution more apparent. However, correction for scatter
would not change the principal conclusions of this work.

Number of Iterations
Many workers now perform maximum-likelihood re

constructions with 50 iterations (2,10,1 1), believing either
that the increasing noise with further iterations leads to
deterioration of the images or that no gains will arise with
further time-consuming iterations. The results reported
her showing that spatial resolution is nonuniform and that
image quality improves beyond 50 iterations suggest that
more iterations should be employed. In fact, excellent
reconstructions are obtained with the computationally
impractical number of 1000 iterations (Figs. 7-8).

There may be an optimum number of iterations. As
shown in Figures 5 and 6, the contrast at the mid-radius
plateaus or falls slightly at 300 iterations when a Gaussian
regularizer is employed. This phenomenon is due to the
increasingly smooth regularizers required to hold image
noise constant as iteration number increases. If other
regularization methods are employed, this feature of max
imum-likeihood reconstruction may disappear, or an op
timum number may occur at a different point.

It is likely that the appropriate number of iterations will
depend upon the details ofthe imaging situation including
the counting rate, organ dimensions, uniformity of the

N
0

A
e
9.

50

A
e
g

FIGURE8. TheHoffmanbralnphantomis shownafter50,
300 and1000 iterations.Theformatisthesameas inFigure7.

FWHM) was chosen to give a constant SNR in a mid
annulus as described above. For the Hoffman phantom
and for the Jaszczak phantom at 1000 iterations, the
regularizers were selected to give clinically acceptable and
visually similar noise levels. Note that resolution at the
center of the phantoms is inferior to that at the periphery,
especially at low iteration numbers, and the resolution in
the center plateaus or continues to improve after regular
ization, even at 1000 iterations, thus confirming the sim
ulated results in Figures 5 and 6. The center ofthe Jaszczak
phantom is noisier than the more peripheral regions, al
though that phenomenon is difficult to appreciate in pho
tographic reproductions of the images.

DISCUSSION

There are several principal conclusions to be drawn
from this work.

1. Attenuation Compensation. Accurate attenuation
compensation for a uniform attenuation medium is
achieved after approximately 10 iterations (Fig. 1).

2. Resolution. Spatial resolution in SPECT reconstruc
tion is variable across the slice, being the worst in
the center and becoming more uniform with increas
ing number of iterations (Figs. 2â€”8).To our knowl
edge, this fact has not previously been reported.

3. Number oflterations. The reconstructed images con
tinue to improve in quality (improving spatial reso
lution at a constant SNR) well beyond 50 iterations
with plateauing or a possible slight decline at large
numbers of iterations (Figs. 2â€”8).This issue, a very
controversial topic for many years, will be discussed
further below.

4. PET. The depthdependenceof resolutionobserved
with SPECT may not be present in PET imaging
(Fig. 3 and data in the Results).

Methodological Issues
Quantification of the spatial resolution in maximum

likelihood reconstruction is a difficult issue. Ideally, point
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attenuating medium, camera parameters and other factors.
Thus, further experiments will be required, ultimately with
clinical patient data, to fully answer this question for each
imaging situation.

We have chosen to use unconstrained maximum-like
lihood reconstruction with post-processing regularization
by the kernel-sieve method (12,13). Other related tech
niques, such as maximum-likelihood with use of Good's
roughness measure (23,24), Gibbs priors (14,16) or other
related methods (15,1 7) might give superior results to
those reported here. However, the fundamental conclu
sions of this work would not likely change.

Computation Speed
A major factor affecting choice of iteration number is

the time required to perform the computation-intensive
iterations. Special multi-processor machines can perform
single-slice iterations at a rate of 40â€”300per minute (24,
25). It may also be possible to speed convergence of the
iterative algorithm (26,27). As conventional workstations
continue to improve in speed, clinically acceptable corn
putation times may become a reality with the use of these
widely available low-cost machines.

The slower resolution improvement in the image center
suggests a simple modification to the iterative scheme to
more efficiently use the computer time. As the iterations
proceed, a progressively smaller area about the image
center is backprojected at each iteration. Thus, iterations
become faster with concentration on the region with the
lowest resolution. While this concept will require further
development that is beyond the scope of this paper, a
single, preliminary trial was performed. After the first 150
iterations of the standard algorithm, 225 additional itera
tions were performed within a smoothly shrinking area,
leading to a total of 375 iterations consuming the same
time as the standard method with 300 iterations. Bar
phantom contrast improved at the center with only slight
loss peripherally compared to the standard method.

SPECT VersusPET
There is a simple, intuitive explanation for the property

of maximum-likelihood reconstruction that the resolution
in the center of the slice lags behind the resolution at the
periphery. Gamma-ray attenuation and depth-dependent
collimator resolution in SPECT lead to fewer and more
blurred detected photons in the projections coming from
the center of the image than from the edges. Thus, the
maximum-likelihood algorithm has more difficulty in se
lecting the correct activity distribution in the center of the
object because the algorithm is dealing with smaller nurn
bers of events that are spread over a larger area of the
detector surface.

If the depth-dependence of attenuation and resolution
is removed, as is approximately true in PET (19), then it
is plausible to anticipate that the reconstructed slices would
not show the depth-dependence in resolution observed in
SPECT imaging. That appears to be the case in the simu

lated â€œPETâ€•results reported here (Fig. 3 and in the data
in the Results). Further experimental verification of this
observation will be required employing the proper fan
beam geometry and PET measurements ofreal phantoms.

Clinical Implications
In clinicalSPECTstudies,informationat the centerof

the reconstructed slice is generally as important as infor
mation at the periphery. Therefore, because of the depth
dependence of resolution, it is doubtful that 50 iterations
of the maximum-likelihood algorithm (2,10,11) will be
adequate to resolve clinically important small structures.
This observation may not have been made previously
because phantom studies usually have not specifically
addressed resolution at the center.

To achieve the most accurate clinical interpretations by
visual analysis of images, it is desirable to have the best
possible spatial resolution and uniformity with minimum
noise. The results presented here with real phantoms
closely approximating clinical brain studies (Hoffman
phantom) and more generally corresponding to abdominal
studies (Jaszczak phantom) show that resolution improves
at a constant noise level with increasing numbers of itera
tions. The images do not deteriorate as frequently sug
gested (2,10,11). While there are practical limits due to
computation time and computer cost, it appears that more
than 50 iterations will be needed to achieve worthwhile
results with the maximum-likelihood algorithm. Other,
more complex â€œregularizationâ€•methods (14â€”17,23,24)
may give even better results than those reported here.
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slowlyovera 1-3 mmduration. Presumably,this is due to spasmof the
cystic duct, which impairs emptying ofthe gallbladder andfalsely lowers
the gallbladderejectionfraction.
Rfr.ncâ€¢s
1. Pickleman J, Peiss AL, Henkin A, et al. The role of sincalide cholescintigraphy

in the evaluation of patients with acalcutous gallbladder disease. Arch Surg
1985:120:693-697.

2. DeRidderP Fink-BennettD.Thedilatedcommonductsign.Apotentialindicator
of sphincter of Oddi dyskinesia. C/in Nod Med 1984;9:262-263.

ITEMS 10â€”12:PropertIes of CCK
ANSWERS:10,1; 11,F; 12,F
Cholecystokinin(CCK)isa33-amino@acidpolypeptidehormoneproduc
ed by the duodenal mucosa in responseto fat, lipolyticproducts,amino
acidsand smallpolypeptidesin thesmallintestineItcausesthe galiblad
der to contract,thesphincterof Oddito relax,enhancesjejunal,ileal
and, to a lesser extent, colonic motility, increases pyloric tone, and
stimulatesthe secretionof pancreaticenzymesand bile.Thediffuseef
fectsofCCKonintestinalmotilityexplainwhymanypatientsreport gurgl
ing in the stomachâ€•followingits injection. Itsactiveor cholecystokinetic
portionresidestotallyin itsC-terminaloctapeptidefragment.

Therearetwo commercialpreparationsofthe 33-amino-acid polypep
tide cholecystokinin:Pancreozymin@vis produced by Boots Co., Ltd.,
England,and Cholecystokinintmbythe KarolinksaInstitutein Stockholm.
Bothsincalide,the C-terminaloctapeptide,and ceruletidediethylamine,
the C-terminal decapeptide of cholecystokinin, are synthetic
cholecystogogues.Sincalide(Kinevac@v)isproducedbySquibb&Sons,
Inc.,andceruletidediethylamine(Tymtran'@)by AdriaLaboratories.Their
effectsonthegastrointestinalandhepatobiliarysystemareidenticalto
that of intact cholecystokinin.
Rfrsncs
1. Fink-Bennett D. The role of cholecytogogues in the evaluation of biliary tract

disorders. In: Freeman LM, WeissmannHS, eds. Nuclear Medicine Annual
1985. New York: Raven Press: 1985:107-132.

ITEMS 13-IS and 17-20 False-PositiveSclntlgraphyforAcute
Cholecystltls
ANSWERS:13,T; 14,1@15,F; 16,1@17,1@18,1@19,T;20, F
TheimagesinFigure1revealrapiduptakeoftheradiotracerbytheliver.
Theintrahepaticandextrahepaticductsareseenby15mm.By30mm,
thereistransitoftheradiotracerintotheduodenalsweep.However,the
gallbladder is not visualizedthroughoutthe 60 mmofthe study.Hence,
theremaybecompletecysticductobstruction(acutecholecystitis).Since
the study wascarried out only to 60 mm,one cannot ascertainwhether
thegallbladdermayeventuallyvisualize(e.g.,onlychroniccholecystitis

may be present).
Amongthe causesoffalse-positivestudies(i.e.,nonvisualizationofthe

gallbladder notdueto cysticduct obstruction)arean insufficientperiod
offasting and acutepancreatitis.Asmanyas50% of normal individuals
whoare notfastedhavenonvisualizationofthe gallbladder Endogenous
releaseofcholecystokininandcontractionof thegallbladderfollowing
a meal are presumed to preventgallbladder filling. A fast of at least 2
hr, and preferably 4 hr is required before beginning cholescintigraphy
to minimizethe effectof endogenous cholecystokinin.Prolonged fast
ing, for several days or more, such as may be encountered in post
operativepatientsor those receivingtotal parenteralfeeding, also may
lead to a false-positivecholescintigraphic study, presumably because
thebilewithinthegallbladderisveryviscousor mixedwithsludge Under
suchcircumstances,it ishelpfulto administercholecystokinin30-60 mm
beforecholescintigraphy;thiswillcausecontractionofanormalgallblad
der, which will then be in its refilling phase during the imaging study.
It is generally agreed that acute pancreatitis may be a cause of non
visualizationof the gallbladder, although controversyexists as to the
percentage of individuals with acute pancreatitis who will not have
visualizationof the gallbladder.

Sincenonvisualizationof the gallbladderat 60 mmmaybe due to
chroniccholecystitisaswellasacutecholecystitis,severalapproaches
have been developed to distinguish betweenthem. Obtaining images
up to 4 hr postinjectionhas been shown by many investigatorsto be
useful in separatingchronic cholecystitisfrom acute cholecystitis.The
gallbladder willeventuallyvisualizein patientswithchronic cholecystitis
sincethe cysticduct ispatent,althoughthe gallbladder may be scarred
and sluggish. In patientswith acute cholecystitis,the cystic duct is vir
tually alwaysfunctionallyor anatomicallyobstructed, and the gallblad
der will not visualize.

The false-positiverate for acute cholecystitis also can be reduced
significantlyby medicating the patientwith a cholecystokininanalogue,
or by useof morphinesulfateCholecystokiningivenintravenously(slowly
over 1-3 mm)emptiesa sludge-filledor distendedgallbladder,allowing
a seconddoseof the hepatobiliaryagentto flowintothe gallbladder.
lfthe cysticductisobstructed,thegallbladdercannotcontractagainst
the obstruction. Alternately,if the gallbladder fails to visualizeby 1 hr,
0.04mg/kgmorphinesulfatedilutedin10mlofsalinemaybegivenintra
venouslywith further imagingoverthe next30 mm.Morphine increases
the tone of the sphincter of Oddi at the distal common bile duct. The
resultantincreasein pressurewithinthe biliarysystemisenough to over
comeapartialobstructionofthecysticduct,ortocausefillingofafibrosed
gallbladder,thus bringing about earlier visualizationQfthe gallbladder.
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